
An Ontological Template for Context Expressions in Attribute-based
Access Control Policies

Simeon Veloudis1, Iraklis Paraskakis1, Christos Petsos1, Yiannis Verginadis2, Ioannis Patiniotakis2
and Gregoris Mentzas2

1South East European Research Centre (SEERC), The University of Sheffield, International Faculty CITY College,
Thessaloniki, Greece

2Institute of Communications and Computer Systems, National Technical University of Athens, Athens, Greece

Keywords: Context-aware Security, Ontologies, Access Control, Data Privacy, Security-by-Design.

Abstract: By taking up the cloud computing paradigm enterprises are able to realise significant cost savings whilst
increasing their agility and productivity. However, due to security concerns, many enterprises are reluctant
to migrate their critical data and operations to the cloud. One way to alleviate these concerns is to devise
suitable policies that infuse adequate access controls into cloud services. However, the dynamicity inherent
in cloud environments, coupled with the heterogeneous nature of cloud services, hinders the formulation of
effective and interoperable access control policies that are suitable for the underlying domain of application.
To this end, this work proposes an ontological template for the semantic representation of context
expressions in access control policies. This template is underpinned by a suitable set of interrelated concepts
that generically capture a wide range of contextual knowledge that must be considered during the evaluation
of policies.

1 INTRODUCTION

Enterprises increasingly embrace the cloud
computing paradigm in order to gain access to a
wide range of infrastructure, platform, and
application resources that are abstracted as services
and delivered remotely, over the Internet, by diverse
providers. The main force that fuels this trend is the
significant cost savings that these services instigate,
as well as the acceleration of the development and
deployment of new applications that boosts
innovation and productivity.

However, due to security concerns, many
enterprises are reluctant to migrate their critical
operations and sensitive data to the cloud (CSA,
2015). A promising approach to alleviating these
concerns is to assist application developers in
infusing adequate access control policies in cloud
applications for safeguarding their data against
unauthorised accesses (Veloudis et al., 2016). In this
respect, we envisage a generic security-by-design
framework, essentially a PaaS offering, which
facilitates developers in devising, and ultimately
implementing, such policies. Nevertheless, for the

policies to be effective, they must take into account
the dynamically-evolving nature of cloud
environments. In particular, they must take into
account the contextual information that needs to be
associated with an access request in order for it to be
permitted or denied.

To this end, the work reported in (Veloudis et al.,
2016) outlined the construction of a generic
ontological model for access control policies, one
that bears the following characteristics. Firstly, it is
underlain by a suitable Context-aware Security
Model – an extensible framework of relevant
interrelated concepts that capture a wide range of
relevant contextual attributes, thus embracing the
attribute-based access control (ABAC) scheme (Hu
et al., 2014). Secondly, it uses a generic and
extensible formalism for expressing access control
policies, one which unravels the definition of a
policy from the code employed for enforcing it,
bringing about the following seminal advantages: (i)
it allows the policy-related knowledge to be
extended and instantiated to suit the needs of any
particular cloud application, independently of the
code employed by that application; (ii) it forms an
adequate basis for reasoning generically about the

Veloudis, S., Paraskakis, I., Petsos, C., Verginadis, Y., Patiniotakis, I. and Mentzas, G.
An Ontological Template for Context Expressions in Attribute-based Access Control Policies.
DOI: 10.5220/0006301501510162
In Proceedings of the 7th International Conference on Cloud Computing and Services Science (CLOSER 2017), pages 123-134
ISBN: 978-989-758-243-1
Copyright © 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

123

correctness and consistency of the policies, hence
about the effectiveness of the access control that
they ultimately exercise.

Nevertheless, the ontological model devised in
(Veloudis et al., 2016) assumes that the contextual
attributes articulated in an access control policy are
invariably associated with the subject of a request. It
therefore ignores the fact that contextual attributes
may need to be associated with other entities such as
the object of a request, the request itself, or any
other entity that is deemed relevant for determining
whether the request should be granted or denied. As
an example, consider a policy whereby a particular
subject (say s) is allowed to read a sensitive data
object (say o) only when: o resides in a data centre
in the EU; s issues the request from within a
particular subnet (say subnet1); the request takes
place during a specific time interval; another entity
(say s’) resides in a particular geographical area –
say bldg1. Evidently, in addition to the subject s of
a request, this policy needs to attach context to the
object o of a request (namely, the location of the
object), to the request itself (namely, the time a
request is issued) and to the entity s’ (namely, the
location in which s’ resides).

This paper proposes an extension to the
ontological model outlined in (Veloudis et al., 2016)
that bears the following seminal characteristics.
Firstly, it is able to attach context to any entity that
is deemed relevant to a request at two distinct levels:
(i) at the level of the access control policy,
indicating the contextual conditions that must be
satisfied by an entity in order for an access request
to be permitted (or denied); (ii) at the level of the
request itself, indicating the actual context attached
to an entity at the time of the request. Secondly, it
provides the means to declaratively capture, in terms
of a suitable ontological model, the knowledge that
lurks behind the various contextual attributes that are
associated with the entities relevant to a request.
This is a crucial feature for the following reasons: (i)
It enables the evaluation of a request against an
access control policy to be performed, and reasoned
about, at the semantic level. For instance, referring
to the example above, suppose that, at the time a
request is issued by the subject s, the object o is
reported to reside in a data centre in Athens, Greece.
Clearly, o satisfies the contextual condition set by
the policy (Greece is an EU country). For this to be
inferred, however, the knowledge that lurks behind
the contextual attributes that participate in the
definition of the relevant context needs to be
accurately captured. (ii) It paves the way for
performing automated reasoning about potential

inter-policy relations such as the identification of
contradicting or subsuming polices. For instance, the
policy of the example above subsumes a policy that
permits s to read o from within subnet1 between
09:00 and 17:00 and when s’ resides in a location
within bldg1 (say the location identified as
room123).

