
Performance Evaluation of Cloud-based RDBMS through a Cloud
Scripting Language

Andrea S. Charão1, Guilherme F. Hoffmann1, Luiz A. Steffenel2,
Manuele K. Pinheiro3 and Benhur de O. Stein1

1Universidade Federal de Santa Maria, Santa Maria, Brazil
2CReSTIC Laboratory, Université de Reims Champagne-Ardenne, Reims, France

3CRI Laboratory, Université Paris 1 Panthéon-Sorbonne, Paris, France

Keywords: Relational Database Management Systems, Cloud Computing, Performance Evaluation, Benchmarking.

Abstract: Cloud computing has brought new opportunities, but also new concerns, for developing enterprise informa-
tion systems. In this work, we investigated the performance of two cloud-based relational database services,
accessing them via scripts which also execute on a cloud platform, using Google Apps Script technology.
Preliminary results show little differences between the services in their trial versions, considering limitations
imposed by the Google platform.

1 INTRODUCTION

Cloud computing has proven to be an advantageous
alternative for both businesses and end users, provid-
ing previously unimaginable services at affordable or
even free subscription plans. Engineers and devel-
opers of enterprise information systems can count on
various types of cloud services, including Infrastruc-
ture as a Service (IaaS), Platform as a Service (PaaS)
and Software as a Service (SaaS) (Mell and Grance,
2011).

In the market landscape of cloud computing,
a recent trend is Database as a Service (DBaaS),
which moves database storage and management to the
cloud (Hacigumus et al., 2002; Mahmood, 2014). Ap-
plications that reside or not in the cloud can benefit
from this model, which inherits advantages of other
cloud services, such as availability, scalability and
ease of management. Another recent trend is cloud
scripting, a programming solution to automate tasks
in the cloud. This little-known alternative allows to
build entire information systems by coupling existing
cloud services.

Google is a representative example of a com-
pany offering cloud services to both the general pub-
lic (email, calendar, storage, etc.) and to develop-
ers. A useful resource for developers is Google Apps
Script (GAS) (Google Inc., 2009; Ferreira, 2014), a

cloud scripting solution to automate access to cloud
services. This programming tool takes advantage of
Google’s Platform as a Service (PaaS) layer, enabling
to build applications that run on Google’s infrastruc-
ture and use its libraries, services, and tools. In this
model, developers do not need to manage or control
any cloud infrastructure: they only deal with devel-
oping applications and performing environment set-
tings (Mell and Grance, 2011). Among its features,
Google Apps Script offers the ability to access rela-
tional cloud databases (Google Inc., 2017a).

These new possibilities of cloud data management
and programming bring, along with the benefits, some
questions to be investigated. For example, cloud ser-
vices often associate performance attributes (requi-
sitions per second, maximum execution time, etc.)
with pricing models (free, pay-as-you-go, etc.) (Li
et al., 2010). Thus, knowing the performance of ser-
vices becomes important because, by ignoring it, a
developer can generate more expenses or even make
a cloud execution unfeasible (Iosup et al., 2011).

In this paper, we investigated the access times
for two different third-party cloud databases using
Google Apps Script. This can provide subsidies for
developers interested in these services. This type of
performance data was not found in the literature, re-
inforcing the motivation for this work.

Indeed, we are focusing in a scenario where the

332
Charão, A., Hoffmann, G., Steffenel, L., Pinheiro, M. and Stein, B.
Performance Evaluation of Cloud-based RDBMS through a Cloud Scripting Language.
DOI: 10.5220/0006350803320337
In Proceedings of the 19th International Conference on Enterprise Information Systems (ICEIS 2017) - Volume 1, pages 332-337
ISBN: 978-989-758-247-9
Copyright © 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

application and the data services do not reside in the
same provider. Several factors may conduct the split-
ting of services among different providers. Most of
times, dependency issues prevent the complete mi-
gration from one provider to the other, obliging com-
panies to integrate services hosted by different cloud
providers.

2 BACKGROUND

2.1 Cloud Databases

As several cloud database providers exist and this pre-
liminary work has no intention to perform a broad
comparison between these services, we decided to
concentrate in two relational database services: the
Amazon Relational Database Service (RDS), a pio-
neer service launched by Amazon in 2009, and Mor-
pheus, a recent database service offered by Morpheus
Data since 2014. Our primary criteria to choose these
services was related to their different launch dates,
which could be an indicator of maturity of the service.

