
A Novel Clustering-based Approach for SaaS Services Discovery in
Cloud Environment

Kadda Beghdad Bey1, Hassina Nacer2, Mohamed El Yazid Boudaren1 and Farid Benhammadi1
1Informatics Systems Laboratory, Ecole Militaire Polytechnique, Algiers, 16111, Algeria

2MOVEP Laboratory, University of Science and Technology, USTHB, Algiers, Algeria

Keywords: Cloud Computing, Resource Allocation, Software as a Service (SaaS), Services Discovery, Web Service,
Multi-agents Systems, Clustering Methods, Matching.

Abstract: Cloud computing is an emerging new computing paradigm in which both software and hardware resources
are provided through the internet as a service to users. Software as a Service (SaaS) is one among the important
services offered through the cloud that receive substantial attention from both providers and users. Discovery
of services is however, a difficult process given the sharp increase of services number offered by different
providers. A Multi-agent system (MAS) is a distributed computing paradigm-based on multiple interacting
agents- aiming to solve complex problems through a decentralized approach. In this paper, we present a novel
approach for SaaS service discovery based on Multi-agents systems in cloud computing environments. More
precisely, the purpose of our approach is to satisfy the user’s needs in terms of both result accuracy rate and
processing time of the request. To establish the interest of the proposed solution, experiments are conducted
on a simulated dataset.

1 INTRODUCTION

Scientific applications are becoming increasingly
complex and distributed. They are faced with the
challenges of the information heterogeneity used and
the decentralization of processing and controls.
Thanks to the evolution of IT, especially the web and
virtualization, a new way has been created to offer IT
as a service in an economic context and, at the same
time, solve all computational and storage problems.
Cloud computing is proposing to be the most
appropriate solution. It is an internet-based
computing, where computing resources, softwares
and information hosted in an ultra secure data center
are provided to clients on demand.

In recent years, cloud computing has taken a
considerable step as a new paradigm for distributed
computing. It is becoming an ideal system for
distributed computing communities, thanks to the
advantages of the proposed services and the easy
access to the information without limitation nor place
or time. The deployment of cloud solution enables
users to develop their different services in a
distributed environment consisting of a large number
of computing problems free resources with a very low
operating cost. Services discovery remains however,

one of the most difficult and important problems that
Internet users meet, particularly due to the large
number of services published by different providers.
The diversity and evolution of services presented in
different levels, as well as the non-standardization of
the description languages of cloud services, search
services in a cloud environment is a very difficult task
in order to meet all client requirements (Parhi et al.,
2015). Moreover, Multi-Agent Systems (MAS)
propose a new metaphor based on social concept
which is the “agent” notion. They are a promising
paradigm for modeling, analysis and design applied
to many development and research areas such as
solving distributed problems. Multi-agent systems are
often used to solve complex problems based on
decentralized approach where a set of agents
contribute collectively to find a solution.

With the exponential growth in the number and
functionality of cloud services, as well as the diversity
of technologies used for their presentation, the
problem of determining a strategy for SaaS services
discovery in cloud has become a challenging issue
(Pirro et al., 2010). In this context, we present a new
SMAs-based approach to SaaS service discovery in
the cloud using two complementary modules. The
first is responsible for SaaS services publication
offered by providers that are organized in “clusters”,

546
Bey, K., Nacer, H., Boudaren, M. and Benhammadi, F.
A Novel Clustering-based Approach for SaaS Services Discovery in Cloud Environment.
DOI: 10.5220/0006328205460553
In Proceedings of the 19th International Conference on Enterprise Information Systems (ICEIS 2017) - Volume 1, pages 546-553
ISBN: 978-989-758-247-9
Copyright © 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

in order to reduce the search space. For this purpose,
the new clustering algorithm is proposed based on
some Data mining techniques in order to resolve the
overlapping problem. The second one provides, on the
other hand, the selection of the most relevant SaaS
services based on a set of agent behavior, which
ensure an efficient management of cloud resources
and enable the matching algorithms execution.