The rest of this paper is structured as follows.
Section 2 presents the ontologically-expressed
context model that underpins our access control
policies. Section 3 outlines how the object properties
of this model can be utilised in order to perform
semantic inferencing at the level of access requests.
Section 4 proposes an ontological template for
access control rules and, crucially, for the context
expressions on which these rules rely. Section 5
outlines how context-based inferencing can be
performed in order to identify inter-policy relations.
Section 6 presents related work and, finally, Section
7 presents conclusions.

2 MODELLING CONTEXT

Figure 1 depicts an updated meta-model that
captures the main facets of the Context-aware
Security Model presented in (Veloudis et al., 2016).
The main change with respect to the meta-model of
(Veloudis et al., 2016) is the extraction of the classes
pcm:Object, pcm:Subject, pcm:Request and
pcm:Handler from the class
pcm:SecurityContextElement (the namespace
prefix pcm, as well as all other namespace prefixes
encountered in this section, are defined as part of the
Context Model (PaaSword Deliverable 2.1, 2015)).
As discussed in Section 4, this change simplifies the
incorporation of context in access control policies.
In addition, as outlined in Section 3, it renders

Figure 1: Context-aware security meta-model (namespace
prefixes are omitted to reduce clutter).

CLOSER 2017 - 7th International Conference on Cloud Computing and Services Science

124

semantic inferencing at the level of requests simpler
to comprehend and exploit.

Ontologically, the facets of the Context-aware
Security Model are represented in terms of the
following classes:
 pcm:Request – Captures the characteristics

that should be considered for evaluating an
intercepted request.

 pcm:Subject – An instance of this class
represents either the entity seeking access to a
particular object (i.e. the ‘requestor’), or the
entity whose state should be considered for
allowing a certain requestor to access sensitive
data. Such an entity can be an organisation, a
person, a group or a service.

 pcm:Object – Describes the protected
resources – e.g. relational or non-relational
data, files, software artefacts that manage
sensitive data.

 pcm:Handler – This class refers to the
characteristics of dedicated software
components that are used for federating and
processing raw data relevant to an access

control decision and semantically uplifting
them as instances of the Context Model.
Handlers are responsible for fusing a context-
aware policy enforcement mechanism with
contextual information in a usable format that
will allow for the evaluation of access control
policies. Different kinds of handler include,
for example, authentication handlers, request
handlers, location handlers, IP-address-to-city
handlers, etc.

 ppm:Permission – This class refers to the
allowed actions that an individual of the class
pcm:Subject is able to perform upon an
individual of the class pcm:Object, including
data permissions (e.g. Datastore, File, Web
endpoint, Volume permissions) and data
definition language (DDL) permissions (e.g.
Datastore, File system structure permissions).

 pcpm:ContextPattern – This class refers
to recurring motives of data accesses. Future
access requests on sensitive data can be
permitted, or denied, on the basis of such
information which may include, for example,

Figure 2: Security Context Element overview diagram (namespace prefixes are omitted to reduce clutter).

An Ontological Template for Context Expressions in Attribute-based Access Control Policies

125

the typical date/time interval during which
requests take place, or the most frequently-
used device type for issuing incoming access
requests.

The pcm:SecurityContextElement class
describes the various contextual attributes that may
be associated with the subjects and/or the objects of
a request, as well as with the request itself. As
depicted in Figure 2, it encompasses the following
top-level concepts.
 pcm:Location – Describes a physical or a

network location where data are stored or
from where a particular entity is requesting
access to data, as well as the location of an
entity that must be taken into account in order
to permit or deny an access request. Its main
subclasses are pcm:PhysicalLocation and
pcm:NetworkLocation. A physical location
may involve: an address, a geographical
position, an area, an abstract location and/or a
point of interest defined in terms of
geographical coordinates. A network location
corresponds to an identifier for a node or
network telecommunications interface from
which a particular entity is requesting access
to data.

 pcm:DateTime – Describes the specific
chronological point expressed as an instant or
an interval that characterises an access
request. Its main sub-classes are:
pcm:Instant, pcm:DateTimeInterval.

 pcm:Connectivity – Captures information
related to the connection used by an entity for
accessing sensitive data. Its main subclasses
are: pcm:DeviceType,
pcm:ConnectionType,
pcm:ConnectionMetrics and
pcm:ConnectionSecurity. The
pcm:DeviceType class describes the device
used for requesting access to sensitive data.
The pcm:ConnectionType class refers to
the different ways of transmitting an access
request (e.g. LTE, 3G, WiFi, Cable, Satellite).
The class pcm:ConnectionMetrics
provides quantitative characteristics of the
connection type used for accessing sensitive
data (e.g. the download rate). Finally, the
pcm:ConnectionSecurity class provides
details on the level of security in the
established connection for accessing sensitive
data (e.g. TLS_ECDHE_RSA_WITH_AES

_128_GCM_SHA256 as a connection cipher
suite).