Both services can be accessed through the JDBC
(Java Database Connectivity) service offered by GAS.
It is worth noting that Google also offers database
services, both relational (Cloud SQL) and NoSQL
(Bigtable and Datastore). However, as stated before,
our aim was to evaluate the performance of disjoint
services and using both cloud scripting and cloud
databases from Google would bias the results.

2.1.1 Amazon Web Services - Amazon RDS for
MySQL

Amazon Web Services is a cloud computing pioneer
offering a comprehensive set of global computing,
storage, database, analytics, application, and deploy-
ments services. As part of this suite, Amazon RDS
(Relational Database Service) is a service that facil-
itates the installation, operation and scheduling of
a MySQL, Oracle, Microsoft SQL Server or Post-
greSQL database in the cloud. It provides scalable
capacity and manages database administration tasks.
In its free program, it offers 750 hours of database
micro-instances per month.

2.1.2 Morpheus Cloud Database

Morpheus is a PaaS that started its services in 2015,
offered by the Morpheus Data. Its flagship product
is an online database service that allows users to cre-
ate, deploy and host instances of four different types

of database classes through public, private and hy-
brid clouds. It offers high reliability and availability,
with each instance being deployed for free with a full
replica, and with automated daily backups. The four
database classes are:

• MongoDB for non-structured data and docu-
ments;

• MySQL for traditional RDBMS (Relational
Database Management System);

• Redis for in-memory data management;

• ElasticSearch for distributed search.

2.2 Cloud Scripting Languages

Cloud scripting is an approach to exploit cloud-based
services in a programmatic way. This can be used to
perform large scale distributed computations (Murray
and Hand, 2010; Dzik et al., 2013) or simply to coor-
dinate multiple services from cloud providers.

GAS is a prominent example of cloud scripting so-
lution. It comprises a JavaScript-based programming
language that allows you to build web applications
and integrate Google Apps and third-party services.
These scripts are written to an editor directly from the
browser and run on Google’s servers.

Google Apps Script is a relatively new technol-
ogy, launched in 2009. It is in constant development,
with new features and features being implemented
frequently. Table 1 summarizes the services acces-
sible through GAS to the present date. Some of them
are scheduled to be deprecated soon, as they are been
replaced. Note, in this table, the JDBC service, which
provides access to RDBMS through GAS.

Although GAS brings advantages such as porta-
bility, flexibility and unconcern of the developer in
configuring the environment, it brings with it a time
limitation that each script has to execute, which is cur-
rently set to six minutes (Google Inc., 2017b).

3 EXPERIMENTS

In order to carry out this work, the development was
divided in two stages: preparation of the environ-
ment (databases and connection with GAS) and cod-
ing of the test scripts in GAS with operations on the
databases.

3.1 Environment Setup

To start the work, we created free accounts in both
services (Amazon RDS and Morpheus). The config-

Performance Evaluation of Cloud-based RDBMS through a Cloud Scripting Language

333

Table 1: Google Services.

Google Apps Services Advanced Google Services Script Services
Calendar Admin SDK Base
Contacts AdSense Cache
Document Analytics Charts
Domain(Turned off) Apps Activity Content
Drive BigQuery HTML
Forms Calendar JDBC
Gmail Classroom Lock
Groups Drive Mail
Language DoubleCLick Campaigns Optimization
Maps Fusion Tables Properties
Sites Gmail Script
Spreadsheet Google+ UI (Turned off)

Google+ Domains URL Fetch
Mirror Utilities
Prediction XML
Shopping Content
Tasks
URL Shortener
Youtube

urations provided in each service for this type of ac-
count are shown below:

• Amazon RDS: db.t2.micro instance with one vir-
tual CPU, one ECU (Engine Control Unit), 615
MB memory, without EBS (Elastic Block Store)
optimization, low performance network.

• Morpheus: Storage space of 5 GB and 1 GB of
RAM.

The connection of the script to the databases is
done through the JDBC Service Apps Script. This
feature offers 10 different IP address ranges that the
platform can use to access the databases. These ad-
dresses serve to configure access permissions on the
cloud database.

The two databases use slightly different forms
of configuring access permissions. Morpheus works
with an Access Control List (ACL), and Amazon RDS
creates the database within a Virtual Private Cloud
(VPC), and VPC has a security group, which is re-
sponsible for controlling which IP addresses will be
released to connect to the database.

