
Secure Edge Computing with ARM TrustZone

Robert Pettersen, Håvard D. Johansen and Dag Johansen
University of Tromsø, The Arctic University of Norway, Tromsø, Norway

Keywords: IoT, ARM TrustZone, Intel SGX, Secure Enclave, Trusted Execution, Edge Computing, Cloud Computing.

Abstract: When connecting Internet of Things (IOT) devices and other Internet edge computers to remote back-end
hybrid or pure public cloud solutions, providing a high level of security and privacy is critical. With billions
of such additional client devices rapidly being deployed and connected, numerous new security vulnerabilities
and attack vectors are emerging. This paper address this concern with security as a first-order design principle:
how to architect a secure and integrated middleware system spanning from IOT edge devices to back-end cloud
servers. We report on our initial experiences from building a prototype utilizing secure enclave technologies
on IOT devices. Our initial results indicate that isolating execution on ARM TrustZone processors comes at a
relatively negligible cost.

1 INTRODUCTION

Internet application and service components are cur-
rently being relocated from central cloud backend ser-
vices to less resource-rich IOT and mobile devices at
the edges of the Internet. Such edge computing is a
natural evolutionary step in distributed systems archi-
tectures, and is at the heart of the “4th Industrial Rev-
olution” currently unfolding (Schwab, 2016). We are
about to witness a paradigm shift where computer-
science innovations have the potential to disrupt so-
ciety at a scale never witnessed before by tapping into
the wide variety of data generated by edge devices.

Because IOT and mobile devices are designed to
operate in physical proximity to end-users, they give
hostile entities ample opportunities to tinker with the
hardware and software stacks. Such malicious mod-
ification to the edge devices can lead to unspecified
system behavior and new attack vectors. This inher-
ent weakness of edge computing is particularly con-
cerning for applications that monitor and control IOT
devices in modern buildings and critical infrastruc-
ture (e.g., power grid), or applications that collect and
analyze sensitive personal information from wearable
or ambient lifelogging devices, like surveillance cam-
eras or smart watches (Johansen et al., 2015a).

In response to the rising need of modern
distributed-system architecture to securely execute
software remotely on untrusted hardware, several
hardware vendors have devised new on-chip security
measures in their products. Most notably are perhaps
the Intel Software Guard Extensions (SGX) (Anati

et al., 2013) and ARM TrustZone technologies (ARM
Limited, 2009; Ngabonziza et al., 2016; Shuja et al.,
2016). Although their underlying hardware design,
features, and interfaces differ substantially, both SGX
and TrustZone essentially provide the same key con-
cepts of hardware isolated execution domains, which
we commonly refer to as enclaves, and the ability to
bootstrap attested software stacks into those enclaves.
These features mitigate need to include the Operating
System (OS) and any hypervisor in the Trusted Com-
puting Base (TCB): a previous major security problem
for both cloud and edge-computing systems. Note
also that SGX and TrustZone only targets enforcement
of confidentiality and integrity policies, and not avail-
ability or liveness. The host OS can still halt execution
of protected software, delay calls when they cross ex-
ecution domains (or into the OS kernel), and ignore
incoming network packets.

This paper reports on our initial experiences in-
corporating ARM TrustZone technology into Diggi:1

a generic IOT/mobile/cloud platform that enables IOT
devices, mobile phones, smart-home computers, per-
sonal computers, hybrid-cloud solutions, and propri-
etary cloud solutions from different vendors to seam-
lessly connect and integrate in a privacy-preserving
and secure manner. Application programmers would
normally need to decide at design time where data
should be cached and stored, and where computations
should be executed. However, Diggi attempt to bet-

1Diggi translates to the word “thing” in the indigenous
arctic North-Sami language.

102
Pettersen, R., Johansen, H. and Johansen, D.
Secure Edge Computing with ARM TrustZone.
DOI: 10.5220/0006308601020109
In Proceedings of the 2nd International Conference on Internet of Things, Big Data and Security (IoTBDS 2017), pages 102-109
ISBN: 978-989-758-245-5
Copyright © 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



ter utilize resources at edge-nodes by making those
decisions just-in-time by shipping functional meta-
code components between computational devices at
run-time. Understanding how Diggi can best utilize
existing hardware isolation mechanisms, like ARM
TrustZones, for secure remote execution of meta-code
components, is essential for Diggi and therefore the
main topic of this paper.