3 CONTEXT-BASED
INFERENCING AT THE LEVEL
OF REQUESTS

The meta-model of Figure 1 provides a suite of
object properties that aims at: (i) interrelating a
request with its relevant subjects and objects; (ii)
interrelating the subjects and objects of a request, as
well as the request itself, with contextual attributes
drawn from the pcm:SecurityContextElement
class. The former interrelation is achieved by
associating the class pcm:Request with the classes
pcm:Object and pcm:Subject through the
property pcm:hasAttribute. The latter
interrelation is achieved by associating the classes
pcm:Object and pcm:Subject with the class
pcm:SecurityContextElement through the
property pcm:associatedWith. Contextual
attributes that are relevant to a request (and not to
the subjects or objects that are associated with a
request – e.g. the date/time at which a request takes
place) are piggy-backed to a request through the
object property pcm:hasAttribute which
interrelates the classes pcm:Request and
pcm:SecurityContextElement.

Finally, the subjects and objects associated with
a request, as well as the request itself, are
interrelated through the object property
pcm:associatedWith with the handlers that are
responsible for providing the actual measured
contextual values that these entities possess. The
pcm:associatedWith property interrelates the
classes pcm:Object, pcm:Subject and
pcm:Request with the class pcm:Handler.

Table 1: Inferred facts expressed as RDF triples (Turtle
notation (RDF 1.1 Turtle, 2014)).

Fa
ct

s

:s a pcm:Subject;
pcm:isLocatedIn :Athens.

:Athens a pcm:City;
pcm:isLocatedIn :Greece.

:Greece a pcm:Area;
pcm:isLocatedIn :SE.

In
fe

rr
ed

fa

ct
s Athens pcm:isLocatedIn :SE.

:s pcm:isLocatedIn Greece.
:s pcm:isLocatedIn :SE.

CLOSER 2017 - 7th International Conference on Cloud Computing and Services Science

126

The aforementioned interrelations are exploited
during the evaluation of a request in order to
semantically infer the context that is attached to the
subjects and objects of a request, or to the request
itself. Suppose, for example, an access control
policy that demands that a subject is allowed to
access a sensitive data object as long as the subject
is located in South Europe (SE). Let us assume that,
based on the available handlers, the system is
capable of only collecting location information at the
city level. Once a request is intercepted with the
resolved location for the requestor being, say the city
of Athens, a number of facts can be semantically
inferred based on the transitivity of the
pcm:associatedWith property and of the subclass
relation. These inferred facts (see Table 1 and Figure
3) essentially render the evaluation, hence the
application, of the access control policy feasible, as
the system is able to determine that the requestor is
actually located in SE, even though the intercepted
contextual information is specified at a different
level of abstraction (i.e. at the city level as opposed
to the European region level).

Note that in Table 1 and Figure 3, the property
pcm:isLocatedIn is used instead of the property
pcm:associatedWith. The former is a sub-
property of the latter that interconnects a subject
directly with the pcm:Location subclass of the
pcm:SecurityContextElement class (Figure 2).
The use of this sub-property makes the inferencing
process more efficient as now the system can infer
from the outset that the individual ‘Athens’ is in fact
an instance of the class pcm:Location and not of
any of the other top-level concepts of the
pcm:SecurityContextElement class. This
renders the process of determining which handler to
invoke for evaluating the request more efficient.

4 INCORPORATING CONTEXT
IN ACCESS CONTROL
POLICIES

4.1 An Ontological Model for ABAC
Policies

Figure 4 depicts the ontological model for ABAC
policies proposed in (Veloudis et al., 2016).
Following the XACML standard (OASIS, 2013),
each ABAC policy comprises one or more ABAC
rules. An ABAC rule is associated with a set of
relevant knowledge artefacts (see Table 2) that need
to be taken into account for deciding whether an
access request must be permitted or denied. In this
respect, ABAC rules can be regarded as knowledge
containers for their encompassing policies.

Ontologically, an ABAC rule takes the form of
an instance of the class pac:ABACRule depicted in
Figure 4 (the pac namespace prefix is defined as
part of the ontological model for ABAC policies
(PaaSword Deliverable 2.2, 2015)). The knowledge

Figure 4: Ontological model for ABAC policies
(namespace prefixes are omitted to reduce clutter).

Figure 3: Inferencing based on property transitivity.

An Ontological Template for Context Expressions in Attribute-based Access Control Policies

127

artefacts attached to an ABAC rule are described
generically in terms of the ontological template of
Figure 4. More specifically, each class of this
template identifies a particular knowledge artefact,
whilst each object property associates such an
artefact with an ABAC rule. Table 2 briefly
elaborates on the classes and properties of the
ontological template of Figure 4. In the remaining of
this paper, we shall focus on the context expression
artefact.

4.2 An Ontological Model for ABAC
Policies

In (Veloudis et al., 2016), context expressions take
the form of reified versions of the ontological
template depicted in Figure 5. More specifically, a
context expression is represented by an instance of
the class pac:ContextExpression. The various

contextual attributes that are bound by a context
expression take the form of parameters of the
expression. Ontologically, these parameters are
represented as instances of the classes of the
Security Context Element depicted in Figure 2. They
are associated with the individual that represents a
context expression through the object property
pac:hasParameter.

The parameters of a context expression may be
combined through the usual logical connectives. To
this end, the classes pac:XContextExpression
(where X stands for one of AND, OR, XOR, NOT) are
provided (see Figure 5). These are subclasses of the
pac:ContextExpression class. Their intended
meaning is as follows: if a context expression is
represented by an instance of the class say
pac:ANDContextExpression, its parameters, i.e.
the contextual attributes associated with it through
the pac:hasParameter property, are interpreted as
being pairwise conjuncted. Likewise, if a context
expression is represented by an instance of the class
say pac:ORContextExpression, its parameters
are interpreted as being pairwise disjuncted.
Analogous interpretations apply to the rest of the
classes. Table 3 presents an example context
expression that is represented by the individual
:expr. The expression conjunctively combines two
parameters represented by the individuals :para1
and :para2. The former is an instance of the class
pcm:AbstractLocation of the Security Context

Table 2: Generic knowledge artefacts associated with the ABAC rule template.

