
Together, Yet Apart
The Research Prototype Architecture Dilemma

Falko Koetter, Monika Kochanowski, Florian Maier and Thomas Renner
Fraunhofer IAO, Stuttgart, Germany

Keywords: Software Engineering, Service-oriented Architecture, Service Platforms, Distributed Systems.

Abstract: Distributed research projects combine the know-how of industry and research partners from different orga-
nizations and countries. In IT, joint software development of research prototypes is an integral part of such
projects. However, project partners have individual interests in the developments, ranging from creating new
projects to finishing a PhD thesis. This leads to a dilemma - components need to work together within the
projects, but have an individual purpose apart from the projects. In this work, we investigate the impact of
research project characteristics, in particular the aforementioned dilemma, on software architecture in research
projects. From expert interviews, we identify unique architectural challenges inherent to research projects. In
this position paper, we argue that these challenges must be considered when planning and executing research
projects.

1 INTRODUCTION

Every year, the European Union and national govern-
ments grant millions of Euros for research and devel-
opment in IT. All over the world research projects typ-
ically are joint ventures, with consortiums of indus-
try and research partners. These consortiums come
together in the project, researching, developing soft-
ware prototypes and evaluating them. Work on the
prototype is distributed between partners according to
capabilities and interests (Winkler et al., 2013). Af-
ter the project, the consortium may dissolve and keep
their parts of the prototype for further use. This leads
to a dilemma: For a successful research project, a
well-integrated and functional prototype needs to be
developed.

However to keep components usable after the
project, they need to be independent and fit for their
purpose after the project. Thus, organizational and
political considerations become a part of software ar-
chitecture, leading to challenges in research prototype
development.

In this work we will describe these challenges in
detail based on literature and interviews. For this re-
search, we conducted expert interviews with 10 re-
searchers and software developers with experience in
software engineering from 8 different distributed re-
search projects.

The remainder of this work is structured as fol-

lows. Section 2 gives an overview of software en-
gineering and architecture in distributed projects in
general and research projects in particular. Section 3
gives a motivational example of a research prototype.
Section 4 describes the characteristics of distributed
research conflicts including premises, goals and pro-
cesses. In Section 5, the impact of these characteris-
tics on software architecure and the resulting issues
are described. Finally, Section 6 gives a conclusion
and an outlook on future work.

2 RELATED WORK

In this section, we will investigate related work on
distributed software development and existing work
on software development in research projects.

(Grinter et al., 1999) investigates the impact of ge-
ographically distributed software development using
expert interviews. Different kinds of project and or-
ganization structures are investigated. It is shown that
clear assignment of responsibility is a critical success
factor. Negative impacts include the lack of infor-
mal communication, the making of decisions by cen-
tral entities without investigating the impact for other
stakeholders and higher efforts for integration and er-
ror fixing. It is also shown that ambiguity of require-
ments, responsibilities, etc. is a problem as it cannot
be resolved easily between geographically distributed

618
Koetter, F., Kochanowski, M., Maier, F. and Renner, T.
Together, Yet Apart - The Research Prototype Architecture Dilemma.
DOI: 10.5220/0006370106460653
In Proceedings of the 7th International Conference on Cloud Computing and Services Science (CLOSER 2017), pages 618-625
ISBN: 978-989-758-243-1
Copyright © 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



teams.
(Lawrence, 2006) presents a case study of a dis-

tributed research project between 9 US universities.
Findings include the conflict between research goal
and software development and the conflict between
the need for a reliable product versus the need for an
innovative proof-of-concept. Research projects lack
clear authority structures and a central authority. If
project managers are not seen as an authority their de-
cisions may not be followed. The case study stresses
the importance of a common goal. While some of
these findings are applicable to the topics of this work,
a key difference is that no industry partners partici-
pated in the project and a common software product
was developed.

In (Spencer et al., 2011) an overview of challenges
and opportunities for the management of distributed
research projects is given. The research shows the im-
portance of team building and a common goal, which
may be issues due to the ad-hoc nature of consortiums
in the grant process. Also, the lack of a central author-
ity is an issue.

(Howison and Herbsleb, 2013) investigates incen-
tives in scientific software development, showing that
while reputation and academic credit may be suffi-
cient motivation for software development; other in-
centives (e.g. financial) are needed for researchers to
integrate prototypes.

