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Abstract: Residential Air Conditioning (AC) load has a huge role to play in Demand Response (DR) Programs as it is
one of the power intensive and interruptible load in a home. Due to the variety of ACs types and the different
sizes of residences, modelling the power consumption of AC load individually is non-trivial. Here, an adaptive
framework based on Regression Trees is proposed to model and forecast the power consumption of different
AC units in different environments by taking in just 6 basic variables. The framework consists of an automatic
feature selection process, a load prediction module, an indoor temperature forecasting module, and is capped
off by a load forecasting module. The effectiveness of the proposed approach is evaluated using data set from
an ongoing research project on air-conditioning system control for energy management in a residential test
bed in Singapore. Experiments on highly dynamic loads gave a maximum Mean Absolute Percentage Error
(MAPE) of 21.35% for 30min ahead forecasting and 27.96% for day ahead forecasting.

1 INTRODUCTION

1.1 Motivation

The electricity grid today faces a challenge in match-
ing supply and demand, as stochasticity within the
grid continues to climb. The nature of generation has
became much more unpredictable with the integra-
tion of highly variable renewables like solar and wind
power. On the demand side, the increase in human
population density and the adoption of electric vehi-
cles introduce much variances in electricity consump-
tion. Aside from using battery storage technology,
Demand Response (DR) programs could also help in
maintaining efficient production and consumption of
electricity (Chan et al., 2012). These programs in-
volve changing the price of electricity, or requesting
for direct control in exchange for a fee, in order to
incentivize consumers to change their electricity con-
sumption habits. Within different energy consuming
sectors in the US, households take up to 37% of the
total electricity consumption (Yin et al., 2016). Vari-
ous household appliances have been targeted by DR
programs to balance the supply and demand in the
electricity market (Ding et al., 2014). Out of these
appliances, thermostatic loads like the Air Condition-

ing (AC) are most appropriate as they could be turned
off for short period of time without causing much dis-
comfort or inconvenience to the consumer. Besides
being ubiquitous in modern housing, AC constitutes
up to 45% of a customer’s electricity demand (Kalkan
et al., 2012). Due to its high demand response poten-
tial, any AC control mechanism that helps the cus-
tomer to save electricity benefits both customers and
the utility. (Li et al., 2017) showed that just by carry-
ing out a model-free, pulse-width-modulation control
on a user’s AC power status, up to 33% of energy used
by the AC could be saved. However, in order to pro-
duce optimal AC control algorithms, the effects of a
control strategy will have to be quantified and tested
in advance via an effective model. Hence, accurate
modelling of AC units for load prediction and room
thermal states forecasting is critical for successful im-
plementation of DR in AC systems.

AC units can be roughly divided into two types:
hysteresis controlled (or on-off controlled) and in-
verter controlled. Inverter type AC units can vary their
compressor fan speed with regards to set point and in-
door temperature, as compared to the full power/no
power state of the hysteresis controlled ACs. This al-
lows inverter ACs to achieve more precise cooling of
the room as compared to hysteresis controlled ACs,
reducing energy consumption. Due to a much lower
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energy consumption, inverter type AC units gradually
replaced the hysteresis controlled units and became
the dominant type in the market (Shao et al., 2004).
However, accurate modelling of an inverter type AC
unit is difficult because of its complex working prin-
ciple and control mechanism. In current literature,
such an effective and efficient method to model in-
verter type AC unit is still missing, and this paper is
aimed at filling this gap.

1.2 Related Works

Modelling of an AC unit often comes together with
modelling the room it is cooling, because one wants to
predict the power consumption and forecast the room
temperature for a long period. Thus the two are com-
bined as modelling an AC system in the following
context.

There are generally three distinctive approaches to
modelling AC systems: white-box modelling, grey-
box modelling and black-box modelling. Each of
them attempts to model AC load (power consump-
tion) and future room temperature as functions of sev-
eral variables, such as present room temperature, de-
sired room temperature, etc.

White-box modelling is based on physical prin-
ciples and derives the models based on the thermo-
dynamic properties of the AC unit and the room. A
number of studies simplified the complex thermody-
namic equations into an equivalent thermal parame-
ters model for simulation and forecasting of AC load
(Lu, 2012; Yin et al., 2016). However, the thermody-
namic properties of a room depend largely on human
occupancy, behaviour and furniture placement, which
are difficult to observe in real life, resulting in inaccu-
racies.

