Learning Concurrency Concepts while Playing Games

Cornelia P. Inggs, Taun Gadd and Justin Giffard
Computer Science, Dept. of Mathematical Sciences, Stellenbosch Univ., Private Bag X1, 7602 Matieland, South Africa

Keywords:

Abstract:

Concurrency, Game, Learning, Programming.

We think that people will find it easier to learn concurrency concepts if they can play a game that challenges the

player to solve puzzles using the same techniques required by a programmer to develop concurrent programs.
This article presents two such games in which multiple threads of control are represented by multiple avatars
that can perform actions concurrently in a game environment. The player controls the avatars by specifying a
sequence of actions for each avatar to execute using a block-based visual syntax, independent of programming
language. The avatars execute their actions in the game environment, showing the effect of every action.

1 INTRODUCTION

People typically find it more difficult learning how
to develop concurrent programs than sequential pro-
grams. Many programmers start by learning how to
develop programs with one thread of control which
execute a sequence of instructions. Such sequential
programs may contain branching conditions, which
result in multiple possible execution sequences, but
during a particular run of a sequential program only
one sequence of instructions is followed, as deter-
mined by the input given to the program.

In a concurrent program multiple tasks or logical
threads of control can be in progress at any instant.
The instructions of the different threads of control can
be executed in parallel, i.e., simultaneously on sep-
arate execution units, or the instructions can be in-
terleaved and executed on a single execution unit as
a sequence of instructions, but in this case the par-
ticular sequence is not only determined by the input
given to the program. In a concurrent program the
order in which instructions are executed, whether si-
multaneous or in sequence, is nondeterministic and
is influenced by conditions outside of a user’s control,
such as the scheduler, the load of the system, and con-
tention for system resources.

This nondeterministic execution order of instruc-
tions, of which the effect is not immediately visi-
ble, and the large number of possible execution se-
quences that a concurrent program can have as a re-
sult, makes it difficult to write error-free concurrent
code or to reproduce an error that occurs only for
some execution sequences. Concurrency related er-

Inggs, C., Gadd, T. and Giffard, J.
Learning Concurrency Concepts while Playing Games.
DOI: 10.5220/0006374705970602

rors occur when there are dependencies between in-
structions, which require sharing of information be-
tween different threads of control, which in turn re-
quires instructions to be executed in a certain order—
or not simultaneously with other instructions—to pre-
serve correctness.

Programmers that develop concurrent programs
therefore need to write code that will be correct for
any input data as well as any order in which instruc-
tions are executed. This requires an understanding,
not only of how to divide work between threads of
control, but also of how to share information between
threads of control and how to use synchronisation
techniques to share information safely—and without
introducing further errors such as deadlocks.

One way to learn a new concept is to learn the
same concept in the context of a familiar setting and
then transfer the knowledge to another setting. For
the introduction of sequential programming concepts,
a wide range of computer games have been developed
and are available online, from games that provides a
visual block-based syntax for specifying sequences
of actions (Google, 2015; MIT; Lightbot), to games
that require specifications in a programming lan-
guage (MIT, 2015; HopScotch, 2016; CodeCombat,
2016). Game-oriented tutorials for learning concur-
rency concepts have also been developed, but those
that were found available online require programming
language knowledge (Hudecek and Pokorny, 2016).
We think a game with a visual block-based syntax
for specifying sequences of actions and visual feed-
back of their effect in the game would make it easier
for people to learn concurrency concepts. In fact, we

597

In Proceedings of the 9th International Conference on Computer Supported Education (CSEDU 2017) - Volume 1, pages 597-602

ISBN: 978-989-758-239-4

Copyright © 2017 by SCITEPRESS — Science and Technology Publications, Lda. All rights reserved

SGoCSL 2017 - Special Session on Serious Games on Computer Science Learning

think it should be possible for a child of eight or nine
years old, mature enough to think abstractly, to learn
concurrency concepts.

