
Semantic Enrichment and Verification of Feature Models in DSPL

Thalisson Oliveira, Rossana M. C. Andrade∗ and Windson Viana
Group of Computer Networks, Software Engineering and Systems (GREat), Federal University of Ceará, Fortaleza,

Ceará, Brazil

Keywords: Dynamic Software Product Line, Context-awareness, Feature Model, Automatic Verification Tool, Ubiquitous
Software, Semantic Enrichment.

Abstract: Dynamic Software Product Lines (DSPLs) support the development of context-aware systems, which use
context information to perform adapted services aiming to satisfy user’s needs. Feature models (FM) represent
system similarities and variability in DSPL. However, some FM representations are limited in expressiveness.
For example, relevant domain aspects (e.g., context-aware feature that implements a particular use case) are not
described in FM. This research proposes an approach based on an OWL-DL ontology to add semantics to FM.
It also provides automatic verification of the correctness and consistency of these models. We implemented
this approach in a feature model design tool called FixOnto. Our first evaluation results showed that the use of
ontologies brings benefits such as improvements on SPL information retrieval, and inference and traceability
of the features, use contexts, and SPL artifacts.

1 INTRODUCTION

Currently, powerful mobile devices with several sen-
sors enable the development of context-aware appli-
cations, i.e., applications that can perceive the envi-
ronment and adapt themselves to satisfy the user’s
needs (Marinho et al., 2013). However, due to self-
adaptation complexity, the development of context-
aware systems becomes a challenging activity. Soft-
ware engineers have to predict context variations, in-
cluding exceptional situations and have to code con-
sistent adaptation methods (Marinho et al., 2012).

Software Engineers can use SPL to systematize
and maximize reuse in context-aware systems de-
velopment (Marinho et al., 2013). Dynamic Soft-
ware Product Lines (DSPLs) are SPLs that include
mechanisms to change variants in self-adaptive sys-
tems at runtime (Hallsteinsen et al., 2008), support-
ing context-aware systems development. In (Mar-
inho et al., 2012), authors propose the concept of
Context-Aware Software Product Lines (CASPL), a
subset of DSPL. They introduce Context-Aware Fea-
ture Models (CAFM). A CAFM is composed of a sys-
tem model (SM) and a context model (CM). CASPL
are our research target.

In CASPL, feature and context modeling are the

∗CNPq Productivity Scholarship in Technological De-
velopment and Innovative Extension (DT-2)

main activities involved in their design (Dermeval
et al., 2015). CAFM represents feature variability
and also predefined context situations and adapta-
tions. Context-aware systems modeling is an error-
prone task, as a consequence, a CASPL can derive
invalid products. Thereby, verification of CAFM is
a necessary step. However, manual verification in
complex systems, such as context-aware systems, and
in large-scale is infeasible (Benavides et al., 2013).
Thus, there is a necessity for automatic verification of
feature models to prevent inconsistencies.

To motivate our approach, let us take the domain
of Mobile Visit Guides (MVG). We considered it as
a family of self-adaptive products, in which applica-
tions can display content (e.g., text, image, and video)
according to the user’s location, and his device con-
figurations and status. In our example, the domain ex-
pert should associate Video Display feature to user’s
location and his device battery level. To perform this
kind of adaptation, the domain expert must select the
Message Exchange feature since he has modeled it as
a mandatory feature. However, the domain expert can
model a context situation that not choose the Message
Exchange feature, then, the SPL will derivate a prod-
uct with an inconsistent adaptation according to the
FM.

Regarding this scenario, this work proposes an ap-
proach and a tool for adding semantic and automatic
verification of correctness and consistency of CAFM.

542
Oliveira, T., Andrade, R. and Viana, W.
Semantic Enrichment and Verification of Feature Models in DSPL.
DOI: 10.5220/0006376105420549
In Proceedings of the 19th International Conference on Enterprise Information Systems (ICEIS 2017) - Volume 2, pages 542-549
ISBN: 978-989-758-248-6
Copyright © 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



OWL-DL ontologies 2 and inference mechanisms are
the core assets of our approach. The use of ontologies
adds new capabilities to DSPL such as improvements
on information retrieval and traceability. In our ap-
proach, a DSPL modeler can perform domain model-
ing, associate core assets to the FM, and also performs
FM verification.

We evaluated our tool with the following research
questions (RQ) in mind. RQ1: How to semantically
enrich a DSPL (associating features and contexts to
core assets) and ensure that the mapping remains cor-
rect after this association? RQ2: How to make infor-
mation retrieval and traceability in DSPL easier?

2 BACKGROUND

As the main goal of our research is to provide a so-
lution for semantic enrichment and CAFM verifica-
tion, firstly, details of CASPL and CAFM are shown
in this section. Secondly, semantic enrichment ap-
proaches are presented. Finally, CAFM verification
is discussed.

