
Fostering Computational Thinking in Secondary School through Music
An Educational Experience based on Google Blockly

Adriano Baratè, Andrea Formica, Luca A. Ludovico and Dario Malchiodi
Department of Computer Science, Università degli Studi di Milano, Via Comelico 39, Milan, Italy

Keywords: Music, Education, Visual Programming.

Abstract: We propose a methodology especially conceived to exploit the musical media in order to vehiculate some
aspects in the realm of computational thinking to pupils of the lower secondary school (6th to 8th grades). The
related activities are based on a visual programming language whose execution generates a melody shown
using both its traditionally-notated musical score and its audio reproduction. This language provides the basic
programming tools, such as simple and structured variables, iterations and so on. The learning activities are
based on challenging small groups of students to solve programming exercises of increasing difficulty.

1 INTRODUCTION

A significant effort in educational research has been
recently spent focusing on the study of specific met-
hodologies for teaching concepts from the informatics
field since the early school stages. There are two main
fronts in this research area:

1. Selecting subjects apt to be explained since the lo-
wer secondary or even the primary school levels.
See for instance (Hubwieser, 2006; Hromkovič
and Steffen, 2011; Saeli et al., 2011);

2. Providing technological tools specifically desig-
ned in order to support teachers in their activities.
Also in this case the literature offers several cues,
such as (Burbaitė et al., 2013; Meerbaum-Salant
et al., 2013; Hadjerrouit, 2015)1.

In this work, explicitly referring to the algomotri-
city learning methodology (Bellettini et al., 2014a),
we propose both an informatics topic to be inves-
tigated in the lower secondary school, that is from
6th to 8th grade, and a computer-based tool expres-
sly conceived in order to support pupils in learning
this topic. Namely, we focus on the description of
musical information using a programming language.
More precisely, we consider the possibility of tea-
ching basic computational thinking concepts through
engaging pupils in writing programs whose output is

1Note that in this vein we consider only tools expressly
conceived for teaching informatics, and not computer-based
tools which generally support teaching of non-informatics
concepts, for instance in the STEM field.

a prefixed melody. The tool supporting this process
is a customization of the Blockly visual programming
language, extended in order to deal with the main ob-
jects and operators in the realm of traditional musical
notation.

The paper is structured as follows: Section 2
briefly summarizes the recent research results in the
research area of informatics teaching, with special
emphasis on the proposed methodologies. Section 3
illustrates the proposed approach, both detailing its
musical and computational aspects and describing the
developed software tool to be used in the learning
activities, which in turn are depicted in Section 4.
Some concluding remarks end the paper.

2 RELATED WORKS

After having described the two main educational re-
ferences of computational thinking and algomotricity,
this section highlights the intersection of musical and
computational education characterizing the proposed
learning activity.

2.1 Computational Thinking

Current research is focusing on those psycho-
pedagogic practices that emphasize the potential of
new technologies and their use to motivate young
students through active learning. With reference to
early education stages, some experts underline the
need to define new and engaging learning experiences

Baratè, A., Formica, A., Ludovico, L. and Malchiodi, D.
Fostering Computational Thinking in Secondary School through Music - An Educational Experience based on Google Blockly.
DOI: 10.5220/0006313001170124
In Proceedings of the 9th International Conference on Computer Supported Education (CSEDU 2017) - Volume 2, pages 117-124
ISBN: 978-989-758-240-0
Copyright © 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

117



for children, addressing in particular those future job
opportunities related to information technology and
computing. Many scientific papers that propose co-
ding activities recall the need to develop computatio-
nal thinking even in primary schools (Sabitzer et al.,
2014; Yadav et al., 2014; Kalelioğlu, 2015). An inte-
resting debate on this subject is presented in (Duncan
et al., 2014), a paper that impartially collects argu-
ments in favor and against learning coding at a young
age.

During a coding activity, students are exposed to
computational thinking (Wing, 2006), namely a form
of reasoning oriented to problem solving which in-
volves abstraction, debugging, remixing and iteration
processes (Wing, 2008; Brennan and Resnick, 2012).
Computational thinking is in line with the skills ex-
pected for 21st-century students, such as creativity,
critical thinking and problem solving (Ananiadou and
Claro, 2009; Binkley et al., 2012).

