
Progressive Web Apps: The Possible Web-native Unifier for Mobile
Development

Andreas Biørn-Hansen1, Tim A. Majchrzak2 and Tor-Morten Grønli1
1Faculty of Technology, Westerdals Oslo ACT, Christian Krohgs gate 32, 0186, Oslo, Norway

2ERCIS, University of Agder, Gimlemoen 25, 4630, Kristiansand, Norway

Keywords: Progressive Web Apps, Service Workers, Cross-platform, Cross-platform Development, Mobile Web.

Abstract: A recent advancement of the mobile web has enabled features previously only found in natively developed apps.
Thus, arduous development for several platforms or using cross-platform approaches was required. The novel
approach, coined Progressive Web Apps, can be implemented through a set of concepts and technologies on any
web site that meets certain requirements. In this paper, we argue for progressive web apps as a possibly unifying
technology for web apps and native apps. After an introduction of features, we scrutinize the performance. Two
cross-platform mobile apps and one Progressive Web App have been developed for comparison purposes, and
provided in an open source repository for results’ validity verification. We aim to spark interest in the academic
community, as a lack of academic involvement was identified as part of the literature search.

1 INTRODUCTION

In traditional mobile application development,
reusability of code between native apps, the web, and
mobile platforms has been inherently non-existent.
This is due to native apps’ non-interoperable code
bases, resulting in separate projects and developer envi-
ronments when support for multiple mobile platforms
and operating systems is desired (Heitkötter et al.,
2013; Perchat et al., 2013; Majchrzak and Heitkötter,
2014).

For companies without the resources or the willing-
ness to employ specialized mobile developers for each
targeted platform, cross-platform development has be-
come a popular alternative (Malavolta et al., 2015b). It
typically not only reduces the development effort but
also enables a quicker time-to-market (Rahul and To-
lety, 2012). While its application and reputation varies
in academia and industry communities (Puvvala et al.,
2016; Mercado et al., 2016), the idea of a single code
base – which can be deployed to multiple platforms –
is seen as appealing for a variety of reasons. These in-
clude, but are not limited to, budget, human resources,
and existing knowledge (Corral et al., 2012).

There are multiple approaches to cross-platform
development (Heitkötter et al., 2012; Rieger and Ma-
jchrzak, 2016). In addition, a plethora of technical
frameworks to support such development are either
freely available under open source licenses, or as paid

proprietary products. Examples of popular frame-
works include Ionic Framework, PhoneGap, React Na-
tive and Xamarin (cf. Majchrzak et al. (2017)). Coin-
cidentally these frameworks also represent three tech-
nologically distinctive approaches (Majchrzak et al.,
2017).

Ionic Framework and PhoneGap both belong to
the web- and Cordova-based hybrid approach, where
user interface components are solely structured and
styled using web technologies including HTML and
CSS. React Native, of the interpreted approach, does
not depend on a web-view as it instead leverages an on-
device JavaScript interpreter along with native bridges,
resulting in native interface components instead of
web-based HTML components. Xamarin’s approach
is commonly referred to as cross-compilation as it
compiles C# into native binaries for each supported
platform. This results in native apps that are not depen-
dant on interpreters or web-views (Latif et al., 2016).
This can also be referred to as truly native (cf. also
Heitkötter et al. (2013)).

Until recently, the web platform lagged behind on
mobile-centred innovation in terms of being capable of
competing with native or cross-platform apps (Puder
et al., 2014). A new set of standards advocated by
the Google Web Fundamentals group seeks to bridge
that gap by introducing features such as offline support,
background synchronisation, and home-screen installa-
tion to the web. The approach is known as Progressive

344
Biørn-Hansen, A., Majchrzak, T. and Grønli, T-M.
Progressive Web Apps: The Possible Web-native Unifier for Mobile Development.
DOI: 10.5220/0006353703440351
In Proceedings of the 13th International Conference on Web Information Systems and Technologies (WEBIST 2017), pages 344-351
ISBN: 978-989-758-246-2
Copyright © 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



Web Apps (PWA), a term coined by Russel and Ber-
riman (2015) in a blog post covering initial design
ideas. PWAs are defined by a set of concepts and key-
words including progressive, responsive, connectivity
independent, app-like, fresh, safe, discoverable, re-
engageable, installable, and linkable (Osmani, 2015).
These are PWA’s contributions to the unification of the
mobile experience, where web apps can be installed
and distributed without app marketplaces, work with-
out Internet connectivity, receive push notifications
and look like regular apps. This is possible due to
the Service Worker API which empowers develop-
ers through the use of a background-executed script
acting as a network and device proxy.