The remainder of the paper is organized as
follows. Section 2 summarizes some previous works
related to SaaS services discovery in cloud system.
The definition and modeling problem of SaaS service
discovery are introduced in Section 3 where the
proposed SaaS service discovery system-based on
multi-agent are also presented. Simulation results and
related discussion are presented in Section 4. Section
5 concludes the paper.

2 RELATED WORKS

Developing efficient systems for services discovery
and composition has become an essential task. This is
mainly due to the evolution in number and
functionality of services and technologies of
development tools in distributed systems in general
and cloud computing in particular, in order to
determine and select the best services desired by
customers. Indeed, service discovery is becoming
increasingly critical in areas where the names or the
service description based on inputs/outputs are not
sufficient for service publication through different
providers or for services identification by users. The
success of SaaS services involved the adoption of this
technology by different service providers through the
cloud, which induces the increasing of SaaS number
and makes the discovery problem a tedious task. SaaS
services discovery is an emerging area of cloud
computing research which aims to automatically
detect the services consisting of a set of applications
and data components in a cloud.

In literature, plethora of solutions for SaaS
services discovery and research has been proposed
(Li and Chen, 2014) (Guerfel et al., 2015) (Fan et al.,
2015b). The aim of these discovery approaches in
cloud environment is to determine an optimal
resources allocation and to satisfy the user’s needs in
terms of results accuracy rate and the processing time
of the customers’ requests. (Fan et al., 2015b)
proposed an integrated SaaS-based personalization
framework to facilitate the preferences collection and
the corresponding SaaS services delivery. The
adapted approach by authors for the design and
development of this framework is based on the

synthesis principle of various models and techniques
in a novel way. This proposal is an extension of a
semantic client-side personalization approach
presented in (Fan et al., 2015a) by integrating Rich
Client and Semantic Web for SaaS-based
personalization in order to improve the efficiency in
gathering user profile data and reducing the overhead
of server-side computing.

The work by (Wu et al., 2011) presents a resource
allocation algorithm for SaaS providers in order to
minimize infrastructure cost and SLA violations. The
aim of this approach is to ensure that SaaS providers
are able to manage the dynamic change of customers,
mapping customer requests to infrastructure level
parameters and handling heterogeneity of Virtual
Machines. (Alfazi et al., 2014) proposed a novel
ontology-based approach for cloud service discovery.
The proposed approach has the capability to generate
the ontology semi-automatically using new concepts
from documents related to cloud services. (Chen and
Li, 2011) proposed a Cloud solution called SRC
(Service Registry on the Cloud), which represents an
extension of keywords based model but deployed as
an application on the cloud. The model SRC stores
semantic descriptions of Web services as well as the
evaluation of the state dynamic of QoS under the GFS
(Google File System) file in the Cloud, and use the
Map Reduce mechanism for dealing with these files.
GoDiscovery (Elshater et al., 2015) is a discovery
system that aims to present effective discovery
approach using statistical modeling and indexing
techniques. It generates Term Frequency-Inverse
Document Frequency (TF-IDF) model for corpus
Service, then it builds a tree index K-Dimensional for
the model search. On the other hand, a new approach
based on multi-agents system for ser- vices discovery
in cloud environment has been introduced by (Han
and Sim, 2010). The proposed prototype of Cloud
Services Discovery System (CSDS) consists of a
search engine and three agents: Query Processing
Agent that locates information resources by running
regular research engines, Filtering Agent which
relieves users of long and painful tasks, and Cloud
Service Reasoning Agent which consults the cloud
ontology for reasoning about the relationships
between cloud services. (Parhi et al., 2006) proposed
a framework based on multi-agent system to support
the description and discovery of cloud services. The
authors involve an artificial intelligence approach to
efficiently interpret the user requirements based on
both functional and nonfunctional demands and fuzzy
constraints. The main objective of this approach is to
reduce the search space due to implementation of
distributed service oriented architecture.