Grey-box modelling adopts the physics equations
obtained from white-box modelling and applies data
driven approaches to estimate the equation param-
eters. An instance of a grey box model utilizes a
Resistive-Capacitance thermal model with model pa-
rameters found by genetic algorithm (Li et al., 2010).
Another instance learns the parameters affecting the
temperature change of a room using linear regres-
sion (Jain et al., 2016). Grey-box modelling generally
outperforms the white-box modelling because it uses
real data to tune the model parameters (Afram and
Janabi-Sharifi, 2015b). However, developing a grey-
box model requires lots of work and getting the data
types required by the physics functions is challenging
and expensive.

Black-box modelling uses purely statistical or ma-
chine learning methods to fit a function of AC load or
room temperature of different features on historical

data. Contrary to grey-box modelling, model features
in black box modelling are not bounded by physics
equations, and could be chosen depending on the
available sensors in the environment. Examples in-
clude a stochastic tobit model (Horowitz et al., 2014)
and a machine learning Support Vector Regression
model for AC load (Xuan et al., 2015). (Afram and
Janabi-Sharifi, 2015a) compares the performance of
grey-box modelling and black-box modelling in mod-
elling different parts of a residential heating, ventila-
tion and air conditioning (HVAC) system. (Lork et al.,
2017) combines Artificial Neural Networks, Support
Vector Machines and Ensemble Trees for forecasting
of aggregated residential AC loads. The results show
that well designed black-box modelling yields better
accuracy than grey-box modelling. Although black-
box modelling is more promising in accuracy and
does not require physics equations, a good black-box
model requires careful selection of machine learning
models and features through multiple validation steps.

1.3 Contributions

To develop AC system models for Demand Response
purpose, it is important that the models can be scaled
up easily. Therefore a balance between the model
complexity and accuracy is critical. Hence, white-box
modelling is not suitable because of its lower accu-
racy compared with the other two and tedious work in
obtaining physics properties of different AC units and
rooms.

Among most of the works of grey-box modelling
and black-box modelling, many types of sensors are
used and some of them are usually not available in
normal households, making it difficult to apply such
models in different houses (Tang et al., 2014; Afram
and Janabi-Sharifi, 2015a). (Qin et al., 2015; Jain
et al., 2016) make efforts to model AC systems while
using only a few common data types, such as indoor
temperature and outdoor temperature. Nevertheless,
the AC units they modelled are hysteresis controlled
units other than inverter type ones.

As a result, there is a need for data-driven mod-
elling methods for inverter type AC units, which
adopts only common sensors, reports a satisfactory
accuracy, and can be easily scaled up to a large group
of AC systems.

Here we set out to fill this gap in literature by:

• Generating a list of features from collected data
types which represent the AC unit behaviour and
room thermal dynamics better;

• Designing an automatic feature selection algo-
rithm to select the best ones among the feature
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list for modelling AC unit power consumption and
room temperature respectively;

• Training two sets of regression trees to model AC
unit power consumption and room temperature re-
spectively;

• Combining the two trained models to forecast the
power consumption and room temperature.

Because our modelling approach only requires ba-
sic data types, namely indoor temperature, outdoor
weather data, and AC control inputs, it is applicable
in many different applications without the need of so-
phisticated or expensive infrastructure. It can be used
to guide users’ AC usage behaviour by forecasting the
potential power consumption given desired tempera-
ture and operation duration. In optimal control of in-
dividual AC units or Demand Response control of a
group of AC units, it can be used as the system model,
providing good forecasting ability to the control algo-
rithm, such as Model Predictive Control.

The remainder of the paper will be organized
in the following structure: Section 2 describes the
framework that was used, Section 3 recounts an ap-
plication on real world data. Finally, Section 4 wraps
up with conclusions and future scope.

2 FRAMEWORK

Figure 1: Framework for AC Load Modelling.

In this framework, we will have 4 separate modules
as seen in Fig. 1. This framework is self-adaptive
as it allows us to perform the same analysis on any
random AC unit in a different environment automat-
ically, to generate their own specific models. After
offline training with historical data based on regres-
sion trees, the load forecasting module could be used
for online forecasting and recommendation systems
or online optimal controllers.

2.1 Regression Tree

Regression tree modelling is a standard machine
learning technique that is growing increasingly pop-
ular in recent years. The surge in popularity could be
attributed to its speed, interpretability and robustness
towards outliers (Behl et al., 2016). If a regression
tree is used to fit a set of power consumption values P
and variables X ⊃ (x1, ...xn), the regression tree will
recursively attempt to grow binary decision nodes in
order to segment P into smaller partitions such that
P ⊃ (p1, ...pn). At each node i when the algorithm
is deciding how to split P, various variables x1...xn
and threshold f i

xn will be recursively tried out until a
variable xi

n and a threshold f i
xn is found to minimize

the mean squared error (MSE) of the regression tree
at the current stage of growth (Loh, 2011). Other-
wise, the node will become an end node that outputs
the mean of the P values sorted into the node, finding
the average of pi. Eventually the regression tree will
take on the structure as seen in Fig. 2. For predic-
tion, the regression tree will check the input feature
vector against the decision thresholds in the nodes,
and finally arrive at an end node with an output power
consumption value.