While the industry shows investment and interest
in progressive web apps, a lack of academic research
on the topic was identified as part of the theory search.
Consequently, there is a substantial research poten-
tial, further discussed in section 6.2. This article aim
to provide an introduction to the concepts and tech-
nologies behind progressive web apps. Moreover, it
seeks to showcase features and to provide a technical
comparison. These steps should help demystify and
scrutinize the above compiled list of buzz terms for
PWAs. Three technical artefacts in the form of mobile
apps were developed using the Hybrid, Interpreted and
PWA approaches. A comparison of start-up speeds,
app sizes and render speeds is also provided as part of
this article.

This position paper is structured as follows. Sec-
tion 2 introduces our research methods. Related work
is then compiled in Section 3. The results of our work
with PWAs are compiled in Section 4. In Section 5 we
discuss our findings. Eventually we draw a conclusion
and point out to future work in Section 6.

2 RESEARCH METHODS

2.1 Literature Search

Initial searches for academic involvement in progres-
sive web apps returned a limited amount of results per
January 2017. A search for Progressive Web Apps
on Google Scholar resulted in two theses, a keynote
paper for the Mobile! conference and an IEEE paper
on web app launch times.

Using the same search query, the Taylor & Francis
Online article database returned zero results; as did
ScienceDirect. The ACM Digital Library returned the
aforementioned keynote paper. IEEE Xplore contained
the aforementioned launch time paper, which merely
mentions PWA (Gudla et al., 2016).

A ResearchGate search covers both publications
and questions on their website, but it rendered no rele-
vant results. Academic contributions are, per January
2017, virtually non-existent or not visible nor findable
in the search engines explored.

An unknown base of research was identified for
Service Workers. Searches for Service Workers
among the aforementioned databases returned vari-
ous results not constrained to computer science, but
also within child care and the public sector. Other
combined phrases, such as {Service Workers, web,
API} did manage to filter the outcome to a certain
degree, still polluted with irrelevant results.

2.2 Design Implementation

To gain better understanding of the possibilities of pro-
gressive web apps, three technical artefacts were de-
veloped for comparison. An hybrid app was developed
using the Ionic Framework. An interpreted app was de-
veloped using React Native. Lastly, a progressive Web
App was developed using React.js. As our main aim
is to introduce PWA as a concept together with some
technical and higher-level comparisons, we excluded
the aforementioned cross-compilation approach from
our study.

The applications employ a master-detail navigation
pattern, where the master view presents a list of click-
able items fetched from an API. Upon list item click,
the app navigates to the detail view, displaying the
item image together with its author and title. The data
is fetched from www.reddit.com/r/Art/.json.

All three technical artefacts have been open-
sourced1 to allow verification of the results. The arte-
facts are depicted in Figures 1, 2 and 3 (see p. 3).

2.3 Performance Testing

Three variables were included as part of the perfor-
mance test. The tests were conducted on a Google
Nexus 5X device running Android version 7.0. The
aim was to gather initial data on differences in per-
formance between the implementations discussed in
Subsection 2.2.

Size of installation. Information regarding app
size was found at the following path on the Android
device: Settings – Apps – [app name].

Activity launch time. This was mea-
sured using the Android Debug Bridge and its
am activity launch time command. This mea-
sures the time it takes to launch the first activity of an
application. The test was conducted ten times for each

1https://github.com/andreasbhansen/pwa-paper

Progressive Web Apps: The Possible Web-native Unifier for Mobile Development

345



Figure 1: The Ionic Framework Hybrid app.

Figure 2: The React Native Interpreted app.

app as the results rendered different at each run. The
average time is presented as result.