2 RELATED WORK

A number of applications for teaching sequential pro-
gramming concepts have been developed. The appli-
cations most related to our work are those that use a
game-oriented approach and a visual syntax indepen-
dent of programming language. Blockly Games and
Lightbot are examples of such games and served as
inspiration for our game (Google, 2015; Lightbot).

Blockly Games is a set of games that has been
developed for children to learn sequential program-
ming concepts such as conditional and control-flow
statements (Google, 2015). Users are provided with a
game environment that contains objects and Google’s
Blockly editor, which contains interlocking blocks
(Google, 2016). Users are given a problem to solve
or a task such as: move the turtle object a number
of steps forward to reach the patch-of-grass object.
The blocks represent coding concepts and, for a se-
quence of blocks, the Blockly library can return syn-
tactically correct code in the language chosen from
the supported list of languages.

Lightbot provides, similar to Blockly Games, a
game environment with an avatar and an editor with
action blocks (which represent conditional or control-
flow statements) that can be placed in sequence to ma-
nipulate the avatar (Lightbot). It provides a sequence
of predesigned puzzles to solve, which increases in
difficulty and is divided into groups where each group
starts with the introduction of a new block (code con-
cept). Each puzzle only requires the use of blocks that
have been introduced in a previous group or at the
start of the current group. The simplicity of Light-
bot’s syntax places even more emphases on solving
problems using coding concepts (without having to
learn the syntax of a programming language) than the
interlocking block-based games.

There are also non-game-oriented programming
tools available that provide a block-based syntax sim-
ilar to Blockly Games, such as Scratch (MIT), App
Inventor for Android devices (MIT, 2015), and Hop-
scotch (HopScotch, 2016). These tools do not give
a user tasks to solve, but provide the user with an
empty execution environment, where they can create
their own programs by placing objects in the execu-
tion environment and sequences of blocks in the ed-
itor to control when and how to add or move objects
or when to play sound clips, for example.

On the other hand, games that require users to

598

write code in the syntax of a real programming lan-
guages also exist. Code Combat, for example, gives
users problems to solve or a task to complete in a
game setting, but requires the user to write the se-
quence of actions for the avatar to execute, in the
syntax of Python, JavaScript, HTML, CSS, jQuery,
or Bootstrap (CodeCombat, 2016).

There are three game-oriented approaches, de-
signed to teach concurrency concepts, that are related
to our work. The first, Deadlock Empire, is the only
game-oriented application for teaching concurrency
concepts that we could find available to play online
(Hudecek and Pokorny, 2016). The Deadlock Em-
pire requires a user to complete a sequence of tuto-
rials/challenges; in each the player is presented with
two threads and the objective of the player is to sched-
ule the instructions of the threads such that the code
breaks; revealing, for example, a race condition or a
deadlock. This game is particular good at showing the
effects of nondeterminism and the errors that can re-
sult when an incorrect execution order is chosen, but
it is programming language specific: one has to be
able to read code similar to the C syntax.

The second is a series of activities that have been
designed to help students build an intuition about syn-
chronisation by managing “railway semaphores” us-
ing an open source train simulation game (OpenTDD,
2014). It was designed to be a lab project; the students
download the OpenTDD simulator as well as a set
of three activities, which include OpenTDD scenario
files and game files and once they have installed the
required software, it typically takes them less than an
hour to complete the activities (Marmorstein, 2015).
The last is a proposal for an educational game that
could be used to teach concurrency concepts. A user
would be shown a rectangular grid with boxes, ob-
stacles, markers, and robots and would be required
to program the robots to move all the boxes to their
corresponding markers. An initial version with al-
phabet characters has apparently been implemented,
but the design is not complete and, as discussed in
the Conclusion, the authors still need to investigate
whether it would be possible to teach all the con-
currency concepts using their game (Akimoto and
de Cheng, 2003).

In the next section we’ll discuss the concepts that
a programmer needs to understand to develop concur-
rent programs and in the following section we discuss
two games that have been developed to teach these
concepts. The games require the players to solve puz-
zles using a simple set of blocks, independent of a
programming language, to specify the sequence of ac-
tions the avatars in the game should execute. When
the avatars execute their actions, the player has visual

feedback on the effect of the actions; for example, one
can see when two avatars are in deadlock, waiting for
each other to execute an action before continuing.