A Novel Clustering-based Approach for SaaS Services Discovery in Cloud Environment

547

3 SaaS DISCOVERY SYSTEM

As described in previous sections, SaaS services
discovery is an emerging area of research which
allows to automatically detecting services in a cloud
environment. This section describes the proposed
agent-based system for SaaS service description and
discovery in cloud which is a hybridation of two
approaches in order to meet the limits encountered by
the developers.

3.1 Definition and Modeling Problem

The Cloud represents today a new platform of
distributed computing where users search, discover
and share information. In this context, the cloud
service discovery process, in particular SaaS services
are fundamental and allow one to make the link
between information published by SaaS providers
and users queries. In general, such a process is based
on a “textual” or “keywords” research, but this type
of research cannot always identify the most relevant
services. So the challenge is to satisfy the user by
responding to his request with the suitable services
automatically. Figure 1 represents conceptual
diagram of the proposed SaaS service discovery
system in cloud environment. It comprises different
phases, including: Services collection, Service
description and clustering, Requests generation,
Matching process, Service Selection and
Personalization.

Despite the considerable number of proposed
SaaS services discovery solutions in the literature, the
discovery problem remains a very active area of
research. Several reasons have motivated the
scientists to propose other solutions to improve the
existing performances discovery systems. Thus, we
have explored this track to propose a new discovery
mechanism consisting of two main layers:

- Publication Layer: is responsible for the description
and organization of the proposed services by sup-
pliers on different clusters in an appropriate manner
in order to stock them in the services database after
validation;

- Discovery layer: is the process that allows one to
find all the relevant services based on their
characteristics, in order to facilitate the services
search. The discovery process is responsible for the
generation of the user’s query and matching process
that compares the services description saved in a
services database with those of the user query to
identify services that are relevant.

Figure 1: Architecture of the proposed discovery system.

The system modeling was made by the multi-
agent system to have an intelligent and effective
management of cloud resources and each principal
task must be supervised and executed by a specific
agent. Furthermore, agents must cooperate and
collaborate, and their behaviors should be
harmonious to avoid possible conflicts in the dynamic
resource management. The last point is important for
the combination of two future technologies namely,
Agents and Cloud technology.

This combination allows the creation of a new
generation of service-oriented agents, which designed
to push limitations and capabilities of the resource
management, towards management systems more
intelligent and more appropriate to customer needs.
Figure 2 shows an overall view of the proposed SaaS
services discovery system modeled by the SMAs. The
five main SaaS service discovery agents are: Agent
administrator, agent interface, agent index, agent
matching and agent resource.

Interface Agent: is responsible for transmitting client
requests to regeneration module of query for
translating them to SQL requests before sending them
to the Manager Agent. Moreover, it displays the
results of SaaS service discovery found by the Multi-
agents system to clients.

Manager Agent: provides the following
functionalities: (i) the reception of the request after
regeneration and the creation of a customer file to
store the functional and non-functional requirements
of each request; (ii) sends the request to search agents
namely cache agent, index agent and matching agent;
(iii) the reception of different services that are found
by the cache agent as well by the matching agent, and
sends the results to the interface agent.

Service
Classification

Publication Layer

Service

Service Description

Stockage cluster

Computing cluster Request

Discovery Layer

Matching

Services

 Sorting

Key Word

Key Word

Clusters

 Results
Results

Search

Cache

Index

 Search

ICEIS 2017 - 19th International Conference on Enterprise Information Systems

548

Index Agent: aims to find the appropriate cluster
index. It hosts the search mechanism after that
receives the manager request to find the appropriate
cluster. Then, it communicates with the agent
manager to confirm that finished the search in order
to send the identified cluster to the matching agent.

Matching Agent: shuts off after identification of the
cluster found by the index agent and executes the
matching algorithm to sort the SaaS of the selected
cluster. Finally, it sends the final results concerning
the SaaS service found to the manager agent.