Time From App-icon Tap to Toolbar Render.
As no suitable method for measuring elapsed time
from app-icon tap to user interface toolbar render was
identified, an online stop watch was used. The tool-
bar, titled ”Art by Reddit”, is displayed in Figures 1-3.
In our applications, this element is the first to be ren-
dered to the screen, thus we used it as the basis for our
render-time measurement. As the measurement relied
on human reactions, and is thus inherently error-prone,
the test was conducted ten times for each app, and the
average time is presented as result.

3 RELATED WORK

While the lack of academic involvement and research
on progressive web apps is evident from the literature
search, an established industry-oriented body of knowl-

Figure 3: The Progressive Web App.

edge was identified. The Google Web Fundamentals
group acted as the driving force for the creation and
publishing of tutorials and blog posts. Until a solid
academic knowledge-base is developed, the Web Fun-
damentals web site should, thus, be the foundation for
upcoming research.

Other than Google-created content, two early-
access books were identified (Ater, 2017; Hume, 2017)
together with an extensive pool of industry articles.
Examples of topics covered are fundamental concepts
(Edwards, 2016), challenges and concerns (Mahemoff,
2016), and thoughts on the impact of web innova-
tion (Rinaldi et al., 2016). A notably larger aca-
demic foundation was found for the other app devel-
opment approaches discussed. Numerous papers on
cross-platform app development and underlying ap-
proaches have previously been identified. Papers found
to often recur in related research includes Heitkötter
et al. (2012), Xanthopoulos and Xinogalos (2013),
Dalmasso et al. (2013), and Palmieri et al. (2012).
They make up the theoretical foundation and early re-
search, which newer papers draw from. Their topics
range from comparisons of technical frameworks and
approaches, to classifications and performance mea-
surements.

Recent research identified includes, but is not lim-
ited to, topics such as requirements for cross-platform
tooling (Gaouar et al., 2016), development approach
evaluation frameworks (Rieger and Majchrzak, 2016),
energy consumption comparisons (Ciman and Gaggi,
2016), and end-user perception of cross-platform apps
(Mercado et al., 2016; Malavolta et al., 2015a). Their
contributions should be acknowledged as important
foundation for future research on progressive web
apps.

Due to the lack of academic contributions regard-
ing PWA, the keen industry interest should act as a

WEBIST 2017 - 13th International Conference on Web Information Systems and Technologies

346



catalyst for further research and more academic in-
volvement. Research suggestions are presented in
Section 6 in an attempt to spark interest in relevant
research communities.

4 RESULTS

4.1 Feature Comparison

This section seeks to provide insights into differences
between interpreted apps, progressive web apps, hy-
brid apps and native apps by comparing a set of fea-
tures and concepts. It also presents insights on such as
technical frameworks and experience-unification for
end-users.

Table 1 provides a non-exhaustive list of feature
available in PWAs as of January 2017, along with their
compatibility. Remarks follow subsequently.

Table 1: Feature-comparison of approaches.

Feature Interpreted PWA Hybrid Native
Installable Yes Yesa Yes Yes
Offline capable Yes Yes Yes Yes
Testable before in-
stallation

No Yes No No

App marketplace
availability

Yes Yesb Yes Yes

Push notifications Yes Yesc Yes Yes
Cross-platform
availability

Yes Limitedd Yes No

Hardware and Plat-
form API access

Yes Limitede Yesf Yes

Background syn-
chronisation

Yes Yes Yes Yes

(a) The Enable improved add to Home
screen developer flag in Chrome Canary for Android
can be enabled in order for PWAs to be installed like
normal apps (Joreteg, 2016).

(b) PWAs will be made searchable from the Win-
dows 10 app marketplace, thus becoming “first-class
citizens” of their app ecosystem (Rossi, 2016).

(c) Push notification support through the Push
API2 is available, but limited to certain browsers.

(d) As Apple’s Safari browser does not yet support
the Service Workers API, the iOS platform is yet to
fully realise and leverage the potential of the techno-
logical advancement.

(e) A PWA can use HTML5-based APIs for hard-
ware and platform access in addition to features and
functionality made possible by Service Workers.