Methods for collaborative software engineering in
distributed research projects are outlined in (Derntl
et al., 2015). Identified challenges include different
interests of stakeholders, decision making and stake-
holder commitment. Suggested measures aim to lead
to a consensus and a convergence of software engi-
neering efforts. In regards to software architecture, an
Architecture Board with representatives of all stake-
holders is suggested, making binding architecture de-
cisions. While the suggested measures present well-
proven practices, it is questionable if they can be en-
forced in all research projects in spite of different ex-
isting practices and limited resources. Informal com-
munication is critical but difficult across sites.

(Winkler et al., 2013) investigates the differences
between research prototypes and products. Identified
issues include conflicts of interest, unclear and chang-
ing requirements and unstable software architecture.
As a research prototype typically is limited in regards
to stability, robustness, usability and fault tolerance,
these qualities need to be added in a quality-oriented
second development phase.

(Nguyen-Duc et al., 2015) offers a comprehensive
literature review of globally distributed software de-
velopment, identifying common issues like less fre-
quent communication, large number of communica-

tion partners, difficulty in scheduling meetings, the
aversion to change processes to align with partners,
difficulty in sharing responsibility across different
partners and the importance of coordination across
company boundaries. However, this literature review
did not find work related to research projects in par-
ticular.

An older literature review regarding virtual teams,
i.e. geographically and/or organizationally distributed
team teams, is given in (Powell et al., 2004). Identi-
fied issues include the importance of informal com-
munication and knowledge sharing, the possible lack
of social relationships between team members, the
importance of trust and common goals. Results com-
paring the performance and satisfaction of traditional
and virtual teams are mixed.

The issues and possible solutions identified in
related work versus their applicability in research
projects are outlined in Table 1. Two things can be
shown: most of the issues on distributed development
of software are also issues in research projects, but
not all. Many typical countermeasures are difficult to
enforce in research projects due to the distributed or-
ganization and budget constraints. In the following
we will outline the unique premises and challenges in
research projects.

3 MOTIVATIONAL EXAMPLE

A motivational example derived from previous re-
search projects is shown in figure 1. It shows an ap-
plication scenario from the internet of things, where
certain physical items, so-called tools, can be booked,
dynamically scheduled, and secured for access man-
agement. Software vendor 1 (SV1) has an existing
product for the management of these tools. Within
the project scope, this is used as a basis for exten-
sion with online booking components. A University
(UNI) is performing research on dynamic allocation
of things in the internet of things, which has to inte-
grate with the booking subsystem. Another software
vendor (SV2) is specialized in security and focuses
on related tasks. Using RFID technology, SV2 de-
velops software and some minor hardware extensions
for access management for the tools. Worker data for
end users (USER) already exists in a payroll system,
which has to be integrated into the developed soft-
ware. Additionally workers have to be notified when
changes in the booking of their tools arise, but it is
unclear who will implement this component.

Together, Yet Apart - The Research Prototype Architecture Dilemma

619



Table 1: Issues and possible solutions versus their applicability in research software development projects.

Typical problem Typical solutions Comments on appli-
cability in research
projects

Applicability

Distributed software
development

Clear assignment of
responsibility

No central authority Difficult

Lack of informal
communication

Common toolset Decision on toolset
based on different
cultures and budget
constraints

Moderate

Lack of informal
communication

Geographic proxim-
ity

Importance of
project meetings for
doing actual soft-
ware development

Moderate

Lack of informal
communication

Teambuilding mea-
sures

Takes long time with
many partners (de-
pending on size)

Applicable

Lack of informal
communication

Process (agile devel-
opment methods)

Decide on one devel-
opment process (de-
pending on experi-
ence)

Moderate

Decisions by central
entities without in-
vestigating the im-
pact

Better decisions No central entity Not a problem

Ambiguity of re-
quirements

Good specification Difficult in research
context due to nature
of research

Difficult

Lack of common
goal and different
interests

Ensure common goal
in project definition

Evaluation of
projects drafts does
not focus on this
point

Difficult

Lack of incentives
for prototype integra-
tion

Financial, academic,
etc.

Should be applied to
show impact on re-
sults

Difficult

Stakeholder commit-
ment

Architecture board to
force consensus

Architecture as a
compromise, does
not ensure best
possibility

Moderate

4 CHARACTERISTICS OF
SOFTWARE DEVELOPMENT
IN RESEARCH PROJECTS

Compared to software product development, i.e. the
development of a software product for internal or ex-
ternal users, software research prototype development
operates on different premises, processes and goals.
Each of these aspects will be analyzed in the follow-
ing subsections.