The challenge is that young students - while ap-
proaching the basic concepts and the cognitive strate-
gies related to coding - can develop logical-cognitive
abilities, with positive future effects in terms of meta-
knowledge (self-regulation, peer-seeking, problem
posing and solving, etc.) and digital skills obtained
through playful learning processes (Lillard, 2013).

2.2 Algomotricity

The term algomotricity (Bellettini et al., 2014a) refers
to an active/kinesthetic teaching methodology (Be-
gel et al., 2004) grounded on the experiential lear-
ning theory (Kolb et al., 2001). This methodology
has been introduced with the aim of teaching through
laboratorial activities some core concepts of infor-
matics also at lower educational grades, meanwhile
avoiding common misconceptions identifying the dis-
cipline with operational abilities in using software
tools such as Web browsers or spreadsheets (Bellet-
tini et al., 2014b).

Each laboratory is typically composed by three
phases. In the first one, with reference to the PBL
methodology (Hmelo-Silver, 2004), the facilitator2

describes a problem which pupils should address to,
working together in small groups. These groups are
engaged in playful activities based for instance on ob-
ject manipulation, in order to informally introduce the
topic under investigation. A second abstract learning
phase gives each pupil the possibility to build its men-

2this term typically designates the equivalent of a tea-
cher in an active learning environment, underlining the fact
that learning takes place without direct transmission of kno-
wledge, and pupils should be just oriented in their autono-
mous discovery of concepts.

tal model of that topic. Finally, a computer-based
phase ends the activities, also closing the loop with
the previous acquaintance of students with applicati-
ons, thus meeting at least in part their expectations.

The algomotricity approach has been already ap-
plied to several informatics concepts, including rea-
soning on meta-information (Bellettini et al., 2012),
programming (Lonati et al., 2015), or recursion (Lo-
nati et al., 2016). In Section 4 we will propose a le-
arning activity based on music operators in an algo-
motricity context, in order to develop computational-
thinking skills.

2.3 Music and Computational Thinking

Many experts agree that music can influence the con-
struction of the young students’ personality since it
promotes the integration of perceptual, motor, af-
fective, social and cognitive dimensions (Willems,
2011) by relating the basic aspects of human life
(e.g., physiological, emotional, and mental spheres)
with the basic elements of music (e.g., rhythm, me-
lody, and harmony). The abilities of listening, ex-
ploration and analysis are fundamental for the deve-
lopment of general meta-cognitive skills, such as at-
tention, concentration, and control. Through music,
young students can develop the aspects of analysis
and synthesis, problem posing, argumentation, eva-
luation, and application of rules (Berkley, 2004; Bur-
nard and Younker, 2004; Kaschub and Smith, 2009;
Major and Cottle, 2010).

In the digital era, new technologies and computer-
based approaches can influence music learning and te-
aching processes. A recent and comprehensive review
of this subject can be found in (Finney and Burnard,
2010), a work that discusses a range of innovative
practices in order to highlight the changing nature of
schooling and the transformation of music education.
Many researchers, experts and music teachers feel a
pressing need to provide new ways of thinking about
the application of music and technology in schools.
It is necessary to explore teaching strategies and ap-
proaches able to stimulate different forms of musical
experience, meaningful engagement, creativity, and
teacher-learner interactions.

Music can be an effective way to develop com-
putational thinking. A comparison between coding
environments and music-oriented programming fra-
meworks unveils similarities and differences. Accor-
ding to (Lye and Koh, 2014), coding environments for
young students should foster the development of three
dimensions of computational thinking: computational
concepts, practices, and perspectives. Computational
concepts are the conceptual entities that programmers

CSEDU 2017 - 9th International Conference on Computer Supported Education

118



use, such as variables and loops, in order to solve
a problem algorithmically. Computational practices
are problem-solving practices that occur during the
process of programming (e.g., iteration, reuse and re-
mix, abstraction, and modularization). Finally, Com-
putational perspectives refer to students’ understan-
ding of themselves, their relationship to others, and
the world around them.

A suitably designed music-coding environment
can achieve all the mentioned goals. Computatio-
nal concepts – mapped onto musical operators and
constructs to manipulate them – will be discussed in
Section 3. As it regards computational practices, such
an environment allows the exploration of music con-
tents through abstraction processes, as the learning-
activity case study discussed in Section 4 will clarify.
Moreover, the availability of ad-hoc operators (e.g.,
iteration) and storage tools (e.g., memory drawers)
encourages reusing and remixing of music materials.