Not only can a regression tree be used for pre-
diction, the resulting model can also highlight each
feature’s importance. By summing up the change
in MSE of a variable when it is selected to split P
across all nodes, a qualitative measure of the impor-
tance of the variable can be found (Guyon and Elisse-
eff, 2003).

Figure 2: Model of a Regression Tree.

2.2 Data Preprocessing

The current operational framework accepts the 6 pri-
mary variables as inputs as shown in Fig. 1. Among
these primary inputs, there are cases of missing data
or erroneous data. These cases are identified and the
missing/erroneous data are linearly interpolated based
on the surrounding values. Different variables could
be sampled at different rates. For standardization,
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all the variables were resampled to 10 mins interval,
which is in line with most smart meter data sampling
frequency (Kavousian et al., 2013).

Thereafter, additional features were derived from
the original 6 variables to better model the transient of
the system. The final list of 38 features (variables) are
listed in Table. 1. The original features are embolden
in the table.

Table 1: Feature List.
Feature
Name Feature Description

’power’ Power Consumption of AC
’power status’ Power Status of AC (0/1)
’do’ Operation Mode for AC, 1 for Dehumidifier, 2 for Auto and 3 for Cooler
’dt’ Set Point Temperature of AC in deg C
’it’ Indoor Temperature of AC in deg C
’ot’ Outdoor Temperature in deg C
’dton’ Product of ’dt’ and ’power status’
’vardo’ Variance of ’do’ within current 10 min interval
’vardt’ Variance of ’dt’ within current 10 min interval
’varit’ Variance of ’it’ within current 10 min interval
’varot’ Variance of ’ot’ within current 10 min interval
’p1’ Power Consumption of AC 10 min before
’tonsin’ Rolling time step since the AC is switched on
’tsindt’ Rolling time step since ’dt’ remains the same as the previous value
’tlaston’ Time step since the AC is last switch on
’tlastoncounter’ Rolling time step since AC is switch off
’mavgot30min’ Moving Average of ’ot’ within previous 30 min interval
’mavgot1hr’ Moving Average of ’ot’ within prevous 1 hr interval
’mavgot2hr’ Moving Average of ’ot’ within prevous 2hr interval
’mvarot30min’ Variance of ’ot’ within previous 30 min interval
’mvarot1hr’ Variance of ’ot’ within previous 1hr min interval
’mvarot2hr’ Variance of ’ot’ within previous 2hr min interval
’mavgit30min’ Moving Average of ’it’ within previous 30 min interval
’mavgit1hr’ Moving Average of ’it’ within previous 1 hr interval
’mavgit2hr’ Moving Average of ’it’ within previous 2hr interval
’mvarit30min’ Variance of ’it’ within previous 30 min interval
’mvarit1hr’ Variance of ’it’ within previous 1hr min interval
’mvarit2hr’ Variance of ’it’ within previous 2hr min interval
’mavgdt30min’ Moving Average of ’dt’ within previous 30 min interval
’mavgdt1hr’ Moving Average of ’dt’ within previous 1 hr interval
’mavgdt2hr’ Moving Average of ’dt’ within previous 2hr interval
’mvardt30min’ Variance of ’dt’ within previous 30 min interval
’mvardt1hr’ Variance of ’dt’ within previous 1hr min interval
’mvardt2hr’ Variance of ’dt’ within previous 2hr min interval
’changeot30min’ Difference between ’mavgot30min’ and ’mavgot30min’ 1 time step before
’changeit30min’ Difference between ’mavgit30min’ and ’mavgit30min’ 1 time step before
’changedt30min’ Difference between ’mavgdt30min’ and ’mavgdt30min’ 1 time step before
’ditemp30min’ Difference between ’mavgdt30min’ and ’mavgit30min’

2.3 Load Prediction Module (LP-M)
and Indoor Temperature
Forecasting Module ITF-M)

The main focus of the LP-M is to predict AC power
consumption ′power′ based on the rest of the fea-
tures at the current time step. In order to achieve
load prediction on LP-M, we will need to know the
current control inputs, indoor conditions and outdoor
conditions. Outdoor conditions could be easily gath-
ered from online weather forecasts from websites
like weatherunderground.com, but the indoor condi-
tions will have to be extrapolated. Therefore, for
ITF-M, the focus is to forecast indoor temperature
′it ′ based on information in the previous time step.
Using too many features to train a machine learn-
ing model might introduce noises and cause over-
fitting problem. Since the impact of each feature
for prediction and forecasting is unknown, we de-
signed a careful feature selection process using re-
gression trees to obtain an optimal set of most relevant

features Xbest and the trained prediction/forecasting
model RTree(Xbest). For each module, the variable
list in Table. 1 is split into input set X and output
set Y . X and Y are then further divided into training
and testing data. The training data set is used for the
feature selection and model training, while the test-
ing data set is used for performance validation of the
model.