The rest of the paper is organized as follows. Sec-
tion 2 outlines the broader architecture and motiva-
tion for using secure enclave technologies as a fun-
damental building block in Diggi. Section 3 details
Diggi core design related to ARM TrustZone. Sec-
tion 4 reports on initial, general performance results,
while Section 5 presents related work. Finally, Sec-
tion 6 concludes.

2 Diggi OVERVIEW

Diggi is a middleware system for secure federation of
IOT and other edge devices with backend enterprise
and public cloud services. Central concepts to enable
this includes meta-code and secure enclave technolo-
gies.

2.1 Architecture

We are developing Diggi towards an open-source in-
frastructure seamlessly integrating IOT/mobile/cloud
systems utilizing secure enclave technologies. Code
and data within an enclave are protected by the hard-
ware from disclosure or modification from any thread
executing on the outside: providing strict confiden-
tiality and integrity guarantees. Both ARM TrustZone
and Intel SGX enable such protections through the
use of on-chip features that sets up isolated execution
domains into which the application programmer can
load his code and data. Execution threads external to
an enclave cannot read or tamper with that enclave’s
execution or data. Data may be taken out of an en-
clave and stored externally, but typically only in en-
crypted form.

We are currently using Diggi as a middleware glue
between secure enclaves residing in this very hetero-
geneous network of IOT devices, personal computers,
enterprise clouds, and public clouds. ARM TrustZone
is developed for lightly equipped devices, while In-
tel SGX can span the broader spectrum of more re-
source rich computers. Hence, an integration of and
combination of both these state-of art secure tech-
nologies from ARM and Intel ensure that the same
security-sensitive applications can be deployed in a
very heterogeneous distributed system with the same

security property guarantees. Secure communication
channels are established between the different Diggi
nodes.

Edge Device

TrustZone

Enterprise Cloud

TrustZone / SGX

Public Cloud

SGX

D
ig

g
i
R

u
n

ti
m

e

Figure 1: Secure integration of edge devices with enterprise
and public clouds using trusted hardware.

The Diggi architecture consists of three vertically
stacked layers, as shown in Figure 1. The top-most
layer contains the edge client devices and is primarily
based on ARM TrustZone. This can be, for instance,
an IOT sensor device or a cellular phone. Intel SGX
already runs in, for instance, notebooks and can be a
client device as well. The middle layer is a client fed-
erating layer typically in the same administrative do-
main as the client devices it connects to. As such, this
can be a private SGX server or an enterprise cloud. By
connecting to the third layer containing SGX nodes,
the public clouds, a hybrid cloud solution with one
cloud provider can be configured. Alternatively, a
multi-cloud deployment is possible by connecting to
two different public cloud providers. We have pre-
viously built Balava (Nordal et al., 2011), a three-
layer multi-cloud storage system based on meta-code
spanning such a deployment, but this was prior to the
emergence of Intel SGX and ARM TrustZone. How-
ever, Diggi also builds on the concept of meta-code,
which we will discuss next.

2.2 Meta-code

The meta-code concept (Hurley and Johansen, 2014)
is a convenient structuring mechanism for supporting
autonomic and distributed computing in this broad
domain. The idea is to attach fine level, autonomic
meta-code processes to any data element being ac-
cessed. The meta-code is distributed, installed, and
revoked as mobile-code components that execute ei-
ther periodically or on data access. This way, user-

Secure Edge Computing with ARM TrustZone

103



Table 1: Example meta-code policies applicable to common
data operations.

Operation Meta-code
open() Download an up-to-date remote

access-control list. Decrypt object
into enclave memory only if autho-
rized by access-control list.

read() De-identify or remove any personal
identifiers contained in the returned
data. Log data access patterns in a
local ledger.

flush() Send recorded data access patterns
from a local ledger to a remote audit
server.

write() Replicate encrypted data to multi-
ple remote cloud hosted sites.

centric functionality can be installed and executed on-
demand when, for instance, data from a remote IOT
sensor is being read. This can implement upstream
evaluation and filtering physically close to a sen-
sor (Carzaniga et al., 2001), highly personalized ac-
cess control, auditing, and privacy policies (Johansen
et al., 2015b; Brasser et al., 2016), or personalized
storage systems spanning IOT/mobile/clouds (Nordal
et al., 2011). Examples of meta-code for various ob-
ject operations can be found in Table 1.