Knowledge
artefact

Description Ontological representation Associating property

Controlled
object

Identifies the sensitive
object on which access is
requested.

Instance of the pcm:Object
class outlined in Section 2.

pac:hasControlledObject
Domain: pac:ABACRule
Range: pcm:Object

Authorisation

Determines the type of
authorisation granted
(either ‘permit’, or
‘deny’).

Instance of the class
pac:Authorisation
(either the instance
pac:permit or the instance
pac:deny).

pac:hasAuthorisation
Domain: pac:ABACRule
Range: pac:Authorisation

Action
Identifies the operation
requested to be performed
on the controlled object.

Instance of the class
ppm:DataPermission
(see Section 2).

pac:hasAction
Domain: pac:ABACRule
Range: ppm:DataPermission

Actor
Identifies the entity
requesting access to the
controlled object.

Instance of the
pcm:Subject class (see
Section 2).

pac:hasActor
Domain: pac:ABACRule
Range: pcm:Subject

Context
expression

A propositional logic
expression that identifies
the contextual conditions
that must be satisfied in
order to permit (or deny) a
request.

Instance of the class
pac:ContextExpression
outlined in Section 4.2.

pac:hasContextExpression
Domain: pac:ABACRule
Range: pac:ContextExpression

Figure 5: Ontological template for context expressions.

CLOSER 2017 - 7th International Conference on Cloud Computing and Services Science

128

Element depicted in Figure 2 and specifies the
location ‘Athens’. The latter is an instance of the
class pcm:NetworkLocation and specifies a
network endpoint. The data properties
pcm:hasName and pcm:hasIPAddress form part
of the Security Context Element with the obvious
meanings.

A context expression may be defined recursively
in terms of one or more other context expressions.
Ontologically, this is represented by including the
class pac:ContextExpression in both the
domain and the range of the object property
pac:hasParameter (see Figure 5). The example of
Table 4 shows a recursively-defined context
expression that includes the context expression
represented by the individual :expr1 as a
parameter.

Nevertheless, context expressions that take the
form of instantiations of the model depicted in
Figure 5 make no provisions of indicating the entity
with which they are associated. In this respect, they
are assumed to be invariably associated with the
subject of a request. As discussed in Section 1, this
constitutes a limitation for it ignores the fact that
contextual attributes may need to be associated with
other entities such as the object of a request, the
request itself, or with any other entity whose context
is deemed relevant for deciding whether to permit or
deny a request. In this respect, Section 4.3 below
presents an extension to the ontological template for
context expressions of Figure 5 that allows
contextual attributes to be attached to any entity that
is associated with a request.

4.3 A Generalised Ontological
Template for Context Expressions

A straightforward approach to allowing a context
expression to be attached to any entity that is
associated with a request is to render the
pac:hasContextExpression property applicable
to: (i) any individual of the class pcm:Subject of

the Security Context Element that may participate in
a request without necessarily this individual being he
the actual subject of the request; (ii) the controlled
object associated with a request. This can be readily
achieved by extending the domain of
pac:hasContextExpression to include, in
addition to the class pac:ABACRule (see Table 2),
the classes pcm:Subject and pcm:Object.
Nevertheless, associating a context expression solely
with a subject, or solely with a controlled object, is
problematic as demonstrated by the example of
Table 5.

In this example, two ABAC rules, :rule1 and
:rule2, are defined. The intended meaning behind
the second rule is that the subject :s can read the
object :o only when the context expression :expr2
is satisfied; :expr2 states that the IP address
associated with :s must be equal to
120.120.120.120. However, from the triples of
the example of Table 5 there is no way of discerning
which context expression, :expr1 or :expr2, refers
to which rule. This ambiguity stems from the fact
that the approach outlined above neglects that the
context expression that is associated with an entity

Table 4: Recursive context expression example. :para1
and :para2 are defined as in Table 3.

:expr a pac:ANDContextExpression;
pac:hasParameter :para1;
pac:hasParameter :expr1.

:expr1 a pac:NOTContextExpression;
 pac:hasParameter para2.

Table 5: Associating context solely with a subject or an
object (:para2 is defined as in Table 3).

:rule1 a pac:ABACRule;
 pac:hasAction :Read;
 pac:hasActor :s;
 pac:hasAuthorisation pac:positive;
 pac:hasControlledObject :o.
:s pac:hasContextExpression :expr1.
:expr1 a pac:ContextExpression;
 pac:hasParameter :para2.
:rule2 a pac:ABACRule;
 pac:hasAction :Read;
 pac:hasActor :s;
 pac:hasAuthorisation pac:positive;
 pac:hasControlledObject :o.
:s pac:hasContextExpression :expr2.
:expr2 a pac:ContextExpression;
 pac:hasParameter :para3.
:para3 a pcm:NetworkLocation;
 pcm:hasIPAddress
 “120.120.120.120”^^xsd:string.

Table 3: Context expression example.

:expr a pac:ANDContextExpression;
pac:hasParameter :para1;
pac:hasParameter :para2.

