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Abstract: Code Smells indicate potential flaws in software design that can lead to costly consequences. To mitigate
the bad effects of Code Smells, it is necessary to detect and fix defective code. Programmatic processing of
Code Smells is not new. Previous works have focused on detection and representation to support the analysis
of faulty software. However, such works are based on a syntactic operation, without taking advantage on
semantic properties of the software. On the other hand, there are several ways to provide semantic support
in software development as a whole. Ontologies, for example, have recently been usedl. The application
of ontologies for inferring semantic mechanisms to aid software engineers in dealing with smells may be of
great value. As little attention has been given to this, we propose an ontology-based approach to analyze the
occurrence of Code Smells in software projects. First, we present a comprehensive ontology that is capable
of representing Code Smells and their association with software projects. We also introduce a tool that can
manipulate our ontology in order to provide processing of Code Smells as it mines software source-code.
Finally, we conducted an initial evaluation of our approach in a real usage scenario with two large open-source
software repositories.

1 INTRODUCTION

Code Smells are defined as metaphors that describe
patterns associated with bad design and bad pro-
gramming practices (Van Emden and Moonen, 2002).
They can lead to issues in software maintenance (Ol-
brich et al., 2010). One well-known example of Code
Smell is God Class, which is related to poorly de-
signed classes that tend to concentrate functionalities
and relegate other classes to minor roles (Smith and
Williams, 2000). Common negative impacts of Code
Smells include (Tufano et al., 2015): (a) increasing
in both software change and fault proneness; and (b)
reduced understandability and maintainability of the
software. Thus, it is important to investigate the oc-
currence of Code Smells to prevent their bad effects
in software development.

Previous works in this area can be divided into
two main branches: (a) detection and visualization
of Code Smells, e.g., (Moha et al., 2010)(Fenske
et al., 2015), which rely on metrics obtained from the

software’s source-code to spot occurrences of Code
Smells; and (b) analysis of the effects of Code Smells,
e.g., (Chatzigeorgiou and Manakos, 2014)(Palomba
et al., 2014), which perform a statistical analysis of
the occurrence of Code Smells and provide insights
about their consequences in software development.

Related works are based on syntactic operations
without taking advantage of the semantic properties
of the software. They show that previous efforts have
given little attention to the association of semantics
with information obtained from the detection of Code
Smells. On the other hand, there have been exam-
ples to provide semantic support in software. Ontolo-
gies have been used as an effective tool to this end, as
can be seen in recent works, e.g., (Civili et al., 2013),
(Sivaraman, 2014), and (Daraio et al., 2016). Ap-
proaches to detection, visualization and analysis of
Code Smells may be enriched by the use of ontolo-
gies along with inferring semantic mechanisms to aid
software engineers in dealing with defective code.
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Rules and reasoners are key features related to
ontologies that can produce semantic information re-
lated to Code Smells. The association of such fea-
tures with detection tools, e.g., tools that detect Code
Smells, can help software engineers to manage their
occurrences. For instance, a reasoner can be used to
reveal developers who add Code Smells to a piece
of software. Once identified, the developers can be
trained in object-oriented programming techniques to
prevent further additions of smells to software. Fur-
thermore, ontologies are able to incorporate other
conceptualizations in such a way as to allow the ex-
pansion of the initially intended analysis (according
to principles related to the open-world assumption
(Djurić et al., 2005)). For example, in this work we
conducted a case study into two types of Code Smells
(God Classes and Brain Methods), however the result-
ing ontology can be expanded, later on, to add other
types of smells.

In this context, we propose an ontology-based ap-
proach to support the detection and analysis of Code
Smells in software projects. Our ONTOlogy for
Code smElls ANalysis (ONTOCEAN) is capable of
representing the knowledge necessary to keep track of
Code Smells and to evaluate their impact on software.