(f) Hardware and platform access for Hybrid apps
is usually provided by Cordova, a library for handling

2https://www.w3.org/TR/push-api/

the bridging between a native app’s web-view compo-
nent and the device’s APIs.

4.2 Technologies and Concepts

4.2.1 Framework Agnostic

A plethora of frameworks for web development exists
(Smeets and Aerts, 2016). The Web Fundamentals
group demonstrated framework agnosticity by imple-
menting PWAs in three different frameworks (Osmani,
2015).

4.2.2 Service Workers

The Service Worker3 is responsible for most of the core
features associated with progressive web apps (Gaunt,
2016). A PWA cannot properly work in browsers
without Service Worker support. The worker is reg-
istered on a user’s first page visit. It consists of a
JavaScript file embodying lifecycle hooks for business
logic and cache control. It can be used to handle tasks
such as background synchronisation (Archibald, 2016),
caching mechanisms for data and application shell, as
well as interception of network requests (Osmani and
Gaunt, 2017).

4.2.3 Application Shell

The application shell is defined by the Google Web
Fundamentals group as “[...] the minimal HTML, CSS,
and JavaScript powering a user interface.” Osmani and
Gaunt (2017). They list three criteria for the shell: fast
loading time, cached, and displaying dynamic content.
Data is pulled from external APIs.

4.2.4 Web App Manifest

The purpose of the manifest file is to expose certain
modifiable settings to app developers. These settings
include such as logo image path, app name, splash
screen and more. In short, the manifest can be used to
modify behaviour and style of PWA applications.

4.2.5 Security through HTTPS

For security reasons, HTTPS is required for a Service
Worker to register in the browser and accordingly act
on events (Gaunt, 2016). The reason for enforced se-
curity is described by Gaunt (2016), as using the “[...]
service worker you can hijack connections, fabricate,
and filter responses”.

3https://www.w3.org/TR/service-workers/

Progressive Web Apps: The Possible Web-native Unifier for Mobile Development

347



Figure 4: PWA installation flow in Chrome Canary.

4.3 Unification of Mobile App and Web
Experiences

An evident difference between web apps and regu-
lar mobile apps is their explorability. A regular app
requires search and installation via an app market-
place. Progressive web apps enable the best of both
approaches, where end-users can easily experience an
application through their web browser, then choose to
install it via an “Add to Home screen” banner prompted
(see Figure 4). The banner will only be prompted to
the user if certain qualifications are met (Pedersen,
2016). Figure 4 illustrates the installation process for
the PWA designed and implemented for this paper
(cropped screenshots).

The illustrated experience is per January 2017
only achievable by enabling the Improved PWA
Installation flag in the Chrome Canary for Android
settings. Without that flag enabled, the experience is
comparable to bookmarking a site to the home screen.

Together with the full-screen experience of pro-
gressive web apps, the installation prompt can be con-
sidered an advance in unification of end-user experi-
ence and mobile web perception. Instead of forcing
users to download an app from a marketplace, they
can experience the product in their web browser as a
regular website before installing it via the banner. As
we discuss in our list of suggestions for future work,
research on potential privacy and security concerns in
this regard should be of interest to all parties.

4.4 Measurement Comparison between
PWA, Interpreted and Hybrid Apps

Table 2 presents a comparison of three different mea-
surements: installation size, launch time and render
time. The installation size of the progressive web app
is about 157 times smaller than the React Native-based
interpreted app, and about 43 times smaller than the
Ionic Framework-based hybrid app. Where the hy-

brid app used more than 9 seconds to render the app’s
toolbar, the interpreted app used around 860ms on the
same task. The PWA rendered different results when
(a) Chrome Canary did not run in the background, and
(b) it did run in the background, regardless of open
website. This is due to PWA’s browser dependency.

Table 2: Measurement-comparison of approaches.

Measure Hybrid Interpreted PWA
Size of installation 4.53MB 16.39MB 104KB
Launch time 860ms 246ms 230ms
Time from app-icon 9242.1ms 862ms (a) 3152ms
tap to toolbar render (b) 1319ms

5 DISCUSSION

5.1 Basics

From the perspective of web-native unification, there
are certain major limitations to the PWA approach
compared to hybrid, interpreted and native apps. We
use this section to spark interest by elaborating on a set
of these limitations based on our findings, and suggest
that future research dives deeper into this regard.