:para1 a pcm:AbstractLocation;
 pcm:hasName :Athens.
:para2 a pcm:NetworkLocation;
 pcm:hasIPAddress
 “123.123.123.123”^^xsd:string.

An Ontological Template for Context Expressions in Attribute-based Access Control Policies

129

inside a rule is not the actual, or per se, context of
the entity but the context that the rule expects to be
associated with the entity. In other words, the mere
association of a context expression with an entity is
insufficient by itself to discern the context that a rule
requires from an entity to possess.

One solution that circumvents this problem is to
require that, each time the property
pac:hasContextExpression is used to associate
a context expression with an entity, the same context
expression is also associated with the underlying
rule that requires the particular context expression to
be associated with that entity. This solution,
however, requires that the
pac:hasContextExpression property is used
twice each time a context expression is associated

with an entity. This is demonstrated by the example
of Table 6.

A more elegant solution is to extend the
ontological template of Figure 5 through the
introduction of a new object property, namely
pac:refersTo (see Figure 6). This property has as
domain the class pac:ContextExpression and as
range the union of the classes pcm:Subject and
pcm:Object. As its name suggests, its purpose is to
attach a context expression to the entity that it refers
to. This way, when a context expression is
associated with an ABAC rule (through the
pac:hasContextExpression property of Figure
4), it is already attached to the actual entity that it
refers to. Adhering to this solution, the example of
Table 6 now takes the form shown in Table 7. It is
to be noted here that the pac:refersTo property is
not obligatory in the sense that not all context
expressions need be associated with an entity from
the classes pcm:Subject or pcm:Object. This
might be the case under the following
circumstances: (i) When a context expression refers
to the request itself rather than an entity that is
associated with the request (e.g. when the context
expression constrains the time at which a request is
issued). (ii) When a context expression forms a
constituent part of another (recursively-defined)
context expression which is associated with an entity
from the classes pcm:Subject or pcm:Object and
the constituent expression refers to that same entity.
This is depicted, for example, in Table 8 where the
context expressions :expr1 and :expr2 form

Table 6: Using pac:hasContextExpression twice
(:para2 is defined as in Table 2).

:rule1 a pac:ABACRule;
 pac:hasAction :Read;
 pac:hasActor :s;
 pac:hasAuthorisation pac:positive;
 pac:hasControlledObject :o.

pac:hasContextExpression :expr1.
:s pac:hasContextExpression :expr1.
:expr1 a pac:ContextExpression;

pac:hasParameter :para2.
:rule2 a pac:ABACRule;
 pac:hasAction :Read;
 pac:hasActor :s;
 pac:hasAuthorisation pac:positive;
 pac:hasControlledObject :o;

pac:hasContextExpression :expr2.
:s pac:hasContextExpression :expr2.
:expr2 a pac:ContextExpression;

pac:hasParameter :para3.
:para3 a pcm:NetworkLocation;
 pcm:hasIPAddress
 “120.120.120.120”^^xsd:string.

Table 7: Associating context using the extended model of
Figure 6(:para2 is defined as in Table 3).

:rule1 a pac:ABACRule;
 pac:hasAction :Read;
 pac:hasActor :s;
 pac:hasAuthorisation pac:positive;
 pac:hasControlledObject :o;

pac:hasContextExpression :expr1.
:expr1 a pac:ContextExpression;

pac:hasParameter :para2;
pac:refersTo :s.

:rule2 a pac:ABACRule;
 pac:hasAction :Read;
 pac:hasActor :s;
 pac:hasAuthorisation pac:positive;
 pac:hasControlledObject :o;

pac:hasContextExpression :expr2.
:expr2 a pac:ContextExpression;

pac:hasParameter :para3;
pac:refersTo :s.

:para3 a pcm:NetworkLocation;
pcm:hasIPAddress

 “120.120.120.120”^^xsd:string.Figure 6: Extended ontological template.

CLOSER 2017 - 7th International Conference on Cloud Computing and Services Science

130

constituent parts of the expression :expr and
neither of :expr1 and :expr2 is attached to an
entity from the classes pcm:Subject or
pcm:Object as they both refer to the same entity
(:s) that is referred to by the encompassing
expression :expr.

Finally, it is to be noted that the pac:refersTo
property is not functional: the same context
expression instance may be associated with two or
more distinct entities, i.e. two or more distinct
individuals from the classes pcm:Subject or
pcm:Object.

5 OPTIMISING CONTEXT-
BASED INFERENCING AT THE
POLICY LEVEL

One of the main virtues of declaratively specifying
(through the ontological template of Figure 6) the
contextual conditions that must be satisfied in order
for a request to be permitted (or denied), is the fact
that it enables the identification of inter-policy
relations. In particular, it enables us to identify
whether one ABAC rule is subsumed by another.

Suppose two ABAC rules represented by the
instances :rule1 and :rule2 of the class
pac:ABACRule. Naturally, a prerequisite for
:rule2 to be subsumed by :rule1 is that the
context expression associated with the former
logically subsumes the context expression associated
with the latter. In other words, the context
expression associated with :rule2 must be
logically inferable from the context expression

associated with :rule1. Let the context expressions
associated with the two rules be represented,
respectively, by the instances :expr1 and :expr2
of the class pac:ContextExpression. In order to
determine whether :expr2 is logically inferable
from :expr1, the following conditions must hold:
(i) If :expr1 is attached, via the property
pac:refersTo, to an entity (say :e1), then
:expr2 must also be attached, via the same
property, to an entity (say :e2) such that either :e1
and :e2 represent the same entity, or :e1 represents
an entity that is considered more general than :e2
(for instance, this could be the case when :e1 and
:e2 represent groups of subjects). (ii) Each and
every association that :expr2 has through the
pac:hasParameter property must be logically
inferable from a corresponding association of
:expr1.