We have associated our ontology with a tool:
Ontology-driven Code smElls ANalyzer (OCEAN).
OCEAN is a source-code mining automation de-
signed to benefit from the information that Code
Smells can offer. OCEAN is integrated with Visminer
(Mendes et al., 2015), which is an API that furnishes
a set of functionalities that are capable of performing
the automated calculation of software metrics and de-
tection of Code Smells. As a proof of concept, we
also conducted a study to demonstrate the execution
of OCEAN to mine large open-source software repos-
itories: JUnit and Log4j. The intention is to showcase
OCEAN’s functionalities and the use of mined data
to populate instances of our ontology with the pur-
pose of enabling the inferrence of information related
to anomalous code artifacts.

As a result we were able to: (a) produce an on-
tology, ONTOCEAN, suited to represent information
related to Code Smells and to provide ways to detect
their presence and evaluate their impact by activating
reasoners upon semantic rules; (b) make available a
new tool, OCEAN, that is capable of populating ON-
TOCEAN with information extracted from software
projects.

The remainder of this paper is structured as fol-
lows: Section 2 introduces our ontology, ONTO-
CEAN, and all of its conceptualizations; Section 4 ex-
plains how our tool, OCEAN, was created and how it
is integrated with ONTOCEAN; Section 5 describes

the tests executed to evaluate the applicability of ON-
TOCEAN; conclusions and future work are discussed
in Section 7.

2 ONTOLOGICAL
REPRESENTATION OF CODE
SMELLS

One of the most widely known definition of what on-
tologies means is provided by (Gruber, 1993): “an
ontology is an explicit specification of a conceptu-
alisation”. ‘Conceptualisation’ represents an abstract
model of some aspect of the world and takes the form
of a collection of concepts and their respective at-
tributes and the relationships between the concepts.
Ontologies have attracted attention in several areas of
expertise, such as knowledge representation and man-
agement, information integration and semantic web.
To be effectively applied, ontologies must be com-
bined with reasoners. Reasoners ensure the quality
of the ontology and are important to exploit the struc-
tures encapsulated in it (Staab and Studer, 2013). Our
work is consistent with this view because it not only
presents an ontology but it also makes use of a rea-
soner to expand the capacity of our ontology to gen-
erate semantic knowledge related to Code Smells.

(Chandrasekaran et al., 1999) pointed out some
advantages of the use of ontologies: (a) Ontolo-
gies are fitting resources to represent the vocabu-
lary of a domain of knowledge - as we have mod-
eled Code Smells as an ontology we are providing
a vocabulary related to bad coding; (b) Ontologies
enable knowledge sharing - the resulting vocabulary
can be (re)used by other works to understand phe-
nomenon associated with bad software development
techniques; (c) Ontologies contribute to the expan-
sion of knowledge - this can be the case with a Code
Smells ontology as it is used to base other ontologies
which add concepts to the vocabulary we have pro-
vided. We are positive that the relationship between
ontologies and Code Smells can offer these advan-
tages.

According to the definition of ontology and its ap-
plication in the representation of concepts related to
Code Smells, we have ranked a set of requirements,
i.e., as we want our solution to have the aforemen-
tioned advantages we decided to transform them into
requirements. Thus, in order to evaluate our work we
managed to fulfil:

• REQ1 – the resulting ontology must contain
conceptualisations to represent Code Smells and
items of object-oriented programming which the
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smells are related to;

• REQ2 – the ontology has to be furnished with se-
mantic rules to support the inferring of informa-
tion associated with Code Smells;

• REQ3 – it must be compatible with reasoners so
that they can be invoked to produce the inferred
information.

These requirements were used to evaluate related
works and our own.

REQ1 is fulfilled by the items found in Figure 1
which illustrates the taxonomy of our proposed on-
tology, ONTOCEAN. ‘A’ points to VCS-related in-
formation; ‘B’ encloses Code Smells and sub-types:
Method-oriented and Class-oriented Code Smells;
‘C’ contains classes to represent Metrics and its sub-
types: Method-oriented and Class-oriented Metrics;
and ‘D’ points to object-oriented Classes and Meth-
ods to be associated with the calculated metrics and
detected Code Smells1.

The implementation of requirements REQ2 and
REQ3 are explained in the sections bellow.