Meta-code gives users the powerful ability to cus-
tomize policies for their data, and enforces those poli-
cies without needing to trust applications or their pro-
grammers. For example, when attached to a file, the
following meta-code grants access to that file for only
24 hours after the file was initially created:
if (time() - lstat(path).st_ctime > 86400){
throw OSError(EACCES);

}

A compelling and promising applicability of
meta-code in the IOT/mobile/cloud domain is for the
problem of software upgrading. Hundreds of IOT de-
vices might soon be the rule in a modern smart home,
and proper safeguards must be put in place to pre-
vent updating IOT interfaces from becoming security
holes themselves. Our conjecture is that we can take
advantage of secure enclave technologies running on
special hardware to remedy the situation. Potentially
this protects an application and its secrets from a full
compromise of a remote system as well as from a ma-
licious insider. Defined secure regions of code and
data will maintain confidentiality even when an at-
tacker has physical control of the node and can con-
duct direct attacks on memory. The Diggi run-time
is designed to allow meta-code and sensitive data to
be hosted and run remotely within memory protected
from application running on the same machine, in-
cluding the operating system itself.

We are currently building Diggi for two secure en-

clave platforms to be integrated into one. One version
is for resource-rich cloud servers (Gjerdrum et al.,
2016) based on the Intel SGX processor. The other
version is for IOT devices based on the ARM Trust-
Zone.

2.3 ARM TrustZone Hardware Layer

The ARM TrustZone technology is a hardware se-
curity architecture that can be incorporated into
ARMv7-A, ARMv8-A and ARMv8-M System on
a Chips (SOCs) (ARM Limited, 2009; Ngabonziza
et al., 2016; Shuja et al., 2016). Its main purpose
is to enable devices to counter many of the threats
that have been difficult to address earlier, such as at-
tacks from the OS running on the device. TrustZone
technology provides the infrastructural foundation for
the SOC designer to compose a system, choosing be-
tween a range of available component, to fulfill spe-
cific security requirements. The primary security ob-
jective of the architecture is enabling the construction
of a programmable environment that allows the confi-
dentiality and integrity of almost any asset to be pro-
tected from specific attacks. A platform with these
characteristics can be used to build a wide range of
cost-effective security solutions, compared to tradi-
tional methods where SOC designers utilized propri-
etary methods.

The TrustZone technology defines two distinct
and isolated execution contexts, partitioning all the
SOC hardware and software resources into two
worlds: the Normal world2 and the Secure world.
The Normal world hosts the traditional non-trusted OS
with its associated processes and subsystems, while
the Secure world run trusted software components
that enforce confidentiality and integrity constraints
in the normal world.

The ARM AMBA3 AXI bus is the primary hard-
ware component enforcing the isolation policy of a
TrustZone enabled SOC. This bus matrix extends the
32 bit control signal for each read and write chan-
nel with an extra Non-Secure (NS) bit dictating what
world each transaction belongs to. By ensuring that
all transactions from bus masters in the Normal world
have their NS bit set high, insecure information flow
from a slave in the secure world can be prevented. In
addition to the AMBA3 AXI bus, each physical pro-
cessor core can securely multiplex instructions from
concurrent processes of both world, exposed to the
system as two distinct virtual cores: one normal and
one secure. This design saves both silicon area and
power compared to having a separate core for each

2The Normal world is sometimes refereed to as the Non-
Secure (NS) world.

IoTBDS 2017 - 2nd International Conference on Internet of Things, Big Data and Security

104



world. In a multiprocessor system, cores may operate
and transition between worlds independently of one
another using hardware interrupts. The mechanism to
context switch between processes running in different
world is known as monitor mode. The virtual core’s
identity dictates the NS bit used for bus operations, set
in the Secure Configuration Register (SCR), and thus
also dictates which bus slaves can be accessed. Also,
the hardware provides two virtual Memory Manage-
ment Units (MMUs) extended with NS bits to parti-
tion memory between the two worlds. The security of
other system components, like tightly coupled mem-
ories and the accelerator coherency port, also depend
on NS bit to control information flow.