We concentrate on the 2nd condition above.
Checking whether this condition holds can be a
rather inefficient process. Consider, for instance, the
simple example of Table 9. Clearly, :expr2 cannot
be considered to be subsumed by :expr1 for the
former has as parameter a type of device (a tablet)
whereas the latter has as parameter a location.
Nevertheless, for this fact to be discovered in an
automated manner, it must be verified that the
individuals :Athens and :iPadPro9.7 are indeed
mutually incomparable. Ontologically, this amounts
to discovering that the two individuals are not
instances of a common class from the Security
Context Element depicted in Figure 2. This
effectively means that the path of subclass relations
that leads from the class pcm:Tablet (i.e. the
immediate class to which the individual
:iPadPro9.7 belongs) to the top-level class
pcm:SecurityContextElement, and the
corresponding path that leads from the class
pcm:AbstractLocation (i.e. the immediate class
to which the individual :Athens belongs) to
pcm:SecurityContextElement must be
traversed in order to ensure that they do not share
any common classes. This is a computationally
expensive process.

Table 8: Associating context using the extended model of
Figure 6. :para1, :para2 and :para3 are defined as
in Table 3; para4 specifies the type of device (stationary
as opposed to mobile) through which a request must take
place, as well as the OS type of that device.

:expr a pac:XORContextExpression;
 pac:hasParameter :expr1;
 pac:hasParameter :expr2;
 pac:refersTo :s.
:expr1 a pac:ORContextExpression;
 pac:hasParameter :para1;
 pac:hasParameter :para2;
:expr2 a pac:ANDContextExpression;
 pac:hasParameter :para3;
 pac:hasParameter :para4;
:para4 a pcm:Stationary;
pcm:hasStationaryOS
“Windows10”^^xsd:string.

Table 9: Checking property subsumption

:expr1 a pac:ContextExpression;
 pac:hasParameter :Athens.
:expr2 a pac:ContextExpression;
 pac:hasParameter :iPadPro9.7.
:Athens a pcm:AbstractLocation.
:iPadPro9.7 a pcm:Tablet.

An Ontological Template for Context Expressions in Attribute-based Access Control Policies

131

One way to reduce this computational cost is to
define sub-properties of the pac:hasParameter
property that directly associate a context expression
with one of the top-level concepts of the
pcm:SecurityContextElement depicted in
Figure 2. Thus, when a context expression has as a
parameter an instance of one of these subclasses, the
association takes place through the appropriate sub-
property rather than through the
pac:hasParameter property. These sub-properties
are shown in Table 10. For instance, the context
expressions represented by the individuals :expr1
and :expr2 in the example of Table 9, will now be
associated with their corresponding parameters
through the sub-properties
pac:hasLocationParameter and
pac:hasConnectivityParameter respectively.
In this way, the subsumption of :expr2 by :expr1
can be precluded from the outset, without having to
traverse the aforementioned paths since now the two
parameters are associated with the context
expressions through different sub-properties of
pac:hasParameter ruling out any subsumption
relation between them. It is to be noted that the fact
that two parameters are associated with a context
expression through the same sub-property does not
necessarily imply that the two parameters are
mutually comparable.

6 RELATED WORK

A number of approaches to context modelling have
been proposed in the literature, recognising the
necessity of formally capturing knowledge in order
to drive interactions in service-based applications. In
(Strang & Linnhoff-Popien, 2004; Bettini et al.,
2010) detailed reviews of context models are
provided that range from key-value models, to
graphical models, mark-up schemes, object-oriented
models, logic-based models and ontology-based
models. Miele et al., (2009) propose a context model
approach that was initially developed for mobile
devices and later extended for capturing the

knowledge that lurks in service-based applications
(Bucchiarone et al., 2010). In (Truong et al., 2009)
an ontological model of the W4H classification for
context is proposed. W4H stands for “who, where,
when, what, how” and provides a set of generic
classes, properties, and relations that exploit the five
semantic dimensions of identity, location, time,
activity and device profiles. A similar approach is
reported in (Abowd and Mynatt, 2000), where the
‘five Ws’ of context are identified: Who, What,
Where, When, and Why. In (Sheng, 2005),
ContextUML is proposed – an approach that uses a
UML-based modelling language specifically
designed for Web services. ContextUML considers
that context contains any information that can be
used by a Web service to adjust both its execution
and its output.

Exploiting context in access control mechanisms
is a clear direction of on-going research. Even
dedicated context-aware extensions to traditional
access control models (e.g. Role-based Access
Control - RBAC) either do not cover all the aspects
of the contextual information required with a
reusable and extensible security related context
model, or are proven cumbersome to maintain in
dynamic environments where potential requestors
are not known at design-time and often change their
roles (Heupel, 2012). On the other hand, the
ontological models that exist (e.g. (Truong et al.,
2009)) do not cover all the security requirements
associated with the lifecycle of a cloud application
(i.e. both bootstrapping and operation phases).
Usually, they fail to cover the full range of
contextual elements that are associated with the
security enhancement of the sensitive data managed
by the cloud applications, or they are driven by
heavy inferencing that is inefficient (Verginadis et
al., 2015).