3 CONCURRENCY CONCEPTS

As explained in the introduction, concurrency errors
due to nondeterministic orderings of instructions oc-
cur when threads of control share information. The
concepts that should be understood can therefore
be classified under three categories: dividing work
among multiple threads of control, sharing informa-
tion between the threads of control, and synchronising
the sharing of information.

Concepts related to the division of work include,
for example, whether tasks are assigned to threads of
control before execution starts (static load balancing)
or at runtime (dynamic load balancing) and the perfor-
mance impact of a particular division of work; a good
division of work into independent tasks can result in
speedup while a poor division of work can result in
load imbalance and therefore less than ideal speedup.

When the work can not be divided into indepen-
dent tasks, the threads of control need to share in-
formation, and programmers therefore need to under-
stand the different ways in which information can be
shared, i.e., via either synchronous or asynchronous
message passing or via access to shared memory.

The final category includes all the concepts re-
lated to ensuring correct execution of multiple threads
of control that work together to solve a problem and
need to share information either regularly or occa-
sionally. Programmers need to understand the effect
of nondeterministic orderings, synchronisation tech-
niques, error behaviour due to the absence of syn-
chronisation (race conditions), error behaviour due to
incorrect synchronisation (deadlock, livelock, starva-
tion), and finally the performance impact of synchro-
nisation, e.g., waiting for a shared resource (such as a
lock).

4 THE GAME

Two games were implemented: Parallel Bots (see Fig-
ures 1 and 2) and Parallel Blobs (see Figure 3). Both
games consist of a game environment that contains
multiple avatars and an editor that provides a block-
based visual syntax independent of programming lan-
guage.

The game environment is set up with a challenge,
such as: program the two avatars to turn on all the
lights in the game environment as fast as possible.

Learning Concurrency Concepts while Playing Games

The game environment of Parallel Bots is an isomet-
ric grid similar to LightBot; it renders the grid to a
JavaScript canvas, which can contain one or more ob-
jects such as light switches, boxes, machines, shelves,
walls, and avatars. The game environment of Par-
allel Blobs was created using Unity and consists of
one or more two dimensional rooms with walls be-
tween them and contains one or more objects, such
as mailboxes, keys, doors, walls, bridges, completion
pads, and avatars. The game environment is displayed
while a player specifies a sequence of actions in the
editor for each avatar. When the play button is clicked
the avatars execute their actions until they are either
blocked or have completed their sequence of actions.

. Level 7 [Processes
o cl®
ta
~ =N ~ Functions
- = = //;v’ [z’ ~ 1 & |
= D[S

fhcdERE

Figure 1: Parallel Bots. In this puzzle the avatars have to
execute the lightbulb action (toggle a switch) on each circle
in the game environment to turn its light on. The screen-
shot was taken while the avatars were busy executing their
actions.

Level 3 n Pk

1N FOIREEE

Figure 2: Parallel Bots. In this puzzle the conveyor belt
is only active when both avatars are in position (on their
disks), the one wants to send an object on the belt, and the
other is waiting for an object.

The editor contains multiple windows: one for
each avatar—where a player can program an avatar
by specifying the sequence of actions for that avatar—
and extra function windows where a player can spec-
ify common sequences of actions than can then be
called from any of the other editor windows. Only two
editor windows are displayed at any time, the window
for the currently selected/executing avatar (blue/P1 in
Figure 1) and the window for the currently select-
ed/executing function (F1 in Figure 1). During ex-
ecution, the action being executed is highlighted in

599

SGoCSL 2017 - Special Session on Serious Games on Computer Science Learning

Figure 3: Parallel Blobs. This puzzle requires the avatars to
send messages to each other to draw bridges over the lava.
The editor is currently in block-choosing mode and all the
action blocks are shown.

yellow.