As discussed by Malavolta (2016), a PWA cannot
access hardware- and platform-level features not sup-
ported by the respective browser. Examples of such
non-included features are native calendar and contact
list access. However, an increasing pool of platform
APIs are becoming available in newer browsers.

For progressive web apps to have the same poten-
tial as cross-platform app development, support for
Service Workers in Apple’s iOS Safari browser is a
requirement. Without such support, a PWA-enabled
website would not deliver a consistent experience
across browsers and platforms.

5.2 Feature Comparison

Table 1 highlighted differences in feature compatibil-
ity between approaches for app development. There
are certain profound differences between them, some
being inherent characteristics.

PWAs are the only option among the listed ap-
proaches that naturally enables testing of an app before
installation, due to being accessible in web browsers.
If app marketplace presence is required, the three other
approaches fully supports such, with a potential PWA
entry into the Microsoft app store.

Offline capabilities, push notifications and back-
ground synchronisation are available regardless of ap-
proach. Cross-platform compatibility is found in the
interpreted, hybrid and PWA approaches, the latter

WEBIST 2017 - 13th International Conference on Web Information Systems and Technologies

348



with some limitations. As mentioned, this is one of
the main reasons why cross-platform approaches have
become popular alternatives to native development.

For apps relying on features not found in or requir-
ing performance not achievable in a current browser,
the alternative approaches are more suitable. The three
artefacts developed as part of this paper are limited
in terms of device-platform communication require-
ments, as they do not require any APIs other than
those commonly found in browsers. Progressive web
apps are constrained to platform APIs made available
through the browser, thus relying on W3C and browser
vendors (Puder et al., 2014).

5.3 Measurement Comparison

Table 2 presented the results from three measurements
conducted for preliminary data gathering. It thereby
also provides an anchor for further research.

The results render the presence of certain trade-offs.
While the interpreted app installation size is 157 times
larger, it is also more than 3.5 times faster to render
meaningful content compared to the progressive web
app when launching the latter without having Chrome
running in the background. If launched with Chrome
already running, the gap between the two apps was
down to 457ms, still favouring the interpreted one.

The differences are more remarkable when com-
paring the interpreted app to the hybrid one, with the
latter using 10 times longer to render the toolbar. It is
worth noting that the hybrid app framework, Ionic 2,
was in beta release at the time of implementation, thus,
the render-time could be affected by this. However,
the code-base was built using production settings, as
recommended by the documentation. Thus, we made
efforts to mitigate and understand the render-time.

The presented results are limited in that the apps
were only tested on one specific device, the Google
Nexus 5X, running Android 7.0. The conducted tests
do not build on previous research or established meth-
ods for measuring performance. The purpose of the
tests was to gather and present preliminary results to
spark interest for further work. The named limitations
are owed to the very early stage of work on the topic;
in fact, our mitigation of limitations is even beyond a
typical position paper already.

6 CONCLUSION AND FURTHER
WORK

6.1 Conclusion

The industry is investing resources into progressive
web apps (PWA) and the development of learning ma-
terial. The lack of academic involvement denotes a
significant knowledge gap but at the same time pro-
vides research potential. This paper is an effort to raise
awareness of PWA in the academic community by
contributing with an introduction to the concepts and
technologies, comparison of feature and measurement
against established approaches, open source artefacts
for result verification, and suggestions for further re-
search.

Per January 2017, the Google Web Fundamentals
group is one of the leading driving forces behind advo-
cacy of PWAs. They could be considered as the main
publisher of learning material.

The current state of progressive web apps involves
a lack of certain hardware and platform APIs and fea-
tures that only (certain) cross-platform and native apps
can access. Recent browser advancements have been
forces of unification for the end-user app experience,
including, but not limited to, installable and native-
looking web apps through PWAs. While Chrome is
leading the way for PWA browser support, Apple’s iOS
Safari is yet to support the necessary Service Worker
API.