The criterion used in this paper to test the regres-
sion model validation is the Mean Absolute Percent-
age Error (MAPE), which is defined by:

MAPE =
100
n

n

∑
t=1

∣∣∣∣
At −Ft

At

∣∣∣∣ ,

where At is the actual value, Ft is the forecast value,
and n is the length of the data set.

The feature selection process is encoded in Algo-
rithm. 1, and is aimed at selecting the top n most rel-
evant features from all available features in the input
set.

Algorithm 1: Logic for Feature Selection Process.
Initialize Xtrain,Ytrain,Xtest ,Ytest

1. Obtain k1 regression tree models with Xtrain,Ytrain
segmented by k1 fold cross validation

2. For each regression tree model from k1-fold cross
validation, obtain the normalized feature impor-
tance. The higher the value the more important
the feature.

3. Sum up the normalized feature importance and
sort the features in X according to their impor-
tance

4. for 1:n, with n being the number of features in X :
Train k2 regression tree models with k2-fold cross
validation based on X1:n

train.
X1:n represents the matrix of X with the top n fea-
tures.
errn ← Find and average the Mean Absolute Per-
centage Error (MAPE) of the k2 models.
endfor

5. n∗ ← arg minn errn, Xbest ← X1:n∗
train

Find the n∗ that gives the minimum errn, and Xbest

is the training set with the top n∗ inputs

6. RTree(Xbest) is obtained by training another re-
gression tree model using Xbest . Validation is
done by using Xbest

test as the input to RTree(Xbest)
and finding the MAPE to Ytest

This algorithm is utilized by both LP-M and ITF-
M, but with different input sets X and output sets Y .
The model trained by LP-M with the process will be
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referred to as RTreeLP and the model trained by ITF-
M will be referred to as RTreeIT F .

2.4 Load Forecasting Module

The load forecasting module takes in current sys-
tem states, control inputs, external weather variables
and attempts to forecast AC load by looping through
RTreeLP and RTreeIT F trained in LP-M and ITF-
M respectively. The control inputs array [U ] con-
sists of ′dt ′, ′do′, ′vardt ′ , ′vardo′ and ′power status′.
Weather variables array [W ] consist of only ′ot ′ and
can be taken from the internet. The forecasting model
is detailed in Algorithm. 2.

Algorithm 2: Logic for Load Forecasting.

Initialize starttime, duration, [U ], [W ],
[initialconditions], [ f orecastarray], [predictarray]

1. [initialconditions] ← all features at time ==
starttime

2. for i=1:duration
[ f orecastarray]← [initialconditions]bestIT F

′it ′new ← RTreeIT F([ f orecastarray])
The features selected for forecasting at the current
time step are fed into the ITF model to forecasting
temperature for the next time step.
[′dt ′new , ′do′new, ′vardt ′new, ′vardo′new,
′power status′new]←U(i)
′ot ′new ←W (i)
[initialconditions] ← each feature in
[initialconditions] is recalculated from up-
dated features and is updated, except ′power′,
which is to be updated in the following prediction
step
[predictarray]← [initialconditions]bestLP

′power′new ← RTreeLP([predictarray])
[initialconditions]← ′power′new
Newly updated features at a future time step is
used to predict power at that future time step.
The newly forecasted power is added to the
[initialconditions] array such that the process can
loop all over.
endfor

The time period for this AC load forecasting algo-
rithm could be selected to forecast an arbitrary num-
ber of steps ahead. In order to produce a temperature
set point recommendation system, the starttime point
could be set at the moment when the user switches on
the AC and the duration could also be specified by
the user. The Load Forecasting Module could try out
different control inputs [U ] corresponding to differ-
ent control strategy, together with [W ] that is taken

off the web, to generate a few different forecasted
′power′ curves. The ′power′ curves corresponding to
different control strategies could be shown to the user,
in hope that the user will choose the most energy-
efficient strategy.