In addition to the main AXI bus, ARM systems
may include a lower APB bus, which most periph-
erals will use. To ensure compatibility with existing
devices, the APB bus does not carry the NS bit. It
is the AXI-to-APB Bridge’s responsibility to manage
the NS bit translation to and from connected devices
using a special per device signal located on the bus.

The TrustZone framework includes secure boot
facilities from a trusted boot loader located in the on-
SOC Read-Only Memory (ROM). This ROM is the
only system component that cannot be easily changed
by an attacker, and is responsible for securely boot-
strapping remaining software component into the on-
SOC memory.

2.4 Trusted Execution Environments

Because the TrustZone technology only distinguish
two protection domains at the hardware level, con-
current mutually distrusting applications must be fur-
ther isolated in software. Such Trusted Execution
Evironments (TEEs) can range from simple libraries,
to a full operating system kernel. In the latter case,
the TrustZone system will be running two concurrent
operating-system kernels: one in the Normal world
and one in the Secure world. By using the MMU’s
ability to partition Secure world memory, the Secure
world kernel can run concurrent and mutually dis-
trusting application in separate user-space sandboxes.

While the ARM TrustZone architecture specifies
mechanisms to handle secure interrupts, memory and
peripherals, it is up to the SOC designer to implement
these. Vendors can choose to implement all the mech-
anisms, or only a subset of them, to provide the secu-
rity mechanisms needed for devices that will utilize
the specific SOC. In our case, Diggi aims to follow the
GlobalPlatform Trusted Execution Evironment (TEE)
client API specification 1.0 (Global Platform, 2011).

3 DESIGN AND
IMPLEMENTATION

Diggi aims to utilize secure enclave technology to
provide secure communication, provisioning and ex-
ecution between the cloud, mobile, and IOT devices.
We start by implementing the Diggi architecture run-
ning on IOT devices with TrustZone technology. The
Raspberry Pi 3 model b3 embedded development
board was chosen as a starting point for our imple-
mentation. The Raspberry Pi has a SOC which only
provides TrustZone exception states, the mechanisms
and hardware required to implement secure memory
and peripherals are not available.

TrustZone exception states enable the Raspberry
Pi to execute code both in the Normal and Secure
worlds. Allocating memory, and accessing storage
and network interfaces cannot be performed in the Se-
cure world and need to be emulated. Requests for
memory and access to peripherals are routed to a pro-
cess running in the Normal world called the TEE Sup-
plicant. The supplicant process will perform the re-
quest in the Normal world on behalf of the Secure
world, and will not offer the security and isolation that
the TrustZone architecture specifies.

The Raspberry Pi runs Linaro’s4 OP-TEE OS5 in
the Secure world, and a 64 bit Linux kernel version
4 running in the Normal world with a TEE driver to
facilitate communication between worlds. The Se-
cure world OS is accessible from the Normal world
OS using the GlobalPlatform TEE client API specifica-
tion 1.0 (Global Platform, 2011), which is also used
to trigger execution of applications within the Secure
world.

Our previous work with dynamic resolution of
code (Valvåg et al., 2016) was used to create mech-
anisms for dynamically resolving trusted applica-
tion dependencies in the Secure world OS. Each
trusted application is identified by a 128 bit Univer-
sally Unique Identifier (UUID), which is used in the
run-time dependency resolution process. The pro-
cess starts by installing an application on the device
through the normal appstore associated with the OS
running in the Normal world (se Figure 2). The app-
store can be Google Play, Apple’s iTunes store, the
Ubuntu’s apt-get, or a similar well established chan-
nel for distribution of native applications.

When the application needs to execute in the Se-
cure world, a request is sent through the TEE driver
to the Secure world OS. The request will contain the

3http://www.raspberrypi.org
4http://www.linaro.org
5https://github.com/OP-TEE/optee_os

Secure Edge Computing with ARM TrustZone

105



Device

Rich OS TEE

Services Trusted Services

Native
Apps

Rich Cloud Services

Rich
Cloud

Services

Native App Store

Secure Cloud Services

Cloud Hardware

Trusted Cloud OS

App
Store

Meta

Code

ARM TrustZone enabled chipset

Normal World Secure World

Trusted 
Apps

Diggi Runtime

Trusted
Cloud

ServicesMeta Code 
Store

Cloud Hardware

Rich Cloud OS

Figure 2: Outline of application provisioning for IOT devices in Diggi. The Normal world part of the application is distributed
from a cloud-hosted appstore to the Normal world OS. When the application requests trusted execution or access meta-code
protected data, the Secure world will request the secure part of the application through the secure appstore and do validation
of the code before installing it and allowing requests between worlds.