An important part of the ontology is the set of
Code Smells-related conceptualizations. They are
used to represent the anomalies found in the source-
code. The ‘Commit’ class, for instance, is semanti-
cally associated with the ‘Clazz’ class to create lists of
classes which are affected by commits. A ‘ClassOri-
entedSmell’ instance can be associated with a ‘Clazz’
to indicate the occurrence of a class-like Code Smell
(e.g., ‘GodClass’) found in the source-code. Asso-
ciations (i.e., object properties relating the classes of
the ontology) can be created to represent the software
metrics (instances of classes inherited from the ‘Met-
ric’ class) which take part in the production rules used
to detect Code Smells. We have also added classes
to enclose the projects’ metadata: a list of commits
(‘Commit’) and a committer (‘Committer’) and the
repository (‘Repository’) from which the project is
mined.

ONTOCEAN’s classes are obtained from three
main sources: (a) the mined data found in project’s
VCS; (b) calculated by OCEAN after processing the
mined data; (c) the inferred information produced by
reasoners. Table 1 describes the classes and groups
them according to the way how they are created/pro-
duced.

It is also relevant to point out that the set of con-
ceptualizations we have embedded in the ontology is
not exhaustive; i.e., despite the fact that it suffices for
OCEAN, it can be expanded to include extra sets of
metrics and Code Smells.

1An expanded version of ONTOCEAN classes and their
relationships can be found at the end of the article

3 SEMANTIC INFERRING OF
CODE SMELLS

In this section we explain how we have embedded se-
mantic rules into ONTOCEAN with the purpose of
enabling the retrieval of Code Smell-related informa-
tion by inferring routines. By doing so, we were able
to fulfil requirement REQ2. The intention behind in-
serting Code Smells’ production rules into ONTO-
CEAN is to enable the ontology to point out instances
of defective code with the help of no other tool than a
reasoner. Thus, the ontology is self-sufficient in terms
of automatic retrieval of Code Smells.

Code Smells can be obtained by detection strate-
gies. For instance, in order to mine God Classes, such
strategies can test candidate classes against the rule
(Lanza and Marinescu, 2010)(Olbrich et al., 2010),

GC(C) =





1, ((WMC(C)> 47)
∧(TCC(C)< 0.3))
∧(AT FD(C)> 5),

0, otherwise,

(1)

where C is the class being inspected; WMC represents
the ‘Weighted Method Count’, which is the sum of the
CC (‘Cyclomatic Complexity’) (McCabe, 1976) of all
methods contained in C; TCC stands for ’Tight Class
Cohesion’ and counts the number of directly con-
nected methods of C; and ATFD, ‘Access to Foreign
Data’, is the number of attributes of foreign classes
accessed by C. WMC, TCC and ATFD are software
metrics that can be used by detection tools to find
God Classes. With the purpose of replicating the rule
we have added axioms to ONTOCEAN. The result is
shown in Figure 2. ‘A’ represents the top ontological
class, Clazz, indicating that only the individuals that
are classes (object-oriented classes) must be consid-
ered. ‘B’ restricts the measured value of the WMC
metric to greater than 47. ‘C’ constrains the TCC
metric to values lower than 0.3. ‘D’ limits the ATFD
metrics to values greater than 5.

ONTOCEAN is able to represent method-oriented
Code Smells as well. The Brain Method Code Smell
is applicable to methods (of classes) that concentrate
logic, a characteristic that must be avoided since they
tend to increase the complexity of software (Fowler,
1997). The occurrences of Brain Method can be de-
tected by applying the rule (Lanza and Marinescu,
2010),

BM(M) =





1, ((MLOC(M)> 65)
∧(CC(M)> 0.24)
∧(MN(M)> 5)

∧(NOAV (M)> 8))
0, otherwise,

(2)
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Figure 1: The taxonomy of ONTOCEAN.

Table 1: Origins of ONTOCEAN’s conceptualizations.