3 CASE STUDY

A case study was done on actual AC data collected
from a wireless sensor testbed from 1 May 2015 to 31
Dec 2015. This testbed is set up in the faculty housing
apartments at the Singapore University of Technology
and Design (SUTD), and consists of 20 homes be-
ing cooled by Panasonic inverter ACs (CU-S24PKZ).
Values of ′power′, ′power status′, ′do′, ′dt ′, ′it ′ are
collected by a proprietary attachment to the Panasonic
AC system, with a data rate of 30 secs. ′ot ′ data are
taken from a weather station within SUTD and is up-
dated once every 30 minutes. Two rooms, Room1 and
Room2, were selected to test out the modelling tech-
nique proposed in this paper. Room1 has a smaller
floor area compared with Room2 but they both have
the exact same AC unit. Each of the two indoor AC
units is powered by a corresponding outdoor com-
pressor, of similar make. As per the data preprocess-
ing module mentioned in Section. 2.2, the data col-
lected undergo a data cleaning process to remove er-
roneous and missing data, before being resampled to a
frequency of 10 mins. Eventually additional features
were calculated to form a feature list denoted in Ta-
ble. 1. Five months worth of data from June 2015 to
November 2015 were selected to form the training set,
while two months worth of data from May 2015 and
December 2015 were selected to be the test set. Anal-
ysis of data is performed in MATLAB 2016a with
regression trees being built by the f itrtree() func-
tion. The trees are encouraged to grow as deep as
possible and keep making splits at nodes until the
MSEa f ter−node is less than 0.0001*MSEbe f ore−node.

3.1 Feature Selection by LP-M and
ITF-M

The two selected rooms undergo the same feature se-
lection process for load prediction and indoor tem-
perature forecasting. For load prediction, all the fea-
tures presented in the feature list in Table. 1 except
′power′, were taken as inputs X . ′power′, itself, was
taken as the output Y . For indoor temperature fore-
casting, the input features X taken are one time step
before that of the output features Y . All the features
except ′vardo′, ′vardt ′, ′varit ′, ′varot ′, ′p1′ and ′it ′

were taken as inputs while ′it ′ is taken as the output
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(Y ). The importance of features for the prediction and
forecasting modules were investigated by training re-
gression trees for 5 times in a 5-fold cross validation
as described in step 1 of Algorithm. 1. The reason
for using cross validation in building the model is to
prevent overfitting in the training set, which results in
poor performance on the test set (Zhang, 1993). A
certain set of features might be representative of a set
of data, while not being so for another set.

The algorithm proposed in this paper automati-
cally sorts the features by their importance values and
identifies the optimal feature set to adapt to differ-
ent scenarios. The importance value of each feature
for each model respectively is obtained during the
training of regression trees as introduced in Section.
2.1. At the end of step 3 of Algorithm. 2, we ob-
tained a importance-ranked list of features for both the
load prediction model and indoor temperature fore-
casting model respectively. The list of features and
their importance values is displayed in Table. 3. The
features used for ′it ′ forecasting are suffixed with a
′1′ to indicate that they are values from the previous
time step. The normalized importance value of each
feature ranges from 0 to 5, with 0 representing that
the feature has minimal impact on the regression tree
models. A feature with a value of 5 is at the other end
of the spectrum. From here, we are interested in the
minimum amount of top features that will allow our
models to have the best performance in cross valida-
tion as evaluated by the MAPE. Following step 4 of
Algorithm. 1, which loops across the number of fea-
tures available, we first train another regression tree
model with the top feature that appears in the impor-
tance list and record down the cross validated MAPE
of the resulting model. Subsequent stages increase the
number of features that is fed into the model, from the
top two features, top three features to all the features.
In step 5, we compare across all the MAPE that is
gathered and find the top n∗ features that generated
the lowest MAPE for the models trained. The plots
of the MAPE values against the number of top most
important features used in each model for each sce-
nario are shown in Fig. 3 to 6. The figure within each
plot is the zoomed-in view of the plot. For each plot,
there is a point, n∗, indicated by a black dot, on which
the minimum MAPE is achieved. Beyond this point,
the error starts to increase due to noise from excessive
variables or potential overfitting.

Table 2: Final Model Validation MAPE.

RTreeRoom1
LP RTreeRoom1

IT F RTreeRoom2
LP RTreeRoom2

IFT

Training 0.0624 0.0031 0.0353 0.0023
Testing 0.2068 0.0105 0.1079 0.0137

:

Figure 3: Error Plot of Cross Validated Regression Trees
with top 1:n Features with LP-M for Room1.

Figure 4: Error Plot of Cross Validated Regression Trees
with top 1:n Features with ITF-M for Room1.

Figure 5: Error Plot of Cross Validated Regression Trees
with top 1:n Features with LP-M for Room2.

Figure 6: Error Plot of Cross Validated Regression Trees
with top 1:n Features with ITF-M for Room2.