The sequence of actions for an avatar is specified
by using the blocks provided by the game. In Par-
allel Bots, a limited set of action blocks are provided
and each action is represented by only one block; they
are: walk forward, rotate 90°, pick up/put down/tog-
gle the switch of the object on the facing block, or
lock/unlock the object on the facing block. Parallel
Blobs provides a Blockly editor that contains all the
core blocks plus new blocks that were created specifi-
cally for Parallel Blobs: Step, Pick up/Drop an object,
Open a door, Send/Receive mail, Talk, and Wait (see
Figure 3). The block-based syntax of Parallel Blobs
is not as simplistic as that of Parallel Bots: there are
more blocks, many blocks can take parameters, and
some actions are represented by more than one block.

Both games have a series of challenges that in-
creases in difficulty. The challenges are divided into
groups where each group starts with the introduction
of a new action block (code concept). Each chal-
lenge can be solved using only known blocks, i.e.,
blocks that have been introduced in any of the pre-
vious groups or at the start of the current group.

The next section compares the concepts the play-
ers learn by solving the puzzles to the concepts that
a programmer needs to develop concurrent programs,
and compares the games with relevant approaches.

4.1 Comparison: Concepts Covered
4.1.1 Dividing Work

In both games multiple threads of control are repre-
sented by multiple avatars that can perform actions
concurrently. Like threads of control, the multiple
avatars can execute independently or share informa-
tion and they can execute the same sequence of ac-
tions or different sequences of actions.

600

For some of the puzzles currently provided each
avatar has specific tasks to execute and for others the
player can decide how to divide the tasks among the
avatars, but all the current puzzles requires the player
to assign specific tasks to avatars before execution
starts and program each avatar to complete only its
tasks; this is called static partitioning. Dynamic
partitioning allows the assignment of tasks during
execution based on current workload. A puzzle that
requires dynamic partitioning can be added by chang-
ing one of the current puzzles as follows: a box con-
tains objects of different sizes that need to be taken to
one of two other locations based on their size. Taking
the bigger objects to their location takes longer than
taking the smaller objects to their location and the
next object to be removed from the box is determined
by a random number generator. When the avatars are
programmed to take the next object as soon as they
have taken the previous object to its location, the par-
titioning of tasks would be clearly dynamic, because
the order in which the objects are removed is deter-
mined at runtime by the random number generator.

When work is divided among threads of control
and not all the partitions take the same amount of time
to execute, a load imbalance can occur. Load im-
balance is usually more of a problem when work is
statically partitioned than when it is dynamically par-
titioned during runtime, because during runtime the
current workload of a thread of control can be taken
into account.

The effect of load imbalance is clearly visible in
the game; in fact it is more visible than when you run
a concurrent program. When a concurrent program
executes you typically don’t know when threads have
completed their work and are idle, waiting for other
threads to complete their work; you often only know
when the last thread completes and the program ter-
minates. In the game, it is immediately obvious when
an avatar has completed its sequence of actions and
are waiting for another avatar to complete his.

On the other hand, a player can see the difference
in completion time (in number of time units) for a
particular puzzle if the puzzle is first solved with one
avatar and then with more than one avatar that can di-
vide the work among them. If two avatars can divide
the work to solve a specific puzzle evenly between
them, they could take half the time that one avatar
takes to complete the puzzle; which would represent
ideal speedup.

Waiting for an avatar to complete a task does not
only happen when there is a load imbalance. It can
also happen when avatars need to share objects or in-
formation and one avatar has to wait for another avatar
to provide the object or information required.

4.1.2 Sharing Information

Message passing can be performed asynchronously
or synchronously. Asynchronous message passing is
depicted by a mailbox in Parallel Blobs and a shelve
in Parallel Bots. It is asynchronous, because play-
ers can try to add objects to (or remove objects from)
the mailbox/shelve and then continue with other ac-
tions, whether the avatar with whom it is sharing the
object is busy executing something else or busy wait-
ing for an object at (or adding an object to) the mail-
box/shelve.