Finally, as it regards computational perspecti-
ves, an immediate feedback in terms of graphi-
cal rendering and audio reproduction improves self-
consciousness. Besides, the lesson can be structured
to foster cooperative discussion and peer as well as
expert review about the coding activity, in order to
strengthen the relationship among students and with
the teacher. Moreover, the coding environment itself
could implement features to allow self-assessment,
peer seeking (i.e. searching for the help of a colle-
ague), and peer reviewing (i.e. asking for other stu-
dents’ opinions).

A music-based approach to develop computatio-
nal thinking has been already explored in other expe-
rimentations. Concerning the efforts to promote co-
ding to kids, we can mention programmable robots.
In this context we are not generically interested in
Music Information Robotics, a branch that has been
explored in a number of scientific works, such as (Ka-
pur, 2005), (Solis and Takanishi, 2007) and (Ness
et al., 2011). Rather, we are addressing those initi-
atives aiming to foster the development of computa-
tional thinking through music at an early age. For
instance, Play-I 3 is a robot that can move around, ex-
press character using sounds and lights, and respond
to a number of external stimuli. Using a tablet with
the app, a child can program the robot to play music
and dance during the performance. Another example
is Wigl 4, an interactive educational robot able to hear
notes from any instrument and to respond with real-
world movements and lights.

Another relevant initiative is Note Code, a music
programming puzzle game designed as a tangible de-

3https://www.makewonder.com/
4http://wiglbot.com/

vice coupled with a graphical user interface (Kumar
et al., 2015). Tapping patterns and placing boxes in
proximity enables programming these entities to store
sets of notes, play them back and activate different
sub-components or neighboring boxes.

Finally, Ruthmann et al. discussed the experience
of an interdisciplinary general education course called
Sound Thinking offered to university students (Ruth-
mann et al., 2010). Even if the recipients and the pe-
dagogical goals are different from our proposal, the
adopted approach and technological tools are quite si-
milar.

Consequently, a music coding framework can im-
prove music skills while fostering, but above all it can
convey computational thinking even better than other
“traditional” coding environments, thanks to the in-
trinsic characteristics of the musical media.

3 THE PROPOSED APPROACH

This section illustrates the approach guiding the pro-
posed learning activity, in terms of its goals, contents,
and also describing an ad hoc software to be used as
a support for pupils.

3.1 Goals and Design Choices

As shown by great composers and theorists of the
past, a formal and algorithmic approach to music
composition and analysis is possible. In recent times,
a milestone is the generative theory of tonal music
proposed in (Jackendoff, 1985), aiming to uncover a
grammar that could explain the human musical mind
in a scientific manner comparable to Noam Chom-
sky’s transformational or generative grammar (Chom-
sky, 2002).

In our framework we introduced both music ope-
rators – which can be seen as atomic steps of a gene-
rative algorithm to build a music tune – and constructs
to manipulate and combine the result of operators.

Due to the educational goal of this initiative, the
application domain has been intentionally simplified.
First, the score is considered as composed by a single
melody, presenting no chords. This is sufficient to ca-
tch the melodic and rhythmic aspects of music, not the
harmonic ones. Besides, every note (and rest) is quan-
tized: the quantum represents the smallest rhythmi-
cal value that can be encoded. Longer values can be
obtained by tying notes together, thus joining quanta,
or adding augmentation dots. This approach is valid
for simple tunes, where a coarse quantization is suf-
ficient, but it would show its limits in the representa-
tion of tuplets and other complex rhythmic layouts.

Fostering Computational Thinking in Secondary School through Music - An Educational Experience based on Google Blockly

119



Finally, as a design choice, all supported operators
should be easily understandable and simple to use. In
fact, the goal is not to cover all possible compositio-
nal processes, but to provide also musically-untrained
students with an intuitive tool set to build basic scores.

3.2 Musical Operators

In order to achieve our educational goal, we desig-
ned a basic tool set of music operators which can be
used to create a logic representation of music scores.
Consequently, the purpose of such statements is not
to draw music symbols on a staff or to play notes, but
to generate a sequence of music events which can be
parsed by ad hoc applications in order to produce a
traditional staff notation or an audio performance.