Resource Agent: periodically finds the available
resources in the Cloud. When an agent wants to run
those appropriate algorithms, resource agent consults
the state of available processing resources for running
and distributing the different tasks in order to improve
the performance of SaaS service discovery systems.

Figure 2: System architecture modeled by SMAs.

3.2 Proposed Clustering Algorithm for
SaaS Services Publication

The work by (Alfazi et al., 2015) proposes a
clustering algorithm for SaaS service based on
grouping by functionality. The principle is to choose
randomly from the SaaS services database one service
as a “reference service” for the first cluster. Then, it
calculates the similarity between this reference
service and other services of cloud sources. All
services with a higher similarity than a predefined
threshold “T” will be removed from the set of cloud
services source and added to the first cluster. This
procedure is repeated until all services are affected to
clusters (Alfazi et al., 2015). Although presented
algorithm achieves a good classification of SaaS
services, there are gaps in the choice of references for
each cluster services. Also, there may be an overlap
problem between clusters due to misallocation of
services.

Figure 3 illustrates this problem using this
clustering approach. To overcome this drawback, we
propose an improved algorithm by adding another
treatment between the ranked service as reference and
the already classified services in previous clusters.
This calculation is used to ensure a good affectation
of appropriate service to each cluster and each
similarity computation will be saved for comparison
with respect to the new reference service the
maximum will be chosen. Algorithm 1 describes in
detail the steps of services affectation to different
clusters according to our approach, which solves the
overlap problem.

Figure 3: Presentation of overlap problem.

Similarity Computing: The “similarity” parameter
used in the previous algorithm, is calculated by
following the steps below:

1. Calculation of the number of occurrences of each
concept in each service, as shows in table 1.

2. Calculation of the frequency of each concept in
each service, using the following equation: ࡲࢀ൫ࡿ, ൯ = N୧୨∑ ୫୩ୀଵ(ܥ) (1)

3. The similarity between two services Si and Sj is
given by the following formula: ࢚࢟࢘ࢇࡿ = పܵሬሬሬԦ 	ൈ 	 ఫܵሬሬሬԦܵ 	ൈ 	 ܵ 					 (2)

Such as: ࡿ =൏ ,S୧)ܨܶ ,(ଵܥ ,S୧)ܨܶ ,(ଶܥ ,S୧)ܨܶ ,(ଷܥ . . . ,S୧)ܨܶ (ܥ

Table 1: Calculation of the occurrences number for each
concept in each service.

 Concept 1
(C1)

Concept 2
(C2)

……
Concept N

(CN)

Service 1 (S1) N11 N12 …… N1n

Service 2 (S2) N21 N22 …… N2n

…
…

.

Service m (Sm) Nm1 Nm2 …… Nmn

Interface

Request
Regeneration

Search in
index

Search in
Cache

Matching

Sorting

Set of clusters

Resource request

R
eq

u
es

t

 Request

Clients

Key Words
Key Words

Key Words

Key Words

Manager Agent

Interface Agent

Index Agent

Cache Agent

Matching Agent

Resource Agent

A Novel Clustering-based Approach for SaaS Services Discovery in Cloud Environment

549

Algorithm 1: Clustering algorithm for Cloud SaaS
services.
Input: - A set of SaaS services S= {S1, S2, …….SN} ;
T= Threshold ;

// T is a fixed value of similarity threshold

Output: A set of Clusters C= {C1, C2, ……..Ck};
K=1 ;
Affect S1 to Ck and remove it from S ;
while S ≠ φ do