In Parallel Blobs synchronous communication is
represented by thin walls: two avatars can commu-
nicate if they stand on either side of a thin wall, but
if they stand further away or on either side of a thick
wall they can not hear each other. In Parallel Bots syn-
chronous communication is depicted by a conveyor
belt; an object can only be sent to another avatar via
a conveyor belt if the one avatar is standing on a disk
on the one side of the conveyor belt and trying to put
an object onto the conveyor belt and the other avatar
is standing on a disk on the other side of the conveyor
belt and trying to receive an object.

Shared Memory can also be used to share infor-
mation. In Parallel Bots, a box represents a shared
memory location in which light bulbs can be placed.
Avatars have to take turns to add objects to/remove
objects from a shared box; they should not access
the box simultaneously. In Parallel Blobs, shared
memory is represented by narrow tunnels and narrow
bridges, which should be used by only one avatar at a
time.

In both games mutual exclusive access to shared
objects are obtained via a shared key, which emulates
alock (e.g., semaphore). In Parallel Bots a race con-
dition, which occur when access to a shared object is
not synchronised and simultaneous access is obtained,
is emulated by a light bulb shattering into pieces. In
Parallel Blobs, the absence of synchronising access to
a narrow bridge/tunnel, results in two avatars collid-
ing.

Two or more avatars are in deadlock if all of them
are waiting for an action to occur that can only be
caused by one of the other avatars in the set. In Par-
allel Blobs, two avatars will, for example, be in dead-
lock if they need the same two keys to complete a
task, the one avatar has picked up the one key, the
other avatar has picked up the other key, and each
is waiting for the second key to become available.
In Parallel Bots, two avatars will be in deadlock if
they’re on either side of the conveyor belt, which rep-
resent synchronous communication, and both want to
receive an object before they can continue.

Learning Concurrency Concepts while Playing Games

Two or more avatars are in livelock if they repeat
the same sequence of actions over and over again, but
no progress is made. In the games this could occur,
for example, when two avatars indefinitely hand an
object or send a message back and forth.

Finally, we need to discuss nondeterminism. Non-
determinism is present in the games, but it is mostly
determined by the order in which the player decides
to place actions and the order in which the Round
Robin scheduler executes the actions of the differ-
ent avatars; currently the avatars are executed using a
Round Robin scheduler where one action is executed
per time quantum. During the execution of concur-
rent programs on a real system other programs also
compete for memory bandwidth, cache usage, CPU
time, etc. We would like to increase the effect of non-
determinism in the games by adding other scheduling
options as well as a random number generator that
can influence the scheduler’s decisions, so that nonde-
terminism due to parameters outside of the program-
mer’s control can be emulated. The debug/step option
can also be adjusted to allow a separate step button
for each avatar to allow finer grained control over the
possible interleavings during debugging.

4.2 Comparison: Relevant Approaches

The focus of The Deadlock Empire is to show the ef-
fect of different scheduling orders; it shows the effect
of the execution order a player chooses for two spe-
cific C code segments and the player is challenged to
find an execution order that will result in an error. The
focus of Parallel Bots/Blobs is problem solving us-
ing concurrent programming techniques without any
knowledge of a programming language. Different se-
quences in Parallel Bots/Blobs may result in different
sequences, but with the current implementation a spe-
cific set of sequences will result in the same interleav-
ing if left unchanged between runs. The same single
step scheduling control as provided to a player of The
Deadlock Empire can be provided to a player of Par-
allel Bots/Blobs by changing the debug/step option so
that a separate step button is provided for each avatar.

The lab project described in (Marmorstein, 2015)
was designed to help students build an intuition about
synchronisation while Parallel Bots/Blobs were de-
signed to help the player build and intuition about all
the core concurrency concepts and, instead of follow-
ing the approach of a single lab project it follows the
approach of a game that provides challenges to solve.