Both databases use the IP address allocation
method called CIDR (Classless Inter-Domain Rout-
ing), which stores an IPv4 or IPv6 network specifi-
cation. The specification format used is composed of
the IP address followed by the number of bits of the
netmask.

3.2 Test Scripts

The scripts developed for the tests are based on the
SysBench benchmark 1, a simple performance evalu-
ation tool that allows you to quickly get an impression
of the performance of systems. Part of this tool is ded-
icated to evaluating database performance and is used
by authors who have investigated the performance of
cloud databases (Schwartz et al., 2012). The original
SysBench codes are written in the Lua programming
language. For the tests in this work, codes have been
rewritten using Google Apps Script.

All codes have as principle to do basic SQL opera-
tions in a database, searching for a random value and
then performing the operation. The main goal is to
measure the time taken to process a specific amount
of database operations. The tests are divided into the
following categories of database operations: Inserts,
Updates, Selects and Deletes. The table used in the
tests has five numeric/alphanumeric fields (see Table
2). Figure 1 present a code excerpt from the GAS test
scripts. It performs a database connection, creates a
table and executes a set of database insert operations.

Table 2: Table for tests (Sysbench).

id Name Gender Age DonutsEaten

Initially, measurements were taken to identify the
maximum number of operations each database could

1https://github.com/akopytov/sysbench

ICEIS 2017 - 19th International Conference on Enterprise Information Systems

334

function dbOperations() {
Logger.log("Start");
var age;
var donuts;
var num;

var conn = Jdbc.getConnection(’jdbc:mysql:// \
162.252.108.127:13342/ Sysbench’, ’User’, ’*****’);

conn.createStatement().execute(’ \
CREATE TABLE Benchmark \

(id INTEGER , \
Name VARCHAR(50), \
Gender VARCHAR(10), \
Age INTEGER , \
DonutsEaten INTEGER , PRIMARY KEY (id))’);

for(i=1; i<100; i++){
age = Math.floor((Math.random() * 100) + 1);
donuts = Math.floor((Math.random() * 1000) + 1);
num = Math.floor((Math.random() * 3500) + 1);
conn.createStatement().execute(’ \

INSERT INTO ‘Benchmark ‘ \
(‘id‘, ‘Name ‘,‘Gender ‘,‘Age‘,‘DonutsEaten ‘) \

VALUES (’+i+’, "Name’+i+’", "Female", ’+age+’, ’+donuts+’)’);
}
Logger.log("End");

}

Figure 1: Code excerpt from the test scripts.

make within the maximum six-minute time period im-
posed by Google Apps Script. From this, in order for
the two databases to successfully execute within the
time limit, three test sets with different amounts of
operations were performed for each type of access, in
order to obtain the response times perceived by GAS.
Times were measured using the Logger.log func-
tion, which records the time it started and finished
running the script.

4 RESULTS

Table 3 shows the maximum number of operations
that each database performed in the six-minute time
limit imposed by GAS.

It can be seen in Table 3 that Amazon RDS per-
formed a slightly higher number of operations than
Morpheus, in the interval of six minutes. Consider-
ing the limits expressed in Table 3, we set the follow-
ing number of operations for the tests of access times:
100, 1000 and 3500.

For each type of operation, we executed the scripts
10 times for each set of operations in each of the
databases, then we calculated the mean and the stan-
dard deviation for each case. Tables 4, 5, 6, 7 present
the results for each type of operation.

Observing the results obtained, it can be said that
both databases presented similar performance. Ac-
cess times were slightly lower for Amazon RDS in all
cases, but the standard deviation was lower for Mor-
pheus in some cases. In all cases, the coefficient of
variation was below 25%, suggesting homogeneity in
the set of measures.

5 FINAL REMARKS

In this work, we investigated the performance of two
cloud databases, through codes written in Google
Apps Script and executed in the Google cloud. The
codes were adaptations of the SysBench benchmark,
which performs basic SQL operations on databases.

The results indicated similarity of performance
among the cloud databases, although they are in-
stances with non-identical configurations. Note that
although a cloud service (GAS) is used to perform
the access to databases, response times are feasible
for applications that perform few operations. It is also
worth mentioning that the instances used in this work
are of low processing power, because they are both
trials and free.