Similmax = -1 ;
for m = 1 → k do

Compute Simil (Si, Srk) ;
 // Srk is the reference service of cluster k

if (Simil > Similmax) then
Similmax ← Simil
K' ← K

end if
end for
if (Similmax > T) then

Affect Si to Ck’ ;
Remove Si from S ;
Save Simil (Si, Srk’) ;

else
Create new Ck+1 ;
Affect Si to Ck+1 ;
Si is Srk+1 ;
// reassignment of exist services in Ck

for (m=1, m<k, m++) do // number of cluster
j=2 ;
while (Cm not end) do

Compute Simil (Si, Sjm) ;
if Simil > Sjm .Simil then

// Sjm .Simil ; similarity between Sjm et Srm

Affect Sjm to Ck+1 ;
Remove Sj from Cm ;
Save the new similarity ;

end if
j=j+1 ;

end while
end for
K=k+1 ;

end if
end while

3.2 SaaS Services Discovery Approach

The proposed approach is composed of two parts: the
cluster identification component and the services
matching component. The first is responsible of
identifying the cluster functionally responding to the
user query. The second is based on the use of the
“cluster index” that simplifies and speeds up the
search operation. The index contains the functional
description of each cluster which is expressed by its
reference service. The search algorithm computes the
similarity between the reference services of each
cluster and the keyword vector of the user query and
chooses the maximum similarity in order to ensure

the desired functionality. Once the cluster is selected,
the role of the services matching component is to
select the services with high similarity to the user
preference using a matching algorithm based on
similarity between query concepts and all functional
description parameters of services expressed in the
WSDL document. This algorithm is applied to find,
among the cluster services, the most similar SaaS
services having greater probability to user’s
preference.

The primary problem of discovery approaches lies
in the choice of concepts matching techniques (i.e.,
similarity measures) and / or the matching algorithms
optimization. In the proposed discovery approach, we
have chosen to compute similarity with SimWP (Wu
and Palmer, 1994) that finds the most similar
concepts between two ontologies. It calculates the
semantic proximity between two concepts through
ontology arcs. The similarity measure depends only
on the concepts depths, and since most ontologies
have limited depths compared to the concepts
number, then the execution time of the measurement
is always acceptable. It was decided for the similarity
computing to use the semantic lexical database
WordNet. First, we calculate the similarity between
two concepts. The calculation principle is given by
formula (3): ࢉ)ࡿ, (ࢉ = 2 ∗ ,ℎ൫ܵܵ(ܿଵݐ݁݀ ܿଶ)൯݀݁ݐℎ(ܿଵ) + 	ℎ(ܿଶ)ݐ݁݀ (3)

with: - Depth(Cଵ) and(Cଶ): is the number of arcs that
separate Cଵ and (Cଶ) to the ontology root O.

- SS(Cଵ,Cଶ): is the Smallest Subsumption of Cଵ and Cଶ
(i.e., the common ascendant between Cଵand Cଶ
farthest away from the root).

Having computed the similarity between two
concepts, we now calculate the SimWP similarity
between the user query and services, which are both
expressed by a set of concepts. A similarity
computing example using ontology is shown in
Figure 4. Let T1 = (C1, C2, ..., Cn) denote the request
concepts and T2 = (C'1, C'2, ..., C'n) the service
concepts, based on the above computing, we
determinate a similarity matrix between T1 and T2, as
follows: ܯ = ଵܶ ∗ ଶܶ= ܵ݅݉ܥ)݉ܥଵ, (ଵ′ܥ … ,ଵܥ)݉ܥ݉݅ܵ ⋮(′ܥ ⋱ ,ܥ)݉ܥ݉݅ܵ⋮ (ଵ′ܥ … ,ܥ)݉ܥ݉݅ܵ)൩ (4)′ܥ

Then, we construct the MaxL sequence by
searching the existing maximum in the matrix and
removing the row and column to which this
maximum element belongs. The previous step is

ICEIS 2017 - 19th International Conference on Enterprise Information Systems

550

repeated until the number of the matrix elements is
equal to zero: ࡸ࢞ࢇࡹ = ,	௫ଵ݉ܥ݉݅ܵ) ,	·	·	·,	௫ଶ݉ܥ݉݅ܵ (௫୩݉ܥ݉݅ܵ (5)

Therefore, the SimWP similarity computing is
given by the following formula:

ࡼࢃࡿ = (1/݇)ܵ݅݉݉ܥ௫୧
ୀଵ (6)

Figure 4: Example of SimComp measure computing.