After getting the n∗ for each model, the Xbest for
each model can then be obtained. Features belonging
to Xbest for the 4 models trained in this case study,
are embolden in Table. 3. As per step 6 in the algo-
rithm, we train the final regression trees for each sce-
nario with their respective Xbest

train and validate against
the Xbest

test and Ytest . The resulting MAPE values are
captured in Table. 2. Note that in the table the testing
errors are all slightly higher than the training errors,
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Table 3: Feature Selection Results.

n Features Room 1 LP-M Normalized Importance MAPE of 1:n Features Room 2 LP-M Normalized Importance MAPE of 1:n

1 ’p1’ 5 0.300511736 ’dt’ 5 0.425269107
2 ’tonsin’ 0.546464567 0.25613889 ’p1’ 2.229504903 0.1722657
3 ’ditemp30min’ 0.302132742 0.225410736 ’mavgit1hr’ 0.175892978 0.114627075
4 ’it’ 0.203769685 0.184159732 ’tonsin’ 0.169274939 0.106301354
5 ’dt’ 0.117708659 0.151078236 ’mavgit30min’ 0.153465653 0.103535235
6 ’varit’ 0.086242838 0.150839102 ’tlastoncounter’ 0.097634991 0.103640427
7 ’do’ 0.076026275 0.142621183 ’mavgdt30min’ 0.075141909 0.094776905
8 ’changeit30min’ 0.0601043 0.151721193 ’tsindt’ 0.052305914 0.090929191
9 ’ot’ 0.049193637 0.149417023 ’mvardt1hr’ 0.048716335 0.092222002
10 ’mvarit2hr’ 0.046315628 0.153185215 ’vardt’ 0.046750632 0.089856611
11 ’mavgot2hr’ 0.044044982 0.157504529 ’mvardt30min’ 0.038764716 0.088808819
12 ’mavgot1hr’ 0.03871963 0.154212055 ’ditemp30min’ 0.030874599 0.090148701
13 ’mavgot30min’ 0.035275138 0.153604236 ’changedt30min’ 0.029749423 0.091144285
14 ’mavgit30min’ 0.034512117 0.150444017 ’changeit30min’ 0.022911877 0.091096538
15 ’mvardt30min’ 0.020802706 0.151798587 ’mavgit2hr’ 0.020215566 0.091894589
16 ’mvarit1hr’ 0.019795968 0.153878896 ’mavgot2hr’ 0.016489804 0.091854609
17 ’tsindt’ 0.018422984 0.154598731 ’tlaston’ 0.014382804 0.091670433
18 ’mvarot2hr’ 0.018344337 0.154802141 ’it’ 0.012760316 0.091462106
19 ’mavgit1hr’ 0.018095013 0.150804239 ’mvarit30min’ 0.011440145 0.091275875
20 ’mvarot30min’ 0.017961545 0.151227054 ’varit’ 0.008412449 0.09130624
21 ’mavgit2hr’ 0.015143984 0.150956154 ’mavgot1hr’ 0.007887081 0.091710049
22 ’changeot30min’ 0.014847934 0.151405779 ’mavgdt2hr’ 0.006162069 0.091902927
23 ’vardt’ 0.013334774 0.154281321 ’mavgdt1hr’ 0.005895048 0.092193576
24 ’mavgdt30min’ 0.011798189 0.155449079 ’mavgot30min’ 0.005709894 0.092113118
25 ’mavgdt1hr’ 0.010710383 0.155781011 ’mvarit1hr’ 0.005468773 0.092516269
26 ’changedt30min’ 0.010654833 0.15446828 ’mvarit2hr’ 0.005200726 0.09289201
27 ’mvarit30min’ 0.009400498 0.154850841 ’ot’ 0.004586769 0.092535681
28 ’mvarot1hr’ 0.008841766 0.15466422 ’mvardt2hr’ 0.004529506 0.092903108
29 ’mavgdt2hr’ 0.003281657 0.154308461 ’mvarot1hr’ 0.002587819 0.092974254
30 ’mvardt2hr’ 0.002354067 0.15431396 ’mvarot2hr’ 0.002587263 0.093296134
31 ’vardo’ 0.001228529 0.15431396 ’changeot30min’ 0.001162669 0.093166362
32 ’mvardt1hr’ 0.001104164 0.155328966 ’mvarot30min’ 0.00076616 0.093169736
33 ’power status’ 0 0.155328966 ’power status’ 0 0.093169736
34 ’dton’ 0 0.155328966 ’do’ 0 0.093169736
35 ’varot’ 0 0.155328966 ’dton’ 0 0.093169736
36 ’tlaston’ 0 0.155328966 ’vardo’ 0 0.093169736
37 ’tlastoncounter’ 0 0.155328966 ’varot’ 0 0.093169736

n Features Room 1 ITF-M Normalized Importance MAPE of 1:n Features Room 2 ITF-M Normalized Importance MAPE of 1:n