Music operators are organized in the following
categories: 1. Melodic Operators (MOs) working
on pitches; 2. Rhythmic Operators (ROs) acting on
rhythm-related aspects of music events; 3. Iteration
Operators (IOs) implementing loops; 4. List Opera-
tors (LOs) building and manipulating lists of music
events. Operators in the first three families are the
following:

• AddElementToScore(m) – A MO that adds music
event m at the end of the score, where m is either
a pitched note or a rest. A pitch can be set in two
ways, i.e. by choosing a note name in the range
[A . . . G] or providing a more accurate definition
in terms of note name, octave and accidental;

• AddElementToScore(L) – A MO that appends a
list of music events called L , made of any non-
null combination of pitches and rests (see the end
of this section);

• AddTiedElementsToScore(n ,m) – A variant of
AddElementToScore(m) aiming to insert n conse-
cutive music events, all set to the same pitch and
tied together. In music notation, a tie is a cur-
ved line connecting the heads of two notes of the
same pitch and name, indicating that they are to be
played as a single note with a duration equal to the
sum of the individual notes’ values. In a quantized
context, this operator is intended to input longer
rhythmical values, and – from this point of view –
it belongs both to MO and to RO families;

• AddAugmentationDot() – A RO that adds an aug-
mentation dot (i.e. half of the current duration) to
the event it is applied to;

• DiatonicallyTranspose(m ,g ) – A MO that aims to
transpose the pitch of music event m by g grades,
with g ∈ Z. For the sake of simplicity, the refe-
rence key is C major. Consequently, the diato-
nic transposition of a D-pitched note by g = +2

produces an F-pitched note, and the transposition
of a G]-pitched note by g = −2 produces an E]-
pitched note. Please note that many pitched in-
struments for young students are diatonic, such as
most toy xylophones and whistles;

• ChromaticallyTranspose(m ,h) – A MO that aims
to transpose the pitch of m by h halftones, with
h ∈Z. The chromatic transposition of a D-pitched
note by h = +1 produces a D]-pitched note, and
the transposition of a G]-pitched note by h = −3
produces an F-pitched note;

• Repeat(X ,n) – This first case of operator belon-
ging to the IO family allows to repeat X for n
times, where X can be a single music event m
(either a note or a rest) or a list L;

• RepeatAndDiatonicallyTranspose(X ,n ,g ) – This
variant repeats X for n times, applying a diatonic
transposition by g grades at each iteration;

• RepeatAndChromaticallyTranspose(X ,n ,h) –
This variant repeats X for n times, applying a
chromatic transposition by h halftones at each
iteration.

Lists and related operators require a more detailed
discussion. In order to be a type of parameter inter-
changeable with respect to the single music event, a
list must be built, manipulated and stored through ad
hoc operators. After saving the list, this object can
be passed to some of the above listed music operators
like a single pitch or a rest. The set of LOs includes,
but is not limited to:

• CreateList(L,X ) – A LO that creates list L and
initialize it to object X , namely a music event m
or an already existing list M ;

• AddElementToList(m ,L) – A LO that appends mu-
sic event m to the already existing list L;

• AddTiedElementsToList(n ,m ,L) – A LO that ap-
pends n occurrences tied together of music event
m to the already existing list L .

The proposed language contains other aggregated
LOs which have not been described here for sake of
brevity, being their meaning either very easy to under-
stand, or similar to one of the three described LOs.

3.3 Music Coding

The proposed framework aims to provide pupils with
the opportunity to learn a variety of computational
concepts, including variables, functions, and itera-
tion, while they engage in analyzing, composing, and
playing music.

CSEDU 2017 - 9th International Conference on Computer Supported Education

120



First, the idea itself of music event – namely an
entity that can be set to a given pitch – recalls the ba-
sic concept of variable (in its simplest form) or struc-
ture/object (in its more detailed form).

The range of expected values that a music event
can take in terms of pitch, octave number and ac-
cidental status can be linked to the concept of data
type. Specifically, the octave number can be intuiti-
vely mapped onto the range of integers, whereas the
limited set of values available for note name and ac-
cidental status can recall the concept of enumeration.
From this point of view, lists of music events can be
seen as arrays or dynamic lists.

The use of music operators taking [0 . . .n] para-
meters is similar to function calls in traditional pro-
gramming. Please note that the availability of music
operators sharing the same name but taking a different
number or different types of parameters recalls the
concept of function overloading, namely the possibi-
lity to create multiple methods with different imple-
mentations whose call is disambiguated on the base of
the context. It is the case of AddElementToScore(m)
and AddElementToScore(L), acting on a single music
event or a list respectively.