4.1 Premises

Whereas in software product development software is
developed for one or multiple customers from which
requirements stem, in a research project no clear re-
sponsibility for requirements is defined. While re-
search grants are given on the basis of a grant pro-
posal, thesis proposals are not as detailed as a require-
ments specification, not least because research by its
very nature is not as predictable as product develop-
ment. Therefore, other sources of requirements are
used. Requirements can be gathered from pilot users,

CLOSER 2017 - 7th International Conference on Cloud Computing and Services Science

620



Data Flow Legend Component Database 

Booking 
Frontend 

(SV1) 

Booking 
Master Data 

(SV1) 

Tool 
management 

(existing) 
(SV1) Schedule 

Master Data 
(UNI) 

Scheduling 
(UNI) 

Tool States 
(SV2) 

Access 
Management 

(SV2) 

 
 

Tools (RFID) 

Worker 
Notification 
(Unknown) 

Worker Data 
(existing) 

(USER) 
Project Scope 

Extended Product (SV1) New Product (SV2) 

Figure 1: Architecture of example tool management research prototype.

Figure 2: Goals, premises, architecture and process in re-
search projects.

surveys, literature research, the research questions to
be answered and the intended future use of the pro-
totype, which varies between the different stakehold-
ers. Compared to conventional customers, the fund-
ing bodies are no source for requirements, as they are
more concerned about the impact of the project rather
than personal use of the results.

As there are multiple sources of requirements,
there is also no central product owner for the research
prototype. Mostly this is resolved by the project man-
ager. However, the project manager will not use the
resulting software and is from one of the involved

companies, therefore has to balance the needs of his
company team, the complete project team, the project
goal, company goals, etc. As in research projects each
company is mainly responsible for its own results,
differences in opinion need to be negotiated between
project partners under the lead of the project manager.
Typical examples include the responsibility for imple-
mentation of shared features and the implementation
of additional features not covered by the initial grant
proposal or features which are needed in the project
software, but not specified within one partner.

As software development teams consist of em-
ployees from all project partners, they are geographi-
cally and organizationally distributed. Depending on
the partner type, the software development experience
of the teams may differ. Researchers do not always
see themselves as software developers, whereas soft-
ware companies do. In contrast to product develop-
ment projects, where it can be largely assumed that
nearly all involved developers want to improve in the
field of software development and see it as their main
responsibility to provide good quality code, this might
differ in research projects (see also subsection goals).

Additional premises include the software de-
velopment process companies used before, tools
that should be used, individual skill levels, project
premises like milestones defined in the project, etc.

Together, Yet Apart - The Research Prototype Architecture Dilemma

621



The tools and process developed have to be negotiated
- but as each company largely works on its own, usu-
ally a two-step development process evolves: (1) de-
velopment of the interfaces which concern more than
one partner (2) development of the features that con-
cern only one partner. For (1), one solution might be
a workshop which defines the interfaces and the im-
plementation plan (waterfall model), whereas for (2)
one company might use Scrum, and another one no
process at all because only one person is involved.

4.2 Goals

While the goal of software product development is
software, in a research project the resulting software
is one of multiple goals.

For the funding bodies, goals include the quality
of research, the scientific impact, the economic po-
tential as well as the positive publicity. Typically, re-
sults and progress are documented in reports. These
reports may contain descriptions and results of devel-
oped software, but the software itself is not delivered.

For the project partners, the importance of soft-
ware may vary. For industry partners, the software
may be the cornerstone of potential future products or
may be integrated into existing products. For research
partners, software may just be a means to answer the
research questions without any planned reuse after the
projects. Often, individual researchers’ foremost goal
is to complete research papers or a dissertation, deem-
phasizing software quality. Thus, the lifecycle of soft-
ware varies between different project partners. For
some, the prototype is a long-term result of the re-
search project while for others the prototype is only
a means to achieve results. Therefore, expectations
of software quality, especially regarding usability, re-
silience and tolerable bugs will differ.

The experts noted that the different goals of the
project partners and their project team members are
one important source of architectural and software de-
velopment process opinions, negotiations, and deci-
sions.

4.3 Processes

The typical software development process consists of
several, more or less similar steps: Strategy, Analy-
sis, Concept, Implementation, Test, Go-Live (Jacob-
son et al., 1999). In agile development these steps
are repeated to iteratively develop a prototype, em-
phasizing steps like implementation and test while
spending less time on specifications, etc. (Beck et al.,
2001). However, research project goals include usu-
ally some kind of textual documents (so-called deliv-

erables), where effort has to be spent on specifica-
tions. Based on these, the development starts, but -
as already known in traditional software development
models - these documents are produced once typically
and not adapted anymore - the software outdates the
documents at some point in time.