Origin Class Sub-classes Description

From VCS

Repository Software’s GIT repository
Commit Set of modifications on software’s artefacts
Committer Developer that pushes commits to the repository
Clazz Object-oriented classes from source-code
Method Methods contained in classes

Calculated Metrics ClassOrientedMetric Metrics that apply to object-oriented classes
MethodOrientedMetric Metrics that apply to methods of classes

From reasoners Code Smell ClassOrientedSmell Smells embedded in object-oriented classes
MethodOrientedSmell Smells embedded in methods of classes

Propagators Committers who introduce smells in software

Figure 2: Translating the GC detection rule as an ontologi-
cal axiom.

where M is the method being evaluated; MLOC repre-
sents ‘Method’s Lines Of Code’, which is the number
of lines of code in the method’s body; CC counts the
number of all the linearly independent paths of execu-
tion within the method; MN, ‘Max Nesting’, indicates

the maximum number of nested conditional tests in
the method; NOAV counts the ‘Number of Accessed
Variables’ to indicate the value of the variables ac-
cessed directly by the method.

The axiom equivalent to the Brain Method de-
tection rule is shown in Figure 3. Like the God
Class detection axiom, it comprises a set of metrics
and thresholds. ‘A’ points to the ontological class,
Method, used to filter out individuals that are not
methods.‘B’ includes methods that have a CC greater
than 7. ‘C’ grants that M is a Brain Method only if
its MLOC is above 30. ‘D’ constrains the maximum
nesting in M to greater than 5. ‘E’ limits the number
of accessed variables accessed by M to a value sur-
passing 5.

A reasoner (Abburu, 2012) can use the axioms
presented in Figures 2 and 3 to perform semantic in-
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Figure 3: Translating the Brain Method detection rule as an
ontological axiom.

ferring. As a result, occurrences of God Classes and
Brain Methods can be retrieved. The retrieval is per-
formed automatically, reducing the effort required by
software engineers to handle Code Smells detection
in projects.

Other axioms can be added to ONTOCEAN to ex-
pand its capacity to produce relevant information. For
instance, the axiom contained in Figure 4 is capable
of identifying developers (i.e., committers) who cre-
ate and propagate problematic code. ‘A’ points to the
ontological class, Committer, used to filter out indi-
viduals that are not developers. ‘B’ grants that only
committers who make modifications that insert Code
Smells are listed as smell propagators.

Figure 4: Axiomatic rule to identify Code Smells propaga-
tors.

All of the proposed axioms are tested against real
projects in Section 5.

ONTOCEAN was created and defined using
the second generation of Web Ontology Language
(OWL2)2. The language was used to model Code
Smells and respective axioms. The document exhib-
ited in Figure 5 is an excerpt from the God Class de-
tection axiom which is part of ONTOCEAN’s source-
code. It shows a rule of equivalence between a God
Class and a Class (God Class is a sub-type of Class) to
which a value of the TCC is measured and no-greater
than 0.3.

2https://www.w3.org/TR/owl2-overview/

Figure 5: OWL excerpt.

As OWL is an open format, ONTOCEAN can be
adapted to meet specific needs. The thresholds of the
metrics that take part in the smells detection rules can
be adjusted. For instance, the ontology can be modi-
fied to specify a threshold for TCC different from the
initial default (0.3).

Considering that we were able to represent Code
Smell detection equations (the ones illustrated in 1
and 2) as semantic rules (figures 2 and 3 respectively)
the fulfilment of requirement REQ2 is granted. In
Section 5 we will use the rules to extract instances
of Code Smells from the source-code of a software
project.

4 OCEAN, A TOOL TO
POPULATE ONTOCEAN

OCEAN is composed of a set of components that per-
form both the source-code mining and the production
of ontological individuals that represent Code smells.
OCEAN’s component-based architecture is illustrated
in Figure 6.

OCEAN relies on Visminer API to extract met-
rics from the source-code of software. Visminer of-
fers a collection of functionalities and automations
that are capable of translating source-code Object-
Oriented Classes into Abstract Syntax Trees (AST).
Java Development Tools (JDT)3 is the library used
by Visminer to create ASTs from source-code. Each
AST is analysed to obtain metrics that are evaluated
against Code smells production rules, such as 1 and
2. Along with the production of ASTs, Commits are
retrieved from GIT repositories and they come asso-
ciated with other relevant information: the Committer
who pushed the commit, the affected files and how
they were affected (e.g., lines that were added and/or

3http://www.eclipse.org/jdt/

An Ontology-based Approach to Analyzing the Occurrence of Code Smells in Software

159



Figure 6: The componentized architecture of OCEAN.

removed), the commit’s message and the date-and-
time when the commit was sent to the repository.