UUID of the trusted application. If the trusted appli-
cation is not installed on the device, which will be the
case at the first invocation, the Secure world OS will
utilize Diggi resolution service to locate the trusted
application. Diggi will establish a connection to a se-
cure appstore and retrieve the application associated
with the UUID. The application will be validated be-
fore it is installed and loaded in the Secure world. Af-
ter the application has been successfully installed, the
request from the native application will be delivered
for processing. Figure 2 illustrates this architecture.

4 PERFORMANCE EVALUATION

For our performance evaluation, we chose the Rasp-
berry Pi 3 model b embedded development board to
host Diggi. The Raspberry Pi has 1 GB RAM and
a 1.2 GHz quad-core ARM Corex-A53 CPU and pro-
vides TrustZone exception states which enable execu-
tion in the Secure world. The mechanisms and hard-
ware required to implement secure memory and pe-
ripherals are not available. Our experiments in this
paper are therefore focused on transitions between the
Normal and the Secure world, and execution in the
Secure world.

4.1 World-switch Overhead

In our first experiment, we measure the end-to-end
overhead of switching from executing in the Normal
world to executing in the Secure world inside a TEE
hosted application. Such world switches are neces-
sary to achieve secure execution of code, and knowl-
edge about their performance characteristics are im-

0 20 40 60 80 100

NW IPC

WS

SW noop

33.01

8.54

81.96

Time (µsec)

Figure 3: Mean end-to-end execution times for a noop Se-
cure world invocation executed 1000 times, compared to
traditional IPC between Normal world processes through
named pipes.

portant when deciding how an application or system
is best partitioned between the worlds.

Conceptually, communication between applica-
tions in the Normal world and the Secure world can be
compared to Interprocess Communication (IPC) be-
tween two processes. We measure the end-to-end de-
lay for IPC communication between two processes in
the Normal world to get a baseline communication
cost between processes.

All measurements have been executed 1000 times,
and we present the mean. Figure 3 shows the mea-
sured mean execution time for our noop Secure world
invocation. The observed mean end-to-end time is
81.96 µs. Included in this is two world changes, one
from the Normal world to the Secure world, and one
from the Secure world to the Normal world. The ob-
served mean time for a single world change is 8.54 µs.
For comparison, the mean end-to-end time for IPC be-
tween two Normal world processes is 33.01 µs.

The time to switch worlds only amounts to
17.08 µs of the total time for the noop invocation.
By instrumenting the code path from the start of the
invocation to the end, a breakdown of where time

IoTBDS 2017 - 2nd International Conference on Internet of Things, Big Data and Security

106



0 20 40 60 80 100

SW noop

Time (µsec)

Syscall WS SW Upcall SW Return

Figure 4: Breakdown of the Secure world noop invocation.

was spent was produced, as seen in Figure 4. Here,
48.77 µs of the total time is spent in the Secure world
OS and switching to the Secure world user level.

4.2 Execution Overhead

The second experiment compares execution times in
the Secure world to the Normal world. Since the Se-
cure world is expected to perform cryptographic op-
erations we chose to execute a series of cryptographic
hashing operations to evaluate the execution perfor-
mance of the Secure world.

Linaro’s OP-TEE OS has adapted LibTomCrypt6

to provide cryptographic operations through the
GlobalPlatform Application Programming Interfaces
(APIs) for applications in the Secure world. The same
library was used when executing the cryptographic
operations in the Normal world.

SHA-256 was used to hash a variable sized buffer
1000 times, both in the Secure world and the Normal
world. We have omitted the time needed for world
switches and copying of data, since the Raspberry Pi
does not support secure memory. The mean execution
times is presented in Figure 5. The results show no
negative impact of hashing in the Secure world.

The ARM TrustZone architecture includes efficient
hardware cryptographic engines that can accelerate
security and cryptographic operations. Unfortunately,
the Raspberry Pi does not include this hardware and
the effects from this hardware cannot be seen in the
graphs.