1 ’mavgit30min1’ 5 0.009369312 ’mavgit30min1’ 5 0.010823976
2 ’tsindt1’ 0.204508081 0.009258808 ’power1’ 0.128241304 0.009067155
3 ’changeit30min1’ 0.184549408 0.008789746 ’mavgit1hr1’ 0.073826389 0.008635071
4 ’power1’ 0.096098917 0.008732118 ’ditemp30min1’ 0.061379441 0.008259862
5 ’mvarit30min1’ 0.079650603 0.008645971 ’dton1’ 0.030393942 0.00774464
6 ’mavgot2hr1’ 0.078441613 0.008712613 ’dt1’ 0.028070593 0.007648126
7 ’mvarit2hr1’ 0.05909354 0.008618668 ’changeit30min1’ 0.027032874 0.007311177
8 ’mavgit2hr1’ 0.057902336 0.008672379 ’tsindt1’ 0.018527454 0.007126983
9 ’mavgit1hr1’ 0.055958149 0.008671855 ’mavgit2hr1’ 0.01434755 0.007075553
10 ’ot1’ 0.052720068 0.008653909 ’tonsin1’ 0.013132361 0.007014234
11 ’tonsin1’ 0.047248711 0.008546118 ’mavgot2hr1’ 0.010929887 0.006902634
12 ’mvarot2hr1’ 0.047153313 0.008558489 ’mavgdt2hr1’ 0.009526018 0.006924036
13 ’mavgot1hr1’ 0.046200305 0.008627689 ’mvarit2hr1’ 0.009058123 0.006880701
14 ’mvarit1hr1’ 0.042701034 0.008580615 ’mvarit30min1’ 0.008611964 0.006912867
15 ’dton1’ 0.036195604 0.008546782 ’tlastoncounter1’ 0.0073374 0.006932536
16 ’ditemp30min1’ 0.033422691 0.008486991 ’mvarot2hr1’ 0.006958218 0.006946669
17 ’do1’ 0.018925811 0.008410064 ’mvarit1hr1’ 0.006946692 0.006921869
18 ’changeot30min1’ 0.018903914 0.008414293 ’changedt30min1’ 0.004799984 0.006926115
19 ’mavgot30min1’ 0.018594206 0.008432243 ’mvardt30min1’ 0.004441651 0.006927035
20 ’mavgdt2hr1’ 0.016388313 0.008428715 ’mavgdt1hr1’ 0.00429153 0.006883871
21 ’mvarot1hr1’ 0.016061363 0.008456917 ’mavgot1hr1’ 0.004158766 0.00690459
22 ’mvarot30min1’ 0.013617638 0.008482549 ’tlaston1’ 0.0041539 0.006881953
23 ’dt1’ 0.009487144 0.008501586 ’mvardt2hr1’ 0.004077719 0.006887224
24 ’mvardt2hr1’ 0.009240435 0.008495656 ’ot1’ 0.003873874 0.006874993
25 ’mvardt1hr1’ 0.007863585 0.008478085 ’mvarot1hr1’ 0.00344415 0.006896851
26 ’changedt30min1’ 0.007841566 0.008460171 ’changeot30min1’ 0.002966679 0.006876015
27 ’mvardt30min1’ 0.007499966 0.008468636 ’mvardt1hr1’ 0.002658473 0.006919493
28 ’mavgdt30min1’ 0.007199021 0.008469476 ’mavgot30min1’ 0.002607417 0.006907127
29 ’mavgdt1hr1’ 0.005834264 0.00847986 ’mavgdt30min1’ 0.002499976 0.006908189
30 ’power status1’ 0.00211583 0.008473187 ’mvarot30min1’ 0.001919621 0.006903403
31 ’tlaston1’ 0 0.008473187 ’power status1’ 0.001312232 0.006886679
32 ’tlastoncounter1’ 0 0.008473187 ’do1’ 0 0.006886679

which can be explained by inevitable but little model
overfitting to the training data set.