Turning now to the representation of policies and
policy rules, a number of relevant approaches have
been proposed in the literature (Uszok et al., 2005;
Kagal et al., 2003; Neijdl et al., 2005). These
generally rely on the expressivity of Description
Logics (DLs), and particularly on OWL (2004), for
capturing the various knowledge artefacts that
underpin the definition of a policy. In (Uszok et al.,
2005), KAoS is presented – a generic framework
offering: (i) a human interface layer for the
expression of policies that constrain the actions that
an agent is allowed to perform in a given context;
(ii) a policy management layer that is capable of
identifying and resolving conflicting policies; (iii) a
monitoring and enforcement layer that encodes
policies in a suitable programmatic format for

Table 10: Sub-properties of pac:hasParameter

Name Domain Range
(pcm prefix) (pac prefix) (pac prefix)

hasLocation
Parameter

Context
Expression

Location

hasDateTime
Parameter

DateTime

hasConnectiv
ityParameter

Connectiv
ity

CLOSER 2017 - 7th International Conference on Cloud Computing and Services Science

132

enforcing them. Contextual conditions that must be
taken into account in access control decisions are
expressed as OWL property restrictions. A main
drawback of the KAoS approach is the fact that its
reliance on OWL raises concerns about the
efficiency with which semantic inferencing can be
performed dynamically, when policies are evaluated
against incoming access requests. In order to
alleviate these concerns, KAoS encodes policies in a
programmatic format. Nevertheless, this precludes
the performance of any updates to the policies
dynamically, during system execution, as such
updates naturally require the (updated) policies to be
re-compiled to the programmatic format.

In (Kagal et al., 2003) Rei is proposed – a
framework for specifying, analysing and reasoning
about policies. Rei adopts OWL-Lite for the
semantic specification of policies. A policy
comprises a list of rules that take the form of OWL
properties, as well as a context that defines the
underlying policy domain. Rei provides a suitable
ontological abstraction for the representation of a set
of desirable behaviours that are exhibited by
autonomous entities. Rei resorts to the use of
placeholders as in rule-based programming
languages for the definition of variables. These
variables are purportedly required for expressing
policy rules in which no concrete values are
provided for one or more of the contextual attributes
– e.g. rules of the form “subject s is allowed to
access object o only when s is located in the same
area as another subject s’”. This, however,
essentially prevents Rei from exploiting the full
inferencing potential of OWL as policy rules are
expressed in a formalism that is alien to OWL. In
contrast, variables could have instead been modelled
in terms of OWL’s anonymous individuals.

In (Nejdl et al., 2005) the authors propose
POLICYTAB for facilitating trust negotiation in
Semantic Web environments. POLICYTAB adopts
ontologies for the representation of policies that
guide a trust negotiation process ultimately aiming at
granting, or denying, access to sensitive Web
resources. These policies essentially specify the
credentials that an entity must possess in order to
carry out an action on a sensitive resource that is
under the ownership of another entity. Nevertheless,
no attempt is made to model the context associated
with access requests.

On a different note, markup languages such as
RuleML (2015), XACML (OASIS, 2013), SAML
(2008) and WS-Trust (2007) provide declarative
formalisms for the specification of policies.
Nevertheless, they do not provide any means of

capturing the knowledge that dwells in policies. This
brings about the following disadvantages: (i) it
precludes any form of semantic inferencing when
evaluating access request, as well as when
identifying inter-policy relations; (ii) it leads to ad-
hoc reasoning about policy compliance, one which is
tangled with the particular vocabularies that are
utilised for articulating the rules according to which
the reasoning takes place.

7 CONCLUSIONS

This paper has proposed an ontological template for
the semantic representation of context expressions in
access control policies. We argue that such a
template facilitates developers in expressing
effective security policies which give rise to security
controls that are appropriate for dynamic and
heterogeneous cloud environments. The proposed
template is founded on the basis of relevant
knowledge artefacts that accurately capture a wide
range of contextual attributes that must be taken into
account during the evaluation of a policy. One of the
virtues of the proposed ontological template is that it
enables the evaluation of a request against an access
control policy to be performed, and reasoned about,
at the semantic level; furthermore, our ontological
template paves the way for the performance of
automated reasoning about potential inter-policy
relations such as the identification of subsuming
polices.

Another seminal advantage offered by the
proposed template is the fact that it is expressed in a
generic, interoperable and extensible RDF
vocabulary that lends itself to, and thus paves the
way for, a series of correctness checks that are
performed automatically by a policy validator. These
checks aim at assessing the validity of a policy with
respect to a higher-level ontology (HLO) that
captures all those knowledge artefacts that a policy
may comprise. These correctness checks are clearly
of utmost importance for they increase assurance on
the effectiveness of the policies.

Currently, we are in the process of constructing
the policy validator and the HLO. The constraints
expressed through the HLO are articulated on the
basis of the Integrity Constraints (IC) semantics for
OWL 2 proposed in (Tao et al., 2010). We also
intend to construct an editor for priming the HLO.

An Ontological Template for Context Expressions in Attribute-based Access Control Policies

133

ACKNOWLEDGEMENTS

The research leading to these results has received
funding from the European Union’s Horizon 2020
research and innovation programme under grant
agreement No 644814.

REFERENCES

Abowd, G., & Mynatt, E., 2000. Charting past, present, and
future research in ubiquitous computing. ACM
Transactions on Computer-Human Interaction (TOCHI) -
Special issue on human-computer interaction in the new
millennium, 29-58.

Bettini, C., Brdiczka, O., Henricksen, K., Indulska, J.,
Nicklas, D., Ranganathan, A., & Riboni, D., 2010. A
survey of context modelling and reasoning techniques.
Pervasive and Mobile Computing, 161-180.