Development processes in research projects of the
interviewees typically followed a loosely coupled it-
erative process. Software components are developed
by partners and then integrated, e.g. at the end of
work packages or for important milestones like model
trials. While these processes are iterative, they are not
completely agile. One factor is the lack of coordina-
tion and transparency in planning tasks of a partner,
the other reason are the usually longer intervals be-
tween iteration compared to methods like SCRUM.
Furthermore, documentation cannot be deemphasized
as it is a result for the funding bodies, and testing
is often not sufficiently included in project effort and
time planning. The reasons for this are manifold: the
project goal is politically usually to do research, not
spend time on product development. On the other
hand, pilot applications are needed to prove project
results. Resources are limited - as they always are -
but to win a research project usually the innovative
features are stressed, not the standard requirements
for software in general (reliability, scalability, etc.).
Therefore, time for testing is cut. On the other hand,
some industry partners offer mature products to be
incorporated in the research prototype. While these
offer a high degree of maturity and usability, the re-
search project may clash with the established devel-
opment process of the product, causing for example
compatibility and prioritization conflicts between new
product and research features.

The lack of a central authority impacts develop-
ment processes not only due to lack of a process
owner, but also in terms of conflict management. Dif-
ferent views on requirements and effort estimates can
often not be resolved by researchers, who strive to
have a good working relationship, leading to a post-
ponement mindset. The interviewees stress the impor-
tance of clearly defined development phases and their
associated results. Multiple integration steps should
be planned to avoid a so-called big bang integration,
where all components are integrated at the same time
(they usually aren’t).

Additionally, the importance of a solid conflict
resolution process is common between all reviewed
projects. A single partner not achieving a develop-
ment milestone may lead to issues for all other part-
ners. Reasons for this may range from underesti-
mated technical challenges and employee turnover to
bankruptcy of a partner. In case of delays or partner

CLOSER 2017 - 7th International Conference on Cloud Computing and Services Science

622



departure a common solution must be agreed upon to
continue the project in a useful way.

5 SOFTWARE ARCHITECTURE

Conway’s law states that ”organizations which design
systems are constrained to produce designs which are
copies of the communication structures of these or-
ganizations” (Conway, 1968). In research projects,
communication structures are characterized by geo-
graphical and organizational division. This limits the
flow of information, not only because of increased ef-
fort to communicate (Herbsleb and Grinter, 1999a),
but also because development artifacts like source
code are not fully shared between all developers.

Thus, software architecture in research projects
are bound by the following constraints:

• Software components need to be separated be-
tween project partners.

• Interfaces between components (and partners)
need to be clearly defined.

In addition, the following constraints may apply
to individual partners:

• Existing software components need to be reused

• Compliance to individual standards and best prac-
tices needs to be maintained

• Integration with existing software not relevant to
the research project

• Software components need to be able to operate
without components of project partners

5.1 Software Architecture Issues

When creating a software architecture within the
aforementioned constraints, some issues arise and
need to be addressed. In this section we describe is-
sues from current and past research projects as well
as methods used to address them.

Tool Compatibility
Resulting from existing best practices and stan-

dards, different tools may be used for the same task.
While data formats, interface definitions, etc. are
mostly compatible between modern IDEs, this is not
the case for other tools.

One example are modeling tools, e.g. for UML.
Common models are often used to arrive at a joint
understanding of the research prototype, as well as
its interfaces and components. However, if different
modeling software tools are used, files may be incom-
patible, resulting in high effort to maintain common

models or, if that effort is not undertaken, in outdated
or fragmented models.

Selection of Standards
For purposes of interoperability, standards should

be used within a research prototype. In distributed
systems, important standards are communication pro-
tocols (e.g. SOAP or REST) and data formats (e.g.
XML or JSON). Ideally, a common standard should
be agreed upon between all project partners based on
industry best practices, requirements and know-how.
However, if the project partners have different best
practices or want to use existing software for which
design decisions are already made, finding common
ground is hard, as each choice would mean consider-
able integration effort for at least one partner.

While it is possible to use adapters and enterprise
application integration solutions (e.g. an enterprise
service bus), these add additional expenditures for de-
velopment and operation. If no partner is willing to
provide a central solution, for example because no
budget was allocated for this task, the only viable re-
sult is a point-to-point integration of software compo-
nents, resulting in additional efforts for each partner
and a suboptimal system architecture.