Java OWL API4 is another library used by
OCEAN. It is responsible for translating Visminer’s
output (VCS-related information and software met-
rics) into ontological individuals: Code Smells and
Code Smells propagators. As OCEAN runs, an in-
stance of ONTOCEAN is populated by the addition
of information extracted from the targeted GIT repos-
itory. As a result a new instance of ONTOCEAN is
created to encapsulate the individuals of the software
project under analysis. Thus, OCEAN provides an ex-
clusive instance of its ontology for every new piece of
software being investigated.

We have decided to create a new instance of ON-
TOCEAN for every new project. The purpose is to
isolate the mined/inferred information from the onto-
logical items that define our vocabulary about Code
Smells. That is to say, ONTOCEAN is a TBox5

and it represents our chosen classes to represent Code
Smells and related information. Each instance of ON-
TOCEAN is a new ABox6 that encapsulates TBox-
compliant statements about the vocabulary. There-
fore, it is possible to inherit different ABoxes (for
each different project being analysed) from the same

4http://owlapi.sourceforge.net/
5Terminological Box
6Assertional Box

unique TBox. While ONTOCEAN’s TBox works as
a template, we minimize the number of individuals
to be processed by reasoners by dispersing them into
different ABoxes.

At the end of the mining, instances of the classes
contained in the ONTOCEAN are produced. Figure 7
illustrates the instances and how they are connected to
each other. An instance of ‘Repository’ is associated
with its commits by the ‘hasCommit’ object property.
The ‘hasCommitted’ property points a ‘Committer’
to the commits he/she has pushed to the repository.
A ‘commit’ can affect (add/modify) several classes
(‘ClazzA’ and ‘ClazzB’), and this relationship is rep-
resented by the ‘affects’ object property. A ‘Clazz’
may contain one or more ‘Method’ (‘MethodA’ and
‘MethodB’) and this relationship is represented by the
‘contains’ property. The ‘hasMeasured’ identifies ei-
ther a ‘Clazz’ or a ‘Method’ associated with specific
metrics (‘ClassOrientedMetric’ and ‘MethodOrient-
edMetric’). ‘ClassOrientedSmell’ and ‘MethodOri-
entedSmell’ contain the rules that produce individuals
that are equivalent to ‘Clazz’ and ‘Method’ to which
the smells’s detection rules apply.

5 EVALUATING ONTOCEAN IN
USAGE SCENARIO EXAMPLES

To evaluate ONTOCEAN in usage examples, we used
it to store information mined by OCEAN from two
projects found in GITHUB: JUNIT7, which is a soft-
ware testing framework and LOG4J8, a logging API.
Both JUNIT and LOG4J have been applied in the
creation of much software, making them a relevant
choice for testing. They are public open source
projects with access to their source-code which makes
the generation of ASTs to obtain software metrics
possible. Figure 8 shows OCEAN being executed. ‘A’
points to the open source project being processed. ‘B’
shows the list of suspicious software artifacts found.
‘C’ is the output of the execution: a new instance of
our ontology.

Considering JUNIT, OCEAN scanned a total
amount of 2299 commits, resulting in the detection
of God Classes. Their presence was later confirmed
by the execution of a reasoner, HermiT OWL Rea-
soner(Horrocks et al., 2012), in the Protege9 envi-
ronment. It was revealed that all the instances of
God Class were related to only one specific class,
“org.junit.runners.ParentRunner”. In this case, we as-

7https://github.com/junit-team/junit4
8https://github.com/apache/log4j
9http://protege.stanford.edu/
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Figure 7: Mined instances of ONTOCEAN’s classes.

Figure 8: Executing OCEAN to mine a project.

sumed that the God Classes were introduced in the
past and had remained that way throughout the soft-
ware evolution, i.e., the same class that produced the
instance of God Class was found in early commits, but
the project was not revised to solve the anomaly later
on. The inferred instances of God Classes are exhib-
ited in Figure 9. ‘A’ is the ontological class that repre-
sents God Class to which the rule exhibited in Figure
2 is attached. ‘B’ points to the inferred instances of
God Class.