5 RELATED WORK

Mechanisms for providing a trusted execution envi-
ronment is not new. Popular banking services have al-
ready utilized the Secure Element (SE) in SIM cards to
provide secure authentication for users of their bank
services. The Apple A7 (and later) SOC utilizes sepa-
rate ARM processor cores to provide a trusted execu-
tion environment to store and authenticate user finger-
prints both for the device and supported applications.

6https://github.com/libtom/libtomcrypt

124 8 16 32 64
0

1,000

2,000

3,000

4,000

Size of buffer (Kb)

Ti
m

e
(µ

se
c)

Secure world
Normal world

Figure 5: Mean execution times for SHA-256 hashing a
variable sized buffer in the Secure world, compared to hash-
ing in the Normal world.

Smartcards have frequently been deployed in sys-
tems that need a high-degree of security assurance.
Such cards, however, have limited processing, band-
width, and memory capacity; and cannot directly in-
teract with the user to, for instance, obtain personal
identification numbers. As such, smartcards depend
on untrusted OS logic for some of their operations.
Trusted Platform Modules (TPMs) (TCG Published,
2011) are chips typically permanently embedded on
a system’s mainboard, providing similar features as
smartcards. TPMs were initially specified by the
Trusted Computing Group (TCG), and now approved
as the standardized specification ISO/IEC 11889.

In the Trusted Language Runtime (TLR) (Santos
et al., 2014), programmers can specify which of the
classes of a .NET program, or trustlets, that should run
within the secure world, and how they are to interface
with the normal world. Although the primitives de-
scribed in this work is highly relevant for Diggi, it
is unclear how the proposed trustlets mechanism, and
their trustboxes execution environments, can support
our more dynamic and mobile meta-code concept.

The PrivateZone framework (Jang et al., 2016) ad-
dress the limited ability of the TrustZone hardware to
host mutually distrusting applications within a single
TEE OS. For this, PrivateZone sets up private execu-
tion environments in the normal word using the se-
cure world monitoring mode, controlled by a normal
world kernel driver, to switch between the different
execution contexts. The approach requires some mod-
ification to the underlying normal world OS that may
prevent practical deployment.

Conceptually, sandboxing (Goldberg et al., 1996)
relates to our work by providing a security mecha-
nism for separating running programs. Diggi sep-
arates software execution in a trusted Secure world
and an untrusted Normal world. Similar structuring

Secure Edge Computing with ARM TrustZone

107



can be done using sandboxes with code running in-
side or outside a sandbox. A sandbox, however, con-
trols the resources an application can use securing the
local computer; a secure enclave though secures the
application from security violations originating from
software at the computer.

TaintDroid (Enck et al., 2014) extends Google’s
Android kernel to track third-party binary applica-
tions dynamically at run-time by labeling data from
possible sensitive sources as tainted during execu-
tion. The taint is encoded using a single bit on certain
memory regions, similarly how the TrustZone hard-
ware use the NS-bit on memory and buses to cre-
ate two execution domains. Unlike the TrustZone
technology, TaintDroid leverages facilities in the Java
virtual machine instead of the hardware level to la-
bel data as either tainted or not. The taint follows
the data as it propagates through program variables,
inter-process communication, and file IO, and enables
TaintDroid to monitor and control that sensitive data
is not transmitted out of the phone. Because taint is
encoded as a single bit on certain memory regions,
isolating multiple execution domains would require
additional mechanisms, as with ARM TrustZone. Au-
tomated partitioning of Android applications to run
on TrustZone hardware has also been suggested (Ru-
binov et al., 2016).

In the security-typed Java derived programming
language JiF (Sabelfeld and Myers, 2003), program-
mers can express rich information-flow control poli-
cies as labels attached to variables at the source code
level to express restriction on information flow within
the program. This include setting up multiple exe-
cution privilege levels and policies on how data can
flow between those. The compiler analyzes the code
to make sure that information flows in accordance
with those policies, and admits only complying pro-
grams. Although expressive, these language based
methods cannot secure legacy applications and re-
quire the compiler to be part of the TCB. Some ker-
nels, like Asbestos (Efstathopoulos et al., 2005), use
labels expressed in terms of tags combined with ca-
pabilities to enforce information-flow security poli-
cies between hosted, but are currently only available
in prototype form.