3.2 Load Forecasting by LF-M

After obtaining the regression tree models of the
two rooms, RTreeRoom1

LP , RTreeRoom1
IT F , RTreeRoom2

LP ,
RTreeRoom2

IFT , respectively from LP-M and ITF-M, the
forecasting capabilities of LF-M is validated against
the test set. The goal is to see how well LP-M can
forecast the power output of the AC given a set of
control variables [U] and weather variables [W] from

the test set. The duration parameter controls how far
ahead the model is forecasting. Forecasting duration
of 30 min and one day ahead were investigated. The
difference between the two is that, in 30-min forecast-
ing, the system will receive updates on the state of the
room every 30 min. While for day-ahead forecasting,
LF-M will have to extrapolate the indoor temperature
of the room autonomously for one day. Hence, ex-
pected error of the day-ahead forecasting is more than
that of the 30-min forecasting. LF-M is looped over
the length of the entire test set and the output is com-
pared with the ′power′ variable in the test set.
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Figure 7: Results of LF-M on Room1.

Figure 8: Results of LF-M on Room2.
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The results of LF-M on Room1 is plotted in Fig.
7 and Room2 in Fig. 8. Within each figure, there
are four layers. The first layer shows the plot of the
output of LF-M against the actual load profile. The
second layer is a zoomed-in view of load forecast-
ing on a single day, 24 Dec 2015. The third layer
shows the change in ′ot ′, ′dt ′, ′it ′ and the forecasted
′it ′ from LF-M. The last layer is a histogram of the in-
dividual absolute percentage error (APE) between the
predicted power and the actual power. As expected,
the error for day-ahead forecasting for both rooms is
larger than that of the 30-min forecasting. Although
this error is just under 2% in the case of Room2, the
difference grows to around 6% in Room1. The error
histogram in Room1 is also visibly shifted to the right
when making day-ahead forecast: the number of data
points with a APE of 0.6 in the 30-min APE histogram
of Room1 is shifted to the region with APE of more
than 1. Comparing room1 and room2, the user behav-
ior in Room2 is much more dynamic. However, the
model is still able to capture the behavior of the sys-
tem and produce accurate forecasting results. In both
rooms, for day-ahead forecasting, inaccuracies arise
when the temperature forecast starts to drift from the
actually value. This is as for day-ahead forecasting,
the temperature forecasting loop will have to be run
144 times. If there is a slight error within each loop,
the error will accumulate and get carried to the final
results. The current temperature sensor in the AC sys-
tem used for this experiment only reports integer val-
ues, which is a physical limitation. If the sensor could
be forced to output values with higher degrees of ac-
curacies, the modelling results could be improved.

3.3 Set Point Recommendation

The LF-M could also be used as set point Recommen-
dation system. Consider the day ahead forecasting
scenario on 24 Dec 2015 in Room2, LF-M is able to
show the power consumption with a change in [U].
Figure. 9 shows the power consumption of the AC
in Room2 if all the ′dt ′ for the day is shifted by +1
and by -1 deg Celsius. The total energy used for each
set of [U] is found by calculating the area under the
power curve. For input [U]-1, the total energy con-
sumed for the entire day of 24 Dec is 19.2 kWh. For
the original [U], the total energy is 16.4 kWh. When
[U]+1 is applied, the total energy consumption be-
comes 15.1 kWh.

The accuracy of this simulation will be deter-
mined by the duration simulated, considering that the
indoor temp forecasted by LP-M has a certain drift
with longer durations. Previously consumers have no
idea of how much electricity they will consume if they

Figure 9: Set Point Change.

set the AC at the certain temperature. With this sys-
tem, which could receive feedback on the impact of
their choice of AC set point, and could better plan
their electricity usage. Not only will this informa-
tion be useful for consumers, it will also be useful for
power distributors to estimate the amount of energy
they could save or store in a Demand Response pro-
gram, and optimize the actions for Demand Reponse.

4 CONCLUSIONS

In this paper, we presented a data driven approach
to modelling single unit residential AC unit using
a machine learning technique known as Regression
Trees. Based on the Regression Trees technique, we
designed an automatic feature selection algorithm to
select the best set of features to model individual
AC unit’s power consumption and room temperature.
These two models were then combined to forecast
power consumption and room temperature for a given
period. The technique is adaptive and can be applied
to rooms of different sizes, and possibly ACs of differ-
ent make, provided that the input data type is similar.
A test on two rooms of different sizes and with highly
dynamic loads gave a maximum MAPE of 21.35%
for 30-min ahead load forecasting and 27.96% for
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day-ahead forecasting. The resulting system is use-
ful for set point recommendation and load estimation,
where it could forecast the electricity consumed by
ACs given a specfic control input and the weather
conditions during the period of consideration.

The current temperature sensor can only output
integer values. Future work will be to try out other
temperature sensors with higher accuracy and investi-
gate the impact on prediction results. Also, regres-
sion trees pruning techniques could be investigated
as a safeguard against model overfitting during the
training process. The next step is to integrate the sys-
tem into an automated demand response agent, min-
imizing the power consumption of households with
regards to price signals and human comfort.
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