After mining 3561 commits from LOG4J, the Her-
miT reasoner revealed two types of Code Smells: God
Classes and Brain Methods. Figure 10 shows the in-
stances of Brain Methods that were found. ‘A’ is the
ontological class that represents Brain Method. All
the instances were produced by the rule shown in Fig-
ure 3. ‘B’ points to the instances of Brain Method.

ONTOCEAN is also capable of representing de-

Figure 9: JUNIT’s inferred God Classes.

Figure 10: LOG4J’s inferred Brain Methods.

tailed information about Brain Methods. Figure 11
shows data and object properties that were automat-
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ically created by OCEAN. The properties enable the
precise location of the methods that are Brain Meth-
ods. ‘A’ is the ontological class from which Brain
Method instances are inherited: Method. ‘B’ points to
object properties that represent the metrics that took
part in the detection: MN (Max Nesting), CC, NOAV
and MLOC (according to the rule shown in Figure
3. ‘C’ is the data property that identifies the method
that was detected as a Brain Method: ‘LocationInfo’
method.

Figure 11: LOG4J’s inferred Brain Methods.

The mining of both projects has also produced oc-
currences of Code Smell propagators. Such infor-
mation may be interesting in decision making. For
instance, the identified developers can be trained in
techniques and good practices to combat the occur-
rence of Code Smell. Figure 12 shows the list of Code
Smells propagators found in LOG4J. ‘A’ is the onto-
logical class that represents Code Smells Propagators
produced by the rule defined in Figure 4. ‘B’ points
to the inferred instances of propagators, each instance
identified by an email, which is the way each devel-
oper is uniquely identified in GITHUB.

Figure 12: LOG4J’s inferred Code Smells propagators.

By combining ONTOCEAN with a reasoner and
evaluating it against software projects we have man-
aged to fulfil requirement REQ3. The inferred in-
stances of artifacts affected by Code Smells were
manually checked to dissipate any doubt regarding
the detection of problematic code, i.e., we are posi-
tive that the association of ONTOCEAN with a rea-
soner is capable of extracting Code Smells from the
source-code of software projects.

6 RELATED WORK

To the best of our knowledge, the ontologies proposed
by previous works do not fulfil our requirements (as
stated in Section 2). Luo et al. (Luo et al., 2010), for
instance, developed an ontology to encapsulate Code
smells and to evaluate their impact on software. How-
ever they do not provide the resources to enable the
inferring of Code Smells (REQ2). For the same rea-
son we discarded the ontological solution proposed
by Cheng and Liao (Cheng and Liao, 2007).

Other works focus on partial data. This is the
case, for instance, with the ontology created by Mar-
tin and Olsina (de los Angeles Martin and Olsina,
2003). While they cover the representation of met-
rics, how such metrics can be used to detect smells is
not explained. Thus, REQ1 is not fulfilled.

Approaches proposed by (Kiefer et al., 2007),
(Rießet al., 2010), and (Tappolet et al., 2010) are
similar to our solution. They created ontologies to
represent software elements (e.g., packages, classes,
variables, Code Smells) and proposed the use of iS-
PARQL to detect instances of smells from mined
source-code. Reasoning, when applied, was not used
to retrieve smells, so REQ2 and REQ3 are not ful-
filled.

We did not revise works which analyse the pres-
ence of Code Smells without using ontologies. Our
analysis of related works did not take into considera-
tion works that do not output the detection of smells
as an open format like ontologies. This is important
because, as pointed out by a recent study conducted
by Fernandes et al. (Fernandes et al., 2016), Code
Smell detection tools have lacked ways to adequately
export analysed smells to reusable formats.