4 SIMULATION RESULTS

In this section, we present an evaluation of the
proposed SaaS services Discovery system for cloud
environment. The proposed system is composed of
two complementary modules: Publishing and
Discovery SaaS service. Let us first present the test
environment in which our system will be developed.
We describe the used platform, the services data base
that will constitute the simulation data, and the
WordNet database as a calculation tool. WordNet is a
lexical database for the English language developed
by the cognitive science laboratory of Princeton
University. Its purpose is to list, classify and relate in
various ways the semantics and lexical content of the
English language. For the SaaS services database, we
used an open source corpus OWLS-TC4 version. This
database describes a set of services web through
OWLS documents, it contain 1083 web services
distributed in 7 classes according to the conceived
ontology. To evaluate the performance of the
proposed system, we conducted two measurement
experiments: the first part is devoted to evaluating to
the Clustering algorithm while the second one aims at
approving the discovery process using several types
of simulation. We evaluate the different algorithms
through a set of simulation tests.

4.1 Parameters Adjustment

To study and compare discovery systems, a measure
must be defined to evaluate their performance.
Different measures are used in the literature, which
makes comparisons often difficult. In this paper, we

choose two measures which are the precision rate and
the recall rate. Then, Accuracy is used to evaluate the
proposed Clustering algorithm. To evaluate the
discovery mechanism, we choose the Recall and
Accuracy rates, and the Execution Time. The
formulas of all such metrics are defined as following:

Accuracy (A): is the ratio between the correct
answers provided by the system and the total number
of responses: ࢟ࢉࢇ࢛࢘ࢉࢉ = ࢀࢀ ࡲ	+

with Tp (True Positive) being a correct result, and
considered as valid by the system; whereas Fp (False
Positive) is an erroneous result, but considered valid
by the system.

Recall (R): is the ratio between the correct answers
provided by the system and the actual number of
correct answers belonging to the data base: ࢇࢉࢋࡾ = ࢀࢀ ࡲ	+

with:
- Fn: False Negatives (a correct result, and

considered false by the system);

F-measure: is the harmonic means that takes into
consideration both Accuracy (A) and Recall (R): ࢋ࢛࢙࢘ࢇࢋࡹࡲ = ∗ ∗ ࡾࡾ + 	

4.2 Clustering Parameters

The proposed clustering algorithm is based on two
parameters, which are the similarity threshold
between services and service description types. For
that, a study was carried out on the number of clusters
formed with different service samples (917, 647,
307,170 services), using three different types of
description: input, output and input + output. This
clustering computing is implemented with different
threshold values (0.4, 0.5, 0.6, 0.7). Table 2 illustrates
the obtained results for determining the similarity
threshold value and the service description type used
in our Clustering approach.

According to the results obtained, the number of
clusters described by the input and input + output
descriptions is proportional to the number of services
for the different thresholds values. Also, for the
services using the output description, the cluster
number is almost constant. This shows that there is
services diversity describing by input or input +
output, because with few services we have a limited

Depth (SS (C1, C2))

Root

Depth (C1) C3

C1 C2

Depth (C 2)

A Novel Clustering-based Approach for SaaS Services Discovery in Cloud Environment

551

Clusters number of services. On the other hand,
increasing the number of services lead to two cases:
(i) with the input description, the clusters number
remains almost the same because the new services
will be classified in existing clusters; and, (ii) with the
input and input + output description, the clusters
number increases because there is no similarity
between the services and the existing clusters. Hence,
the output type is the best-suited description whereas
the best threshold value is 0.5 because the clusters
number is small and the services have been grouped
according to their objectives.

Table 2: Definition of the Clustering parameters.