Bucchiarone, A., Kazhamiakin, R., Cappiello, C., Nitto, E., &
Mazza, V., 2010. A context-driven adaptation process for
service-based applications. In ACM Proceedings of the
2nd International Workshop on Principles of Engineering
Service-Oriented Systems (PESOS'10), pp. 50-56, Cape
Town, South Africa.

CSA, 2015. What’s Hindering the Adoption of Cloud
Computing in Europe? Available online:
https://blog.cloudsecurityalliance.org/2015/09/15/whats-
hindering-the-adoption-of-cloud-computing-in-europe/.
Cloud Security Alliance.

Heupel, M., Fischer, L., Bourimi, M., Kesdogan, D., Scerri,
S., Hermann, F., Gimenez, R., 2012. Context-Aware,
Trust-Based Access Control for the di.me Userware. In
Proceedings of the 5th International Conference on New
Technologies, Mobility and Security (NTMS'12), pp. 1-6,
Istanbul, Turkey, IEEE Computer Society.

Hu, V. C., Ferraiolo, D., Kuhn, R., Schnitzer, A., Sandlin, K.,
Miller R., and Scarfone K., 2014. Guide to Attribute
Based Access Control (ABAC) Definition and
Considerations. NIST.

Kagal, L., Finin, T., Joshi, A.: A Policy Language for a
Pervasive Computing Environment. In 4th IEEE Int.
Workshop on Policies for Distributed Systems and
Networks (POLICY '03), pp. 63-74, IEEE Computer
Society, Washington, DC (2003)

Miele, A., Quintarelli, E., Tanca, L., 2009. A methodology for
preference-based personalization of contextual data. In
ACM Proceedings of the 12th International Conference
on Extending Database Technology: Advances in
Database Technology (EDBT'09), pp. 287-298, Saint-
Petersburg, Russia.

Nejdl, W., Olmedilla, D., Winslett, M, Zhang. C.C.:
Ontology-Based policy specification and management. In
Gómez-Pérez, A. and Euzenat, J. (eds.) ESWC'05, pp.
290-302, Springer-Verlag, Berlin, Heidelberg (2005).

OASIS, 2013. OASIS eXtensible Access Control Markup
Language (XACML). Available: http://docs.oasis-
open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html.

OWL Web Ontology Language Reference. W3C
Recommendation, 2004. Available online:
http://www.w3.org/TR/owl-ref/.

PaaSword Deliverable 2.1, 2015. Available online:
https://www.paasword.eu/deliverables/.

PaaSword Deliverable 2.2, 2015. Available online:
https://www.paasword.eu/deliverables/.

RDF 1.1 Turtle, 2014. Available: http://docs.oasis-
open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html.

Specification of Deliberation RuleML 1.01, 2015. Available
online:
http://wiki.ruleml.org/index.php/Specification_of_Deliber
ation_RuleML_1.01.

Security Assertions Markup Language (SAML) Version 2.0.
Technical Overview, 2008. Available online:
https://www.oasis-
open.org/committees/download.php/27819/sstc-saml-
tech-overview-2.0-cd-02.pdf

Sheng, Q., & Benatallah, B., 2005. ContextUML: A UML-
Based Modeling Language for Model-Driven
Development of Context-Aware Web Services
Development. In Proceedings of the International
Conference on Mobile Business (ICMB'05), pp. 206-212,
IEEE Computer Society.

Strang, T., Linnhoff-Popien, C., 2004. A Context Modeling
Survey. In Workshop on Advanced Context Modelling,
Reasoning and Management, (UbiComp'04) - The Sixth
International Conference on Ubiquitous Computing.
Nottingham, England.

Tao, J., Sirin, E., Bao, J. and McGuinness, D. L.: Integrity
Constraints in OWL, In Proceedings of the 24th AAAI
Conference on Artificial Intelligence (AAAI-10), Atlanta,
Georgia, USA, July 11-15 (2010)

Truong, H.-L., Manzoor, A., Dustdar, S., 2009. On modeling,
collecting and utilizing context information for disaster
responses in pervasive environments. In ACM
Proceedings of the first international workshop on
Context-aware software technology and applications
(CASTA'09), pp. 25-28, Amsterdam, The Netherlands.

Uszok, A., Bradshaw, J., Jeffers, R., Johnson, M., Tate, A.,
Dalton, J. and Aitken, S., 2005. KAoS Policy
Management for Semantic Web Services. IEEE Intel.
Sys., vol. 19, no. 4, pp. 32 - 41.

Veloudis, S., Verginadis, Y., Patiniotakis, I., Paraskakis, I.,
Mentzas, G., 2016. Context-aware Security Models for
PaaS-enabled Access Control. In Proceedings of the 6th
International Conference on Cloud Computing and
Services Science (CLOSER’16), April 23-25, 2016,
Rome, Italy

Verginadis, Y., Mentzas, G., Veloudis, S., Paraskakis, I.,
2015. A Survey on Context Security Policies. In
Proceedings of the 1st International Workshop on Cloud
Security and Data Privacy by Design (CloudSPD'15), co-
located with the 8th IEEE/ACM International Conference
on Utility and Cloud Computing, Limassol, Cyprus,
December 7-10.

WS-Trust 1.3, 2007. Available online: http://docs.oasis-
open.org/ws-sx/ws-trust/200512/ws-trust-1.3-os.doc.

CLOSER 2017 - 7th International Conference on Cloud Computing and Services Science

134