Moreover, in order to foster computational thin-
king, iteration is a fundamental concept to convey. In
this sense, the functions belonging to the IO family
allow to choose a sequence of generative steps to be
repeated for a given number of times. Please note that
in music notation there are symbols that recall this ap-
proach (e.g., n-bar repeat signs, repeat barlines, and
text indications such as “Da capo”).

Finally, the possibility to create, manipulate and
rework entire code sections pushes towards the well-
known practice of code reuse, presenting a positive
impact on time and resources consumption, cost ef-
fectiveness, code length and redundancy reduction
(Goguen, 1986).

3.4 The Software Tool

In the context of the algomotricity approach discussed
in Section 2.2, computer activities can be conducted
through a software tool expressly designed and im-
plemented. This tool is based on Google Blockly 5, a
visual programming platform. In this environment,
the programmer is freed from syntax checking: all
language elements are denoted by blocks of diffe-
rent shapes, and the systems allow them to be com-
posed together only if the resulting structure denotes
a well-formed language statement. The execution of
a program gives directions to one or more interacting
sprites living on a stage, thus the overall system is

5https://developers.google.com/blockly/

Figure 1: The Blockly-based software tool designed for mu-
sic coding.

not dissimilar in its philosophy to Seymour Papert’s
LOGO (Papert, 1980).

This visual environment has been rethought and
applied to music coding, as shown in Figure 1. Now
the problem to solve is how to reconstruct a given
music tune through a suitable combination of avai-
lable music operators, and success is achieved when
the user’s music score (displayed below) is equal to
the one originally proposed (displayed above). The
blocks presented in the middle column correspond to
music operators described in Section 3.2.

This customized Blockly game is publicly availa-
ble for free. Even if Web technologies should gua-
rantee multi-platform compatibility, audio rendering
of music scores – a fundamental feature to provide
feedback – requires non-trivial software installations,
including a virtual MIDI synthesizer and a browser
compatible with the Web MIDI API (Wilson and Kal-
liokoski, 2015), which is still a working draft by
W3C 6. For this reason, the tool will be both pu-
blished as a Web-available framework and distribu-
ted to schools and any other interested subject as a
Docker package 7. The latter solution highly simpli-
fies the tool deployment in schools. Indeed, Docker
is an open-source project wrapping up in a so-called
container all the resources needed in order to run one
or more processes. This isolation concerns both har-
dware (CPU, memory, file system, etc.) and software
(libraries, tools, code, and so on). The deployment
is further simplified since container descriptions can
be automatically downloaded from publicly available
repositories.

The software is already available for teachers who
request it, and it will be published shortly on a repo-
sitory with GPL-like license.

6https://www.w3.org/
7https://www.docker.com/

Fostering Computational Thinking in Secondary School through Music - An Educational Experience based on Google Blockly

121



4 AN EXAMPLE

As mentioned above, the final goal is to push students
towards computational thinking through a music-
oriented activity. In practical terms, this assignment
is to reconstruct increasingly complex music tunes
through a proper combination of available music ope-
rators. Achieving this goal requires a mix of analy-
tical skills to be applied to music, knowledge of the
available tools (non only their function, but also their
limitations and the possibilities to combine them), and
even a good amount of creativity. All these ingre-
dients are part of computational thinking.

Algomotricity, a methodology introduced in
Section 2.2, fosters multiple skills through an expe-
riential learning approach occurring in three phases:
1) definition of the problem, 2) self-reflection and
construction of a mental map of the solution, and 3)
hands-on experience. Consequently, even if Blockly
games are conceived for self-exploration of program-
ming concepts (and this is virtually possible also for
our proposal), the idea is to build a learning activity
composed by the mentioned stages and supervised by
an expert.

The solutions of the proposed exercises are not
unique: some are easier to find (but often require a
greater number of steps), some other are smarter (and
more compact). The advantages of this approach in-
clude:

• The possibility for teachers to modulate the dif-
ficulty of an exercise by enabling/disabling some
music operators;

• The reduction of students’ level of frustration,
since a simple solution, roughly based on an im-
perative programming paradigm, always exists;

• The intrinsic push towards peer confrontation and
discussion of different solution strategies, which
is an integral part of the educational process;

• The presence of different (although all correct) so-
lutions is a key aspect in active learning, because
students can explore the solution space without
feeling constrained in following a fixed learning
path.