Threshold Description
Services number

170 307 647 917
Number of clusters

0.4
Input
Output
In + Out

28
20
30

51
25
45

80
56
75

117
86
95

0.5
Input
Output
In + Out

35
32
40

73
35
56

112
36
80

198
55
135

0.6
Input
Output
In + Out

36
35
30

67
39
62

118
41

100

169
61
151

0.7
Input
Output
In + Out

19
31
58

38
42
99

56
50

151

100
101
24

4.3 Performance Measurement

In order to evaluate the proposed clustering
algorithm, we conducted various experiments and
comparisons. For this, we have used a set of 548
services distributed in 8 classes according to the
conceived ontology (Klusch and Kapahnke, 2010).
However, it is necessary to randomly select the
services of each cluster and verify if the chosen
cluster by the indexing approach is the appropriate
one. Table 3 shows a sample of test results and
performance measure in terms of Precision and Recall
provided by our Clustering algorithm. As shown in
Table 3, the proposed clustering algorithm has higher
precision and recall for all identified cluster
categories. For instance, the maximum error rate of

our algorithm is 0.104 for the address information
category. This error is due to the informal query
processing which is a set of concepts.

Table 3: Performance measures of the proposed approach.

Cluster
Categories

Number
of services

Precision
%

Recall
%

Multimedia video 75 94.9 97.4
Services price 101 93.5 97.1
Job 81 95.2 97.5

Authors information 47 94 100
Address information 69 89.6 93.2
Hotel 93 93.9 97.8
Travel distance 54 93.1 98.1

Government 28 90.3 100

The rest of this section is devoted to present and
validate the obtained results through the proposed
multi-agent system for SaaS services discovery
considering different types of simulation.
Performance assessment will be achieved based on
three metrics: Precision, Recall and F-measure. For
this purpose, we use a set of requests selected
randomly. We also use the similarity measure defined
in section 3.3, and the value of threshold T is 0.5.
Table 4 shows an example of processing the request
R < hotel info by country and town > delivered by our
discovery system. The maximum value of similarity
is 0.75 obtained by the SaaS services discovery
system. This is due to the choice of description
method of the request.

The performance measurements of the proposed
discovery approach are shown in figure 5. We present
a study about the threshold influence on the Recall,
Precision and F-measure rates using the previous
request R. We note that when the extraction threshold
of the results increases, the Recall rate decreases
whereas the precision rate increases. An ideal
discovery system provides answers whose Precision
and Recall are equal to 1. When the extraction
thresholds are less than 0.4, the Recall rate is high.
Consequently, the system meets the needs of clients,
but they are not accurate.

Table 4: Discovery result of the request R.

Name of service Similarity Proposed approach Human expert

Country hotel service 0.75 Accept Accept
Capital city country hotel service 0.75 Accept Accept
City hôtel info 0.65 Accept Accept
Inside geopolitical entity info 0.6 Accept Accept
Person city country info 0.59 Accept Refuse
Europe city hotel info 0.41 Refuse Accept

ICEIS 2017 - 19th International Conference on Enterprise Information Systems

552

To evaluate discovery systems, one must choose
a good tradeoff between Recall and Precision. To this
end, we use the comprehensive F-Measure. Figure 4
illustrates comparison results according to different
thresholds values. We note that the maximum value
of this harmonic mean is 0.84, whose Recall and
Accuracy rates are at the maximum, which shows that
our system is efficient. Another important remark is
that our clustering-based discovery system has a
significantly better response times than discovery
systems without Clustering.

Figure 5: Comparison of performance measurement.

5 CONCLUSIONS

In this paper, we have introduced a new prototype for
SaaS services discovery in cloud environment based
on multi-agent system. The modeling scheme of this
agent-based discovery system is divided in several
main elements including services description and
publication, clustering approach, request generation,
matching process and discovery method. To improve
the quality of SaaS service discovery, we have
proposed a new algorithm for clustering SaaS
services in cloud based on their semantic description.
Experimental results show that our approach yields a
significant performance improvement in terms of
accuracy and requests processing time. An interesting
future direction would be: (i) to define and use a SaaS
service description model based on non-functional
categorization attributes and other features of SaaS
services; and, (ii) to utilize for each domain services
other ontologies in order to improve search accuracy.