We find that there is much potential for PWAs to
become a unifier for web-native development without
the use of cross-platform frameworks. As an end-user,
the PWA installation process becomes more similar
to regular apps through new advancements in user ex-
perience aspects. Web apps can look, feel and act
similar to native, hybrid and interpreted apps. While
there are hardware and platform API limitations to
PWAs not found in the other approaches, product re-
quirements and specifications will in the end be the
deciding factor for choice of approach. We would
like to conclude with an encouraging note, a quote by
Archibald (2016) from the 2016 Google I/O Confer-
ence: “We want everything that ends up on the home
screen to be competitive with native apps. We want to
make the web a first-class part of the operating system
in the user’s mind”.

6.2 Suggestions for Further Work

One can possibly apply research questions from cross-
platform, native, and mobile web app development
to research on progressive web apps. This results in
a vast and existing knowledge base that can be used

Progressive Web Apps: The Possible Web-native Unifier for Mobile Development

349



as the foundation for PWA and next-generation web
research.

The list below provides suggestions for further re-
search of technical, economical, and sociological na-
ture:

• Continue the development of technical implemen-
tations for comparison and evaluation purposes
against established development approaches.

• In terms of social and economic aspects, look into
challenges such as mobile data fees in develop-
ing countries and associated costs in downloading
marketplace apps compared to progressive web
apps.

• Study the impact of “Add to Home screen” versus
installation of apps through the app marketplace.
Are users more willing to install a PWA as they
can test it beforehand? Will ad-hoc usage and
installation eventually merge?

• App marketplaces are constrained and deliver a
certain degree of security. Does the potential lack
of such constraints impact the user’s choice of
installing a PWA?

• Are there security and privacy risks newly intro-
duced with PWAs?

• Look into possible sales models for progressive
web apps, which currently disturbs the established
app marketplaces.

REFERENCES

Archibald, J. (2016). Instant loading: Building offline-first
progressive web apps.

Ater, T. (2017). Building Progressive Web Apps: Bringing
the Power of Native to the Browser. O’Reilly.

Ciman, M. and Gaggi, O. (2016). An empirical analysis of
energy consumption of cross-platform frameworks for
mobile development. Pervasive and Mobile Comput-
ing.

Corral, L., Janes, A., and Remencius, T. (2012). Potential
advantages and disadvantages of multiplatform devel-
opment Frameworks–A vision on mobile environments.
In Procedia Computer Science, volume 10, pages 1202–
1207. SciVerse ScienceDirect.

Dalmasso, I., Datta, S. K., Bonnet, C., and Nikaein, N.
(2013). Survey, comparison and evaluation of cross
platform mobile application development tools. In
Proc. 9th (IWCMC), pages 323–328.

Edwards, A. R. (2016). The building blocks of progressive
web apps – smashing magazine.

Gaouar, L., Benamar, A., and Bendimerad, F. T. (2016).
Desirable requirements of cross platform mobile devel-
opment tools. Electronic Devices, 5:14–22.

Gaunt, M. (2016). Service Workers: an introduction.

Gudla, S. K., Sahoo, J. K., Singh, A., Bose, J., and Ahamed,
N. (2016). Framework to improve the web application
launch time. In Proc. 2016 IEEE Int. Conf. on Mobile
Services (MS), pages 73–78. IEEE Press.

Heitkötter, H., Hanschke, S., and Majchrzak, T. A. (2012).
Evaluating Cross-Platform development approaches
for mobile applications. In Web Information Systems
and Technologies, Lecture Notes in Business Informa-
tion Processing, pages 120–138. Springer.

Heitkötter, H., Majchrzak, T. A., and Kuchen, H. (2013).
Cross-Platform Model-Driven Development of Mobile
Applications with MD2. In Proc. 28th ACM SAC,
pages 526–533. ACM.

Hume, D. A. (2017). Progressive Web Apps. Manning.
Joreteg, H. (2016). Installing web apps on phones (for real).
Latif, M., Lakhrissi, Y., Nfaoui, E. H., and Es-Sbai, N.

(2016). Cross platform approach for mobile appli-
cation development: A survey. In 2016 Int. Conf. on
Information Technology for Organizations Develop-
ment (IT4OD), pages 1–5. IEEE.