Now an example of assignment is called for, to-
gether with a discussion of multiple solution strate-
gies. The music tunes to produce is a rigaudon – a
form of French baroque dance – composed by Henry
Purcell, and its score is shown in Figure 2. A first
solution consists in explicitly declaring all the notes
to be played. Recalling the music operators listed in
Section 3.2, code listing would be:
AddElementToScore(C)

AddElementToScore(C)

AddElementToScore(B)

AddElementToScore(A)

AddTiedElementsToScore(2,G)

AddElementToScore(G)

AddElementToScore(G)

AddElementToScore(A)

AddElementToScore(A)

AddElementToScore(B)

AddElementToScore(G)

AddTiedElementsToScore(2,C)

AddTiedElementsToScore(2,G)

AddElementToScore(C)

AddElementToScore(C)

AddElementToScore(B)

AddElementToScore(A)

AddTiedElementsToScore(2,G)

AddElementToScore(G)

AddElementToScore(G)

AddElementToScore(A)

AddElementToScore(A)

AddElementToScore(B)

AddElementToScore(G)

AddTiedElementsToScore(4,C)

This strategy, based on invoking as many MOs as
notes, is the simplest one, but it fosters computatio-
nal thinking to a very small extent. For instance, re-
dundancy in program listing is evident, since the first
eleven operators are repeated later.

Another way to solve the assignment could be ba-
sed on nested iterations and diatonic transposition.
This proposal requires analytical skills and the deve-
lopment of an algorithmic approach in order to use a
smaller number of operators and to make code more
compact. The resulting listing would be:
AddElementToScore(C)

RepeatAndDiatonicallyTranspose(C,3,-1)

AddTiedElementsToScore(2,G)

RepeatAndDiatonicallyTranspose(

Repeat(G,2),2,1)

AddElementToScore(B)

AddElementToScore(G)

RepeatAndDiatonicallyTranspose(

AddTiedElementsToScore(2,C),2,-3)

AddElementToScore(C)

RepeatAndDiatonicallyTranspose(C,3,-1)

AddTiedElementsToScore(2,G)

RepeatAndDiatonicallyTranspose(

Repeat(G,2),2,1)

AddElementToScore(B)

AddElementToScore(G)

AddTiedElementsToScore(4,C)

Finally, another approach which is based on the
recognition of redundancy and fully exploits code
reuse could employ lists and LOs, as shown in the
following listing:
CreateList(List1,C)

AddElementToList(C,List1)

AddElementToList(B,List1)

AddElementToList(A,List1)

CSEDU 2017 - 9th International Conference on Computer Supported Education

122



Figure 2: A rigaudon composed by Henry Purcell.

AddTiedElementsToList(2,G,List1)

AddElementToList(G,List1)

AddElementToList(G,List1)

AddElementToList(A,List1)

AddElementToList(A,List1)

AddElementToList(B,List1)

AddElementToList(G,List1)

AddElementToScore(List1)

AddTiedElementsToScore(2,C)

AddTiedElementsToScore(2,G)

AddElementToScore(List1)

AddTiedElementsToScore(4,C)

These solutions for the same assignment are only
some of the possible alternatives that may emerge.
Please note that peer collaboration during the activity,
peer discussion after the activity and a final review
phase supervised by experts may be integral parts of
the educational path.

The functions that the framework offers to graphi-
cally render score symbols on staff and to listen to
notes, also during a step-by-step search for solution,
provide prompt feedback and may represent effective
reinforcement techniques.

5 CONCLUSIONS

In this work we proposed a learning activity for lo-
wer secondary schools with the mixed learning ob-
jective of focusing both on musical and computatio-
nal aspects. The activity, rooting on the algomotricity
learning methodology, has a twofold purpose: it can
be used in order to vehiculate some of the main ingre-
dients of computational thinking (with special emp-
hasis on programming) through the use of traditional
musical notation, or conversely it can focus on lear-
ning the traditional musical notation from the point of
view of formal descriptions. The activity is coupled
with an expressly designed software tool, whose pe-
dagogical value lies in the presence of a modular set
of musical operators (to be enabled in function of the
learning acitivity stage), on immediate visual and au-
dio feedback, and on its customizability (teachers can
easily add new learning stages to the existing ones).

In the next future we plan to start a research-action
experimentation in schools, in order to validate the
methodology and to tune both the learning activities
and the proposed software tool.