REFERENCES

Alfazi, A., Noor, T. H., Sheng, Q. Z., and Xu, Y. (2014).
Towards ontology-enhanced cloud services discovery.
In International Conference on Advanced Data Mining
and Applications, pages 616–629. Springer.

Alfazi, A., Sheng, Q. Z., Qin, Y., and Noor, T. H. (2015).
Ontology-based automatic cloud service categorization
for enhancing cloud service discovery. In Enterprise
Distributed Object Computing Conference (EDOC),
2015 IEEE 19th International, pages 151–158. IEEE.

Chen, H.-p. and Li, S.-c. (2011). SRC: a service registry on
cloud providing behavior-aware and qos-aware service
discovery. In Service-Oriented Computing and
Applications (SOCA), 2010 IEEE International
Conference, pages 1–4. IEEE.

Elshater, Y., Elgazzar, K., and Martin, P. (2015).
Godiscovery: Web service discovery made efficient. In
Web Services (ICWS), 2015 IEEE International
Conference, pages 711–716. IEEE.

Fan, H., Hussain, F. K., and Hussain, O. K. (2015a).
Semantic client-side approach for web personalization
of SaaS-based cloud services. Concurrency and
Computation: Practice and Experience, 27:2144–2169.

Fan, H., Hussain, F. K., Younas, M., and Hussain, O. K.
(2015b). An integrated personalization framework for
SaaS-based cloud services. Future Generation
Computer Systems, 53:157–173.

Guerfel, R., Sba¨ı, Z., and Ayed, R. B. (2015). Towards a
system for cloud service discovery and composition
based on ontology. Computational Collective
Intelligence, pages 34–43. Springer.

Han, T. and Sim, K. M. (2010). An ontology-enhanced
cloud service discovery system. In Proceedings of the
International MultiConference of Engineers and
Computer Scientists, volume 1, pages 17–19.

Klusch, M. and Kapahnke, P. (2010). OWLS-TC, version
4.0, http://projects.semwebcentral.org/projects/owlstc.

Li, S. and Chen, H.-p. (2014). A context-aware framework
for SaaS service dynamic discovery in clouds. Interna-
tional Conference on Algorithms and Architectures for
Parallel Processing, pages 671–684. Springer.

Parhi, M., Pattanayak, B. K., and Patra, M. R. (2014). A
multi-agent-based QoS-driven web service discovery
and composition framework. ARPN Journal of
Engineering and Applied Sciences, VOL. 9, NO. 4,
APRIL 2014.

Parhi, M., Pattanayak, B. K., and Patra, M. R. (2015): A
multi-agent-based framework for cloud service
description and discovery using ontology. Intelligent
Computing, Communication and Devices, pages 337–
348. Springer.

Pirro, G., Trunfio, P., Talia, D., Missier, P., and Goble, C.
(2010). Ergot: A semantic-based system for service
discovery in distributed infrastructures. In Cluster,
Cloud and Grid Computing (CCGrid), 10th IEEE/ACM
International Conference, pages 263–272. IEEE.

Wu, L., Garg, S. K., and Buyya, R. (2011). SLA-based
resource allocation for software as a service provider
(saas) in cloud computing environments. Cluster, Cloud
and Grid Computing (CCGrid), 11th IEEE/ACM
International Symposium, pages 195–204.

Wu, Z. and Palmer, M. (1994). Verbs semantics and lexical
selection. In Proceedings of the 32nd annual meeting on
Association for Computational Linguistics, pages 133–
138. Association for Computational Linguistics.

A Novel Clustering-based Approach for SaaS Services Discovery in Cloud Environment

553