Data Management
Part of software architecture design is master data

management, i.e. specifying how data is stored and
which component is the principal system govern-
ing the data. Considering that partners may want
their components to run standalone after the re-
search project, this question has political implica-
tions. Software components relying on data storage
from another partner cannot run without that part-
ners’ software. If each partner wants to maintain data
sovereignty, the result may be fragmentation of mas-
ter data. E.g. in the motivational example, bookings
remain in the database of SV1, while the schedule
containing the bookings remains in the database of
UNI. Such fragmentation means redundancy in data,
as different aspects of the same entity (e.g. a book-
ing) are stored across multiple databases. This has
far-ranging effects on the software, including consis-
tency and traceability.

Transactions
Business activities should be transactional. How-

ever, as distributed research prototypes are loosely
coupled and data is often distributed between differ-
ent systems, transaction safety may not be guaranteed.
This may lead to inconsistent data if the handoff be-
tween different partners’ components fails. E.g. in
the motivational example, a booking may be created
in the Booking Frontend of SV1, but due to an error
not scheduled by the Scheduling component of UNI.
Therefore, a booking exists without being scheduled.

Together, Yet Apart - The Research Prototype Architecture Dilemma

623



Without correct error handling this inconsistency may
lead to incorrect behavior, e.g. the worker unexpect-
edly not getting a tool.

Considering that research prototypes are tested
less than comparable software products, errors during
operations are to be expected, which may lead to con-
siderable efforts tracing and fixing data consistency
errors.

Traceability
For locating and fixing errors, it is important to be

able to trace the execution of software. In distributed
systems, this presents unique challenges, as execut-
ing systems are heterogeneous, run in parallel and do
not have a global state (Beschastnikh et al., 2016). In
research projects, an additional hurdle is the organi-
zational aspect. For each partner, the other partners’
software is essentially a black box and cooperation is
needed to trace bugs across components.

If existing systems are used, another hindrance
may be the lack of global IDs for data items. For ex-
ample, the ID of a booking may differ between the
databases of SV1, SV2 and SV3. In this case, even
identifying the same data item requires additional ef-
fort. To improve traceability, global IDs should be
used for the same data item.

Similarly, the state of a data item is not easily as-
certained in distributed systems. In the motivational
example, to determine the state of a booking, the state
data of the booking itself, its position in the schedule
and the state of the booked tool need to be known,
necessitating data from three project partners. If re-
sources are limited, adequate administration front-
ends to view this data online may not exist.

Integration
Research projects operate under a tight schedule.

Software must not only be created during the project
timeline, but must also be used and evaluated to
achieve actual research results. Thus, an early inte-
gration of components is critical to ensure compo-
nents work together and are sufficient for pilot use.
However, integration in distributed projects is also as-
sociated with high costs, as developers are in differ-
ent locations and have different development and code
styles (Herbsleb and Grinter, 1999b). Consequently,
effort for integration is often underestimated. Com-
bined with different levels of commitment by part-
ners this may lead to only partially integrated systems,
which do not support all features and have insufficient
error handling.

Resilience
As components tend to be developed individually

first, resilience is first handled on a component level.
Error handling and recovery in the combined solution
requires a high degree of coordination between com-

ponents, e.g. for replaying process steps, rolling back
updates, etc. As this coordination does not benefit
project partners beyond the project scope and can only
be implemented after the already time-constrained
implementation of individual components, resilience
of research prototypes tends to be low.

In the motivational example, for a tool booking
to be successful, all four software components of the
process must work in sequence. If an error occurs
at any component, the whole process fails. As the
state is distributed, recovery from such an error is not
possible without cooperation between all project part-
ners.

Some interviewees noted they added software
components to compensate for issues the partners
were unable or unwilling to fix, for example a caching
system due to unexpected downtime and a plausibility
check for calculation formula due to unhandled bugs.

Unclear Responsibilities
As described, each partner has individual goals

and responsibilities in a research project. This in turn
dictates the software components, a partner is respon-
sible for. Due to time pressures during the proposal
phase and the open-ended nature of research, often
additional necessary components are identified during
a project. If no effort was planned for such a compo-
nent and it matches no partners’ individual interest,
there is no way to determine a responsible partner for
the additional workload. In the motivational exam-
ple, the need for a worker notification component was
identified during the project, but it is unclear by which
partner it will be implemented. Similarly, if responsi-
bilities like error handling and input validation are not
precisely defined for existing components, partners
may omit such features in their components, leading
to additional efforts by partners re-implementing this
functionality in the requesting component.