Mahemoff, M. (2016). Progressive web apps have
leapfrogged the native install model . . . but challenges
remain.

Majchrzak, T. A., Biørn-Hansen, A., and Grønli, T.-M.
(2017). Comprehensive analysis of innovative cross-
platform app development frameworks. In Proc. 49th
HICSS. IEEE Computer Society.

Majchrzak, T. A. and Heitkötter, H. (2014). Status Quo
and Best Practices of App Development in Regional
Companies. In Krempels, K. and Stocker, A., editors,
Revised Selected Papers WEBIST 2013, volume 189 of
LNBIP, pages 189–206. Springer.

Malavolta, I. (2016). Beyond native apps: Web technologies
to the rescue! (keynote). Pro. 1st Int. Workshop on
Mobile Development. ACM.

Malavolta, I., Ruberto, S., Soru, T., and Terragni, V. (2015a).
End users’ perception of hybrid mobile apps in the
google play store. In 2015 IEEE Int. Conf. on Mobile
Services, pages 25–32. IEEE.

Malavolta, I., Ruberto, S., Soru, T., and Terragni, V. (2015b).
Hybrid mobile apps in the google play store: An ex-
ploratory investigation. In Proc. 2nd ACM Int. Conf. on
Mobile Software Engineering and Systems, MOBILE-
Soft ’15, pages 56–59. IEEE Press.

Mercado, I. T., Munaiah, N., and Meneely, A. (2016). The
impact of cross-platform development approaches for
mobile applications from the user’s perspective. In
Proc. Int. Workshop on App Market Analytics, WAMA
2016, pages 43–49. ACM.

Osmani, A. (2015). Getting started with progressive web
apps.

Osmani, A. and Gaunt, M. (2017). Instant loading web apps
with an application shell architecture.

Palmieri, M., Singh, I., and Cicchetti, A. (2012). Compar-
ison of cross-platform mobile development tools. In
Proc. 16th Int. Conf. on Intelligence in Next Generation
Networks, pages 179–186. IEEE.

Pedersen, M. (2016). Progressive web apps: Bridging the
gap between web and mobile.

Perchat, J., Desertot, M., and Lecomte, S. (2013). Compo-
nent based framework to create mobile cross-platform

WEBIST 2017 - 13th International Conference on Web Information Systems and Technologies

350



applications. In Procedia Computer Science, vol-
ume 19, pages 1004–1011. ScienceDirect.

Puder, A., Tillmann, N., and Moskal, M. (2014). Exposing
native device APIs to web apps. In Proc. 1st Int. Conf.
on Mobile Software Engineering and Systems, pages
18–26. ACM.

Puvvala, A., Dutta, A., Roy, R., and Seetharaman, P. (2016).
Mobile application developers’ platform choice model.
In Proc. 49th HICSS, pages 5721–5730. IEEE.

Rahul, R. and Tolety, S. B. (2012). A study on approaches to
build cross-platform mobile applications and criteria
to select appropriate approach. In 2012 Annual IEEE
India Conference, pages 625–629. IEEE.

Rieger, C. and Majchrzak, T. A. (2016). Weighted evalua-
tion framework for Cross-Platform app development
approaches. In Wrycza, S., editor, Information Systems:
Development, Research, Applications, Education, Lec-
ture Notes in Business Information Processing, pages
18–39. Springer.

Rinaldi, B., Holland, B., Looper, J., Motto, T., and VanToll,
T. J. (2016). Are progressive web apps the future?

Rossi, J. (2016). The progress of web apps - microsoft edge
dev blog.

Russel, A. and Berriman, F. (2015). Progressive web apps:
Escaping tabs without losing our soul.

Smeets, R. and Aerts, K. (2016). Trends in web based
cross platform technologies. International Journal of
Computer Science and Mobile Computing, 5(6):190–
199.

Xanthopoulos, S. and Xinogalos, S. (2013). A comparative
analysis of cross-platform development approaches
for mobile applications. In Proc. 6th Balkan Conf. in
Informatics, BCI ’13, pages 213–220. ACM.

Progressive Web Apps: The Possible Web-native Unifier for Mobile Development

351