7 CONCLUSION AND FUTURE
WORK

It is important to mitigate or alleviate the problems
caused by the presence of Code Smells in software
projects. To do this, it is necessary to locate pre-
cisely the parts of the projects that have been affected
by defective coding. Considering that little has been
done to promote the use of ontologies and reasoners
to perform such a task, we present a combination of
an ontology (ONTOCEAN) and tools (OCEAN and
reasoners) to support software engineers in dealing
with Code Smells. In our understanding we have
opened the possibility of expanding the manipulation
of smells from the point of static analysis of code to a
semantically enriched approach.
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By outputting occurrences of Code Smells to on-
tologies we promote the reuse of this type of infor-
mation in a way that it would not be possible had we
chosen a static format as output (e.g., a PDF-based
report on the occurrences of Code Smells). Static
outputs are not easily subject to automated reuse as
ontologies are. As ontologies are written in a open
machine-readable format they show potential for var-
ied applications. In this respect, the information about
Code Smells can be expanded and/or reinterpreted to
meet other needs.

One may argue that the ontology can be re-
placed by other storage mechanism, e.g., relational
databases. Undoubtedly, using relational databases is
the preferred strategy to deal with information stor-
age, but we want to emphasize that the embedding
of semantic rules (as the ones used to infer the Code
Smells) could not be done as easily and intuitively as
with the use of ontologies.

As we conducted tests on large software projects
(as seen in Section 5) we realized that both the embed-
ding of detection rules into ontologies and their later
activation by reasoners can provide an automated way
to spot Code Smells. We were also able to expand
the set of axioms to process information beyond the
detection of defective code only. This the case with
identifying the developers who create and propagate
Code Smells. As for our initial requirements, they
were fulfilled:

1. REQ1: all of the information that is mined by
Visminer API was successfully mapped as on-
tological classes. Thus, we were able to repre-
sent software projects (and related information) as
well as Code Smells.

2. REQ2: although we have not tested a broader set
of Code Smells detection rules, we believe that
semantic axioms are able to represent them ade-
quately. Plus, they are applicable in combination
with reasoners to find instances of faulty code.

3. REQ3: granted, as we were able to activate a rea-
soner upon a populated instance of ONTOCEAN
to collect Code Smell data.

An ontology-oriented approach such as ONTO-
CEAN in association with a source-mining tool
such as OCEAN shows potential, if it is considered
that: (a) important information associated with Code
Smells can be represented as ontological entities; (b)
it is possible to represent Code Smells detection rules
as axioms to evaluate software metrics; (c) reason-
ers suche as HermiT can be used to create detection
strategies using the axiomatic rules as input; (d) the
variability of the data mined from software projects
can be used to support decision making processes to

guarantee the quality of coding tasks.
We have limited this work to experimenting on

the use of an ontology to represent Code Smells and
to make use of inferring mechanisms. However we
would like to investigate further the advantages that
an ontological approach to mine Code Smells can pro-
vide. It might be the case with using ONTOCEAN in
the context of Semantic Web. Computational agents
can collect Code Smell information from ontologies
synchronized with projects maintained in GITHUB
(or any other VCS) to provide services for software
developers, e.g., to either indicate or discard reuse of
software parts/components based on the occurrence
or absence of Code Smells; or to automatically infer
and notify the actions of bad coding propagators to
software projects supervisors and teammates.

It would also be interesting to implement varia-
tions of the Code Smell production rules or to make
the indication of different values for the thresholds
of metrics possible. Considering that ontologies are
not static formats, the instances of ONTOCEAN can
be evolved to encapsulate other rules. The new rules
could overlap the default ones and replace the detec-
tion strategies, expanding the scenarios illustrated in
this work.

It is also of our interest to embed the Hermit rea-
soner into OCEAN. All the examples of semantic in-
ferring and presentation of the mined information de-
scribed in this paper were performed by Protege, but
OCEAN could be evolved to execute reasoners sup-
ported by JAVA OWL API and provide high-level vi-
sualizations of Code Smells.

We encourage the replication of our tests and fur-
ther use of ONTOCEAN and OCEAN. With this pur-
pose, we have made the following available for down-
load and use:

1. ONTOCEAN’s set of ontologies 10.

2. The source-code of OCEAN 11.

3. Ontologies obtained from the mining of JUNIT
and LOG4J 12.
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Figure 13: Full display of ONTOCEAN’s elements.
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