The educational game proposed in (Akimoto and
de Cheng, 2003) seem to follow similar ideas as Paral-
lel Bots/Blobs, but since their robots only move boxes
to specified locations on a grid, it is not clear how they

601

SGoCSL 2017 - Special Session on Serious Games on Computer Science Learning

will support some of the concurrency concepts, such
as asynchronous message passing, for example.

5 CONCLUSION

We think that people will find it easier to learn concur-
rency concepts if they can play a game that challenges
the player to solve puzzles using the same techniques
required by a programmer to develop concurrent pro-
grams; techniques for dividing work, sharing infor-
mation, and synchronising the sharing of information
among multiple threads of control.

Two games are presented in this article and in
both, multiple threads of control are represented by
multiple avatars that can perform actions concur-
rently. The player controls the avatars by specifying
a sequence of actions for each avatar to execute using
a block-based visual syntax (i.e., the player programs
the actions of the avatars instead of using game con-
trols) and the avatars perform their actions in a game
environment that has been set up with a puzzle.

A detailed comparison between the concepts a
player of the game learns when solving the puzzles
and the concepts a programmer needs to develop con-
current programs is included in the article; which
makes it clear that even advanced concurrency con-
cepts can be used to solve puzzles in the game en-
vironment. The main difference between a concur-
rent program’s threads executing instructions and the
avatars of the game executing their sequences of ac-
tions is the visibility of their effect. When a concur-
rent program has a race condition or is in deadlock, it
is often difficult to detect what went wrong and when
it happened, while the effect of every action is clear in
the game environment. Such immediate visual feed-
back typically makes learning easier.

Another benefit of the game environment and its
block-based syntax independent of programming lan-
guage, is that by providing puzzles at levels of in-
creasing difficulty, young children as well as older
students can enjoy solving them. The speed at which
players progress through the levels and the highest
level that can be completed will most likely differ for
players of different ages and backgrounds. We are in
the process of conducting a study to evaluate which
concepts people of different age groups can under-
stand and whether understanding the concepts in the
game settings does indeed make it easier to learn how
to develop concurrent programs.

Finally, two limitations that have been identified
are being addressed in the next version: the scheduler
will be updated so that it is adjustable from the exe-
cution environment and include a random option that

602

can emulate nondeterminism due to parameters out-
side of the programmer’s control; and a puzzle builder
will be added so that new puzzles can be added by
dragging and dropping objects onto an empty game
environment, instead of updating source code directly.

REFERENCES

Akimoto, N. and de Cheng, J. (2003). An educational game
for teaching and learning concurrency. In Proceed-
ings of the Ist International Conference on Knowl-
edge Economy and Development of Science and Tech-
nology, pages 34-39.

CodeCombat (2016). A classroom in-a-box for teaching
Computer Science. https://codecombat.com/. Ac-
cessed 2017-01-30.

Google (2016). Blockly: A library for building visual
programming editors. https://developers.google.com/
blockly/. Last updated 2016-10-14.

Google (2015). Blockly Games: Games for tomorrow’s

programmers. https://blockly-games.appspot.com/.
Last updated 2015-01-17.

HopScotch (2016). Coding made for you.
https://www.gethopscotch.com/. Last blog entry
2016-11-04.

Hudecek, P. and Pokorny, M. (2016). The Dead-
lock Empire: Slay dragons, master concurrency.
https://deadlockempire.github.io/. Accessed 2017-01-
30.

Lightbot. Solve puzzles using programming logic.
https://lightbot.com/. Accessed 2017-01-30.

Marmorstein, R. (2015). Teaching semaphores using...
semaphores. Journal of Computing Sciences in Col-
leges, 30(3):117-125.

MIT. Scratch: Create stories, games, and animations.
https://scratch.mit.edu/. Accessed 2017-01-30.

MIT (2015). MIT App Inventor: A beginner’s
introduction to programming and app creation.
http://appinventor.mit.edu/explore/. Accessed 2017-
01-30.

OpenTDD (2005-2014). An open source simula-
tion game based upon Transport Tycoon Deluxe.
https://www.openttd.org/en. Accessed 2017-01-30.