Secure Data Capsules (Maniatis et al., 2011) are
data objects associated with a policy tag that defines
the provenance and a usage policy, similarly to our
meta code. These policy tags are cryptographically
bound to the associated data, and derived data are
tagged with a derived policy tag. Untrusted applica-
tions can operate on tagged objects only while inside a
secure execution environment that enforces and prop-
agates policy tags.

6 CONCLUSION

We cannot naively assume that computers running
IOT software are totally trustworthy. Despite use
of state-of-the-art authentication and access control
mechanisms from distributed systems, we might need
to minimize what components to trust and even regard
the OS and co-located applications on a single IOT de-
vice with suspicion and care.

Integrating IOT devices with other client comput-
ers or remote cloud servers opens the overall system
for unwanted security attack vectors that should be
avoided. This might include that IOT devices have
USB ports probably not needed for operation of the
device, devices are out of sight for users and might
be physically tampered with, and functionality not re-
quired for the current deployment is available via an
API layer. The list is, unfortunately, very long and
growing.

We are investigating how to properly secure such
an IOT infrastructure and have adopted a rigorous
security-by-design strategy. Our current IOT proto-
type is therefore built around secure hardware from
scratch with a trusted module known as secure en-
clave technology at its foundation. We use Intel SGX
for the resource-rich cloud servers, and we use ARM
TrustZone for IOT devices to enforce security isola-
tion on even a layer below the operating system. This
reduces the trusted computing platform to a mini-
mum; to the vendors Intel and ARM that in any case
must be trusted if you want to algorithmically auto-
mate any task of interest.

Securing a heterogeneous distributed system with
IOT devices at the edges and cloud servers at the core
is a daunting task. Our humble attitude includes ac-
cepting that secure hardware is just a piece in the
holistic security puzzle. It is fundamentally impor-
tant though, and will gradually be complemented with
our on-going work on utilizing secure and encrypted
storage, in our work on making upgrades to IOT de-
vices secure during the lifetime of the device through
meta-code, and how to protect data integrity while in
transit to and from the IOT devices. Each such ap-
proach builds greater security assurance in the overall
infrastructure, and we are confident that secure en-
clave technologies like reported in this paper will play
a pivotal role.

ACKNOWLEDGMENTS

This work was supported in part by the Norwegian
Research Council project numbers 231687/F20, and
the Corpore Sano Centre at UiT, Norway. We would

IoTBDS 2017 - 2nd International Conference on Internet of Things, Big Data and Security

108



like to thank the anonymous reviewers for their useful
insights and comments.

REFERENCES

Anati, I., Gueron, S., Johnson, S., and Scarlata, V. (2013).
Innovative technology for cpu based attestation and
sealing. In Proceedings of the 2nd international work-
shop on hardware and architectural support for secu-
rity and privacy, volume 13.

ARM Limited (2009). ARM security technology: Building
a secure system using TrustZone technology. White
paper PRD29-GENC-009492C, ARM Limited.

Brasser, F., Kim, D., Liebchen, C., Ganapathy, V., Iftode,
L., and Sadeghi, A.-R. (2016). Regulating arm trust-
zone devices in restricted spaces. In Proceedings of
the 14th Annual International Conference on Mobile
Systems, Applications, and Services, pages 413–425.
ACM.

Carzaniga, A., Rosenblum, D. S., and Wolf, A. L. (2001).
Design and evaluation of a wide-area event notifica-
tion service. ACM Transactions on Computer Systems
(TOCS), 19(3):332–383.

Efstathopoulos, P., Krohn, M., VanDeBogart, S., Frey, C.,
Ziegler, D., Kohler, E., Mazières, D., Kaashoek, F.,
and Morris, R. (2005). Labels and event processes in
the asbestos operating system. In Proceedings of the
20th ACM Symposium on Operating Systems Princi-
ples, SOSP ’05, pages 17–30, New York, NY, USA.
ACM.

Enck, W., Gilbert, P., Han, S., Tendulkar, V., Chun, B.-
G., Cox, L. P., Jung, J., McDaniel, P., and Sheth,
A. N. (2014). Taintdroid: an information-flow track-
ing system for realtime privacy monitoring on smart-
phones. ACM Transactions on Computer Systems
(TOCS), 32(2):5.