Authors would like to thank prof. M. Monga for
his valuable suggestions in the definition of the vir-

tual architecture used to implement the software tool
described in this work.

REFERENCES

Ananiadou, K. and Claro, M. (2009). 21st century skills and
competences for new millennium learners in OECD
countries. OECD Publishing.

Begel, A., Garcia, D. D., and Wolfman, S. A. (2004).
Kinesthetic learning in the classroom. In Proc. of
the 35th SIGCSE TSCSE, pages 183–184, New York,
USA. ACM.

Bellettini, C., Lonati, V., Malchiodi, D., Monga, M., Mor-
purgo, A., and Torelli, M. (2012). Exploring the pro-
cessing of formatted texts by a kynesthetic approach.
In WiPSCE’12 Proceedings of the 7th Workshop in
Primary and Secondary Computing Education, pages
143–144. ACM.

Bellettini, C., Lonati, V., Malchiodi, D., Monga, M., Mor-
purgo, A., Torelli, M., and Zecca, L. (2014a). Ex-
tracurricular activities for improving the perception of
informatics in secondary schools. In Informatics in
Schools. Teaching and Learning Perspectives 7th Int.
Conf. on Informatics in Schools: Situation, Evolution,
and Perspectives, ISSEP 2014. Proceedings, Lecture
Notes in Computer Science, page 161172. Springer
International Publishing.

Bellettini, C., Lonati, V., Malchiodi, D., Monga, M., Mor-
purgo, A., Torelli, M., and Zecca, L. (2014b). Infor-
matics education in italian secondary school. ACM
Transactions on Computing Education (TOCE) Spe-
cial Issue on Computing Education in (K-12) Schools,
14(2):15.115.6.

Berkley, R. (2004). Teaching composing as creative pro-
blem solving: conceptualising composing pedagogy.
British Journal of Music Education, 21(03):239–263.

Binkley, M., Erstad, O., Herman, J., Raizen, S., Ripley, M.,
Miller-Ricci, M., and Rumble, M. (2012). Defining
twenty-first century skills. In Assessment and teaching
of 21st century skills, pages 17–66. Springer.

Brennan, K. and Resnick, M. (2012). New frameworks for
studying and assessing the development of computa-
tional thinking. In Proceedings of the 2012 annual
meeting of the American Educational Research Asso-
ciation, Vancouver, Canada, pages 1–25.

Burbaitė, R., Damaševičius, R., Štuikys, V., et al. (2013).
Teaching of computer science topics using meta-
programming-based glos and lego robots. Informa-
tics in Education-An International Journal, 12 1:125–
142.

Burnard, P. and Younker, B. A. (2004). Problem-solving
and creativity: Insights from students individual com-

Fostering Computational Thinking in Secondary School through Music - An Educational Experience based on Google Blockly

123



posing pathways. International Journal of Music Edu-
cation, 22(1):59–76.

Chomsky, N. (2002). Syntactic structures. Walter de Gruy-
ter.

Duncan, C., Bell, T., and Tanimoto, S. (2014). Should your
8-year-old learn coding? In Proceedings of the 9th
Workshop in Primary and Secondary Computing Edu-
cation, pages 60–69. ACM.

Finney, J. and Burnard, P. (2010). Music education with
digital technology. Bloomsbury Publishing.

Goguen, J. A. (1986). Reusing and interconnecting software
components. Computer, 19(2).

Hadjerrouit, S. (2015). Exploring the effect of teaching
methods on students learning of school informatics.
In Proceedings of Informing Science & IT Education
Conference (InSITE), volume 201, page 219.

Hmelo-Silver, C. E. (2004). Problem-based learning: What
and how do students learn? Educational Psychology
Review, 16(3):235–266.

Hromkovič, J. and Steffen, B. (2011). Why Teaching Infor-
matics in Schools Is as Important as Teaching Mathe-
matics and Natural Sciences, pages 21–30. Springer
Berlin Heidelberg, Berlin, Heidelberg.

Hubwieser, P. (2006). Functions, Objects and States: Te-
aching Informatics in Secondary Schools, pages 104–
116. Springer, Berlin, Heidelberg.

Jackendoff, R. (1985). A generative theory of tonal music.
MIT Press.

Kalelioğlu, F. (2015). A new way of teaching programming
skills to K-12 students: Code.org. Computers in Hu-
man Behavior, 52:200–210.