While some of the challenges outlined above are
inherent to the nature of distributed projects, oth-
ers can be mitigated or avoided using organizational,
technical and architectural solutions. Though all in-
terviewees experienced some of the challenges, all
were confident that software development in dis-
tributed projects can be successfully managed, pro-
vided the premises are taken into account. In partic-
ular, more experienced interviewees with more than
one research project explained lessons they learned
and applied in further research projects.

6 CONCLUSION AND OUTLOOK

In this work we described the dilemma of software
architecture in distributed research projects - compo-

CLOSER 2017 - 7th International Conference on Cloud Computing and Services Science

624



nents must work together in the context of the project
but are built to function apart for later use. We de-
scribed the characteristics of software development in
distributed research projects and used them to show
constraints and resulting challenges for software ar-
chitecture. Software architecture is a critical success
factor in software development. Researchers and de-
velopers should be aware of the unique architectural
challenges in research projects as well as their and
their partners’ individual interests.

Based on the results of this position paper, we plan
to investigate new and existing technical solutions and
architectural patterns in regards to the presented chal-
lenges. In particular, integration methods in enter-
prise like Continuous Integration, Service-Oriented
Architecture, REST, Enterprise Service Bus, and Mi-
croservices should be investigated in regards to their
applicability for research prototypes.

While the high individuality of research projects
makes a one-size-fits-all solution unlikely, a set of
architectural patterns and best practices would con-
tribute to ease development of research prototypes
while still fulfilling individual requirements.

ACKNOWLEDGEMENTS

The authors would like to thank all interview partici-
pants.

REFERENCES

Beck, K., Beedle, M., Van Bennekum, A., Cockburn, A.,
Cunningham, W., Fowler, M., Grenning, J., High-
smith, J., Hunt, A., Jeffries, R., et al. (2001). Man-
ifesto for agile software development.

Beschastnikh, I., Wang, P., Brun, Y., and Ernst, M. D.
(2016). Debugging distributed systems. Queue,
14(2):50:91–50:110.

Conway, M. E. (1968). How do committees invent. Data-
mation, 14(4):28–31.

Derntl, M., Renzel, D., Nicolaescu, P., Koren, I., and
Klamma, R. (2015). Distributed software engineering
in collaborative research projects. In 2015 IEEE 10th
International Conference on Global Software Engi-
neering, pages 105–109. IEEE.

Grinter, R. E., Herbsleb, J. D., and Perry, D. E. (1999). The
geography of coordination: dealing with distance in
r&d work. In Proceedings of the international ACM
SIGGROUP conference on Supporting group work,
pages 306–315. ACM.

Herbsleb, J. D. and Grinter, R. E. (1999a). Architectures,
coordination, and distance: Conway’s law and be-
yond. IEEE software, 16(5):63.

Herbsleb, J. D. and Grinter, R. E. (1999b). Splitting the or-
ganization and integrating the code: Conway’s law re-
visited. In Proceedings of the 21st international con-
ference on Software engineering, pages 85–95. ACM.

Howison, J. and Herbsleb, J. D. (2013). Sharing the spoils:
incentives and collaboration in scientific software de-
velopment. In Proceedings of the 2013 CSCW confer-
ence, pages 459–470.

Jacobson, I., Booch, G., Rumbaugh, J., Rumbaugh, J., and
Booch, G. (1999). The unified software development
process, volume 1. Addison-Wesley.

Lawrence, K. A. (2006). Walking the tightrope: The balanc-
ing acts of a large e-research project. Computer Sup-
ported Cooperative Work (CSCW), 15(4):385–411.

Nguyen-Duc, A., Cruzes, D. S., and Conradi, R. (2015).
The impact of global dispersion on coordination, team
performance and software quality–a systematic liter-
ature review. Information and Software Technology,
57:277–294.

Powell, A., Piccoli, G., and Ives, B. (2004). Virtual teams:
a review of current literature and directions for future
research. ACM Sigmis Database, 35(1):6–36.

Spencer, D., Zimmerman, A., and Abramson, D. (2011).
Special theme: Project management in e-science:
Challenges and opportunities. Computer Supported
Cooperative Work (CSCW), 20(3):155–163.

Winkler, D., Mordinyi, R., and Biffl, S. (2013). Research
prototypes versus products: lessons learned from soft-
ware development processes in research projects. In
European Conference on Software Process Improve-
ment, pages 48–59. Springer.

Together, Yet Apart - The Research Prototype Architecture Dilemma

625