In general, it is noted that the greatest limitation
comes from the GAS itself, when establishing that an

Performance Evaluation of Cloud-based RDBMS through a Cloud Scripting Language

335

Table 3: Number of operations for each database in the 6-minutes limit.

Operation Number
Amazon RDS Morpheus

INSERT 4022 3763
SELECT 4271 4142
UPDATE 4022 3763
DELETE 4022 3730

Table 4: Execution times for INSERT operations.

INSERT
of Operations Time (seconds)

Amazon RDS Morpheus
Mean Standard Deviation Mean Standard Deviation

100 9.65 0.01555634919 10.513 0.008485281374
1000 93.0389 2.5130575 92.9074 0.1704127343
3500 321.911 9.557255255 337.9359 0.9418662325

Table 5: Execution times for SELECT operations.

SELECT
of Operations Time (seconds)

Amazon RDS Morpheus
Mean Standard Deviation Mean Standard Deviation

100 8.85745 0.2921058113 9.90745 0.02467802666
1000 86.91995 4.345807566 90.8749 0.7863027407
3500 291.8325 14.41012909 317.15945 0.1690692314

Table 6: Execution times for UPDATE operations.

UPDATE
of Operations Time (seconds)

Amazon RDS Morpheus
Mean Standard Deviation Mean Standard Deviation

100 9.6315 0.4037579721 10.28395 0.1385222184
1000 91,56245 3,283167496 95.35045 3.625407178
3500 325.5305 18.83803176 340.2379 2.699733691

Table 7: Execution times for DELETE operations.

DELETE
of Operations Time (seconds)

Amazon RDS Morpheus
Mean Standard Deviation Mean Standard Deviation

100 9.9109 0.04808326112 10.42595 0.05932625894
1000 90.68245 0.8153648294 93.3664 5.216326725
3500 306.7209 16.11284222 330.6804 17.72221726

execution can not exceed six minutes. In this sense,
longer tasks can benefit from strategies that divide
processing into multiple runs, as is done in some ap-
plications using GAS (Ferreira, 2014).

REFERENCES

Dzik, J., Palladinos, N., Rontogiannis, K., Tsarpalis, E.,
and Vathis, N. (2013). Mbrace: Cloud computing
with monads. In Proceedings of the Seventh Work-
shop on Programming Languages and Operating Sys-
tems, PLOS ’13, pages 7:1–7:6, New York, NY, USA.
ACM.

ICEIS 2017 - 19th International Conference on Enterprise Information Systems

336

Ferreira, J. (2014). Google Apps Script, 2nd Edition – Web
Application Development Essentials. O’Reilly Media.

Google Inc. (2009). Google Apps Script. Avail-
able: https://developers.google.com/apps-script. Last
accessed: March 2017.

Google Inc. (2017a). JDBC – Apps Script. Avail-
able: https://developers.google.com/apps-
script/guides/jdbc. Last accessed: March 2017.

Google Inc. (2017b). Quotas for Google services.
Available: https://developers.google.com/apps-
script/guides/services/quotas. Last accessed: March
2017.

Hacigumus, H., Iyer, B., and Mehrotra, S. (2002). Providing
database as a service. In Proceedings 18th Interna-
tional Conference on Data Engineering, pages 29–38.

Iosup, A., Yigitbasi, N., and Epema, D. (2011). On the
performance variability of production cloud services.
In 2011 11th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing, pages 104–113.

Li, A., Yang, X., Kandula, S., and Zhang, M. (2010). Cloud-
cmp: Comparing public cloud providers. In Proceed-
ings of the 10th ACM SIGCOMM Conference on In-
ternet Measurement, IMC ’10, pages 1–14, New York,
NY, USA. ACM.

Mahmood, Z., editor (2014). Cloud Computing: Chal-
lenges, Limitations and R&D Solutions. Springer.

Mell, P. M. and Grance, T. (2011). The NIST definition
of cloud computing. Technical report, Gaithersburg,
MD, United States.

Murray, D. G. and Hand, S. (2010). Scripting the
cloud with skywriting. In Proceedings of the 2Nd
USENIX Conference on Hot Topics in Cloud Comput-
ing, HotCloud’10, pages 12–12, Berkeley, CA, USA.
USENIX Association.

Schwartz, B., Zaitsev, P., and Tkachenko, V. (2012). High
Performance MySQL, 3rd Edition. O’Reilly.

Performance Evaluation of Cloud-based RDBMS through a Cloud Scripting Language

337