Kapur, A. (2005). A history of robotic musical instruments.
In Proceedings of the International Computer Music
Conference (ICMC 2005), pages 21–28.

Kaschub, M. and Smith, J. (2009). Minds on music: Com-
position for creative and critical thinking. R&L Edu-
cation.

Kolb, D. A., Boyatzis, R. E., and Mainemelis, C. et al..
(2001). Experiential learning theory: Previous rese-
arch and new directions. Perspectives on thinking, le-
arning, and cognitive styles, 1:227–247.

Kumar, V., Dargan, T., Dwivedi, U., and Vijay, P. (2015).
Note code: A tangible music programming puzzle
tool. In Proceedi of the Ninth Int. Conf. on Tangible,
Embedded, and Embodied Interaction, TEI ’15, pages
625–629, New York, USA. ACM.

Lillard, A. S. (2013). Playful learning and montessori edu-
cation. American journal of play, 5(2):157.

Lonati, V., Malchiodi, D., Monga, M., and Morpurgo, A.
(2015). Is coding the way to go? In Informatics
in Schools. Teaching and Learning Perspectives 8th
International Conference on Informatics in Schools:
Situation, Evolution, and Perspectives, ISSEP 2015.
Proceedings.

Lonati, V., Malchiodi, D., Monga, M., Morpurgo, A., and
Previtali, M. (2016). A playful tool to introduce lower
secondary school pupils to recursive thinking. In Pro-
ceedings of 9th International Conference on Informa-
tics in Schools: Situation, Evolution, and Perspecti-
ves, ISSEP 2016, pages 51–52.

Lye, S. Y. and Koh, J. H. L. (2014). Review on teaching and
learning of computational thinking through program-
ming: What is next for k-12? Computers in Human
Behavior, 41:51–61.

Major, A. E. and Cottle, M. (2010). Learning and teaching
through talk: Music composing in the classroom with
children aged six to seven years. British Journal of
Music Education, 27(03):289–304.

Meerbaum-Salant, O., Armoni, M., and Ben-Ari, M.
(2013). Learning computer science concepts with
scratch. Computer Science Education, 23(3):239–
264.

Ness, S. R., Trail, S., Driessen, P. F., Schloss, W. A., and
Tzanetakis, G. (2011). Music information robotics:
Coping strategies for musically challenged robots. In
Proc. of the 12th Int. Society for Music Information
Retrieval Conference (ISMIR 2011), pages 567–572.

Papert, S. (1980). Mindstorms: Children, computers, and
powerful ideas. Basic Books, Inc.

Ruthmann, A., Heines, J. M., Greher, G. R., Laidler, P.,
and Saulters II, C. (2010). Teaching computational
thinking through musical live coding in scratch. In
Proceedings of the 41st ACM technical symposium on
Computer science education, pages 351–355. ACM.

Sabitzer, B., Antonitsch, P. K., and Pasterk, S. (2014). In-
formatics concepts for primary education: preparing
children for computational thinking. In Proceedings
of the 9th Workshop in Primary and Secondary Com-
puting Education, pages 108–111. ACM.

Saeli, M., Perrenet, J., Jochems, W. M., Zwaneveld, B.,
et al. (2011). Teaching programming in secondary
school: a pedagogical content knowledge perspective.
Informatics in Education-An International Journal,
10 1:73–88.

Solis, J. and Takanishi, A. (2007). An overview of the re-
search approaches on musical performance robots. In
International Computer Music Association.

Willems, E. (2011). Las bases psicológicas de la educación
musical. Grupo Planeta (GBS).

Wilson, C. and Kalliokoski, J. (2015). Web MIDI API. wor-
king draft, W3C. https://www.w3.org/TR/webmidi/.

Wing, J. M. (2006). Computational thinking. Communica-
tions of the ACM, 49(3):33–35.

Wing, J. M. (2008). Computational thinking and thinking
about computing. Philosophical transactions of the
royal society of London A: mathematical, physical and
engineering sciences, 366(1881):3717–3725.

Yadav, A., Mayfield, C., Zhou, N., Hambrusch, S., and
Korb, J. T. (2014). Computational thinking in elemen-
tary and secondary teacher education. ACM Transacti-
ons on Computing Education (TOCE), 14(1):5.

CSEDU 2017 - 9th International Conference on Computer Supported Education

124