Gjerdrum, A. T., Håvard, D., and Johansen, D. (2016).
Implementing informed consent as information-flow
policies for secure analytics on ehealth data: Prin-
ciples and practices. In Connected Health: Ap-
plications, Systems and Engineering Technologies
(CHASE), 2016 IEEE First International Conference
on, pages 107–112. IEEE.

Global Platform (2011). TEE system architecture. Global
Platform technical overview.

Goldberg, I., Wagner, D., Thomas, R., Brewer, E. A., et al.
(1996). A secure environment for untrusted helper ap-
plications: Confining the wily hacker. In Proceedings
of the 6th conference on USENIX Security Symposium,
Focusing on Applications of Cryptography, volume 6,
pages 1–1.

Hurley, J. and Johansen, D. (2014). Self-managing data in
the clouds. In Cloud Engineering (IC2E), 2014 IEEE
International Conference on, pages 417–423. IEEE.

Jang, J., Choi, C., Lee, J., Kwak, N., Lee, S., Choi, Y., and
Kang, B. (2016). Privatezone: Providing a private exe-
cution environment using arm trustzone. IEEE Trans-
actions on Dependable and Secure Computing.

Johansen, H., Gurrin, C., and Johansen, D. (2015a). To-
wards consent-based lifelogging in sport analytic. In

MMM 2015, Part II, number 8936, pages 335–344.
Springer International Publishing.

Johansen, H. D., Birrell, E., Van Renesse, R., Schneider,
F. B., Stenhaug, M., and Johansen, D. (2015b). En-
forcing privacy policies with meta-code. In Proceed-
ings of the 6th Asia-Pacific Workshop on Systems,
page 16. ACM.

Maniatis, P., Akhawe, D., Fall, K., Shi, E., McCamant, S.,
and Song, D. (2011). Do you know where your data
are? Secure data capsules for deployable data protec-
tion. In of the 13th USENIX Conference on Hot Top-
ics in Operating Systems, HotOS ’11, pages 22–27.
USENIX Association.

Ngabonziza, B., Martin, D., Bailey, A., Cho, H., and Mar-
tin, S. (2016). Trustzone explained: Architectural fea-
tures and use cases. In Collaboration and Internet
Computing (CIC), 2016 IEEE 2nd International Con-
ference on, pages 445–451. IEEE.

Nordal, A., Kvalnes, Å., Hurley, J., and Johansen, D.
(2011). Balava: Federating private and public clouds.
In Services (SERVICES), 2011 IEEE World Congress
on, pages 569 –577.

Rubinov, K., Rosculete, L., Mitra, T., and Roychoudhury,
A. (2016). Automated partitioning of android applica-
tions for trusted execution environments. In Proceed-
ings of the 38th International Conference on Software
Engineering, pages 923–934. ACM.

Sabelfeld, A. and Myers, A. (2003). Language-based
information-flow security. Selected Areas in Commu-
nications, IEEE Journal on, 21(1):5–19.

Santos, N., Raj, H., Saroiu, S., and Wolman, A. (2014).
Using arm trustzone to build a trusted language run-
time for mobile applications. In Proceedings of the
19th International Conference on Architectural Sup-
port for Programming Languages and Operating Sys-
tems, ASPLOS ’14, pages 67–80, New York, NY,
USA. ACM.

Schwab, K. (2016). The fourth industrial revolution. World
Economic Forum Geneva.

Shuja, J., Gani, A., Bilal, K., Khan, A. U. R., Madani, S. A.,
Khan, S. U., and Zomaya, A. Y. (2016). A survey of
mobile device virtualization: taxonomy and state of
the art. ACM Computing Surveys (CSUR), 49(1):1.

TCG Published (2011). TPM main part 1 design principles.
Specification Version 1.2 Revision 116, Trusted Com-
puting Group,.

Valvåg, S. V., Pettersen, R., Johansen, H., and Johansen,
D. (2016). Lady: Dynamic resolution of assemblies
for extensible and distributed .net applications. In
CLOSER 2016 : Proceedings of the 6th International
Conference on Cloud Computing and Services Sci-
ence, pages 118–128.

Secure Edge Computing with ARM TrustZone

109