2.1 Context-aware SPL

Context-aware SPL focus on deriving products that
can provide services according to user’s needs, ob-
serving the environment around them (Costa et al.,
2015). Thus, CASPL is an SPL that promote reuse
in the development of context-aware applications.

A key component of CASPL is the Context-aware
Feature Model (CAFM), which combines traditional
feature model with a context model in order to pro-
vide a better SPL description. CAFM is composed by
four diagrams: (i) System Model (SM), representing
SPL similarities and variability, (ii) Context Model
(CM), representing the known contexts, (iii) compo-
sition rules (CR), related to SM and (iv) adaptation
rules (AR) or context rules, related to CM (Marinho
et al., 2012).

System Model is a tree-like diagram containing
a unique root, which represents the domain. The
reminder nodes correspond to domain features and
edges describe the hierarchical relationships between
these features (Marinho et al., 2012). One example
of SM is found in Figure 1 (a). MobileGuide root
node corresponds to the domain being represented.
Message Exchange node is a mandatory feature. Ex-
change Type node is a variation point, which can be
Asynchronous or Synchronous. Security and Privacy
are optional features.

2http://www.w3.org/TR/owl-features/

Figure 1: MobiLine (a) System Model fragment and (b)
Context Model fragment.

Context Model has four levels. The first level
is the modeled context and contains only one node.
Nodes in the second level represent the Context En-
tities and nodes in both third and fourth levels show
Context Information and Context Attributes, respec-
tively (Marinho et al., 2012). In Figure 1 (b) there is
an example of CM. The root node Context represents
one context that needs to perform adaptations through
context entity. Context entity (MobileDevice) is the
entity observed by the context in question, and it pro-
vides context information. It represents which entity
information will be read (e.g., battery level and Lo-
cation). In the fourth level, there are the context at-
tributes, which are possible values to context infor-
mation (e.g., battery level can be 0 to 100%) and are
not represented in the figure.

Composition rule is formally specified as an im-
plication of an antecedent expression to a consequent
expression, being each expression one propositional
formula over a set of features and attributes contained
in the System Model (Marinho et al., 2012). In Table
(1), an example of rule expression is presented. The
rule CR1 shows that the presence of Synchronous Ex-
changeType implies in the use of Security feature.

Adaptation rule also is formally specified in (Mar-
inho et al., 2012), as an implication of a context ex-
pression (CE) to a system expression (SE). An event
can be a state or combination of states of a system.
One action can also be a new state or a combination
of states in the system. For instance, if the battery
level reaches a value lower than 10%, the application
disables the video displaying. In (1), one example of
adaptation rule expression is presented. The rule AR1

Semantic Enrichment and Verification of Feature Models in DSPL

543



means than if the location of the device is an insecure
area implies in the use of Privacy feature.

Table 1: Example of Rules proposed in (Marinho et al.,
2012).

Rule Expression
CR1 ExchangeType.Synchronous =⇒

Security
AR1 (MobileDevice.Location =

UnsecureArea) =⇒ Privacy

One example of CASPL is MobiLine (Marinho
et al., 2013), which is a CASPL for the mobile and
context-aware domain. This domain holds adaptabil-
ity as a principle and suggests that during execu-
tion time, the applications should be able to adapt
themselves according to the changes in user’s context
(Marinho et al., 2013). Figure 1 contains a fragment
of Mobiline (Marinho et al., 2013), which is an SPL
for the domain of mobile and context-aware applica-
tions. For instance, the Mobilide Guide represents the
domain, and Message Exchange feature is necessary
to display information in the mobile guide.

The CASPL concepts explained in this section
guided the solution proposed in this work. We used
MobiLine as case study and examples showed in Fig-
ure 1, illustrated system model and context model
in CAFM and the Extended FM notation (Benavides
et al., 2013) was used. Figure 1, showed previ-
ously, illustrated system model and context model
in CAFM and the Extended FM notation (Benavides
et al., 2013) was used.

2.2 Adding Semantics to SPL

Software Product Lines are well known for provid-
ing a high level of reuse. SPL core assets contain
the set of artifacts used to build a product. Feature
models are commonly used to represent SPL and can
be used to group artifacts from core assets and help
on traceability. In (Filho et al., 2012), the authors
introduce the concept of Semantic Software Product
Line (SSPL) as an SPL where reusable core assets and
business artifacts are related to the domain model and
can be expressed using one or more ontologies. Thus,
ontologies increase knowledge expressiveness in SPL
and allow infer new information and implicit relations
by using inference algorithms provided by reasoners.

Feature model can be a start point for adding se-
mantic to an SPL. In our work, add semantics means
to associate core assets to FM, making this FM more
expressive. For instance, relationships between a fea-
ture and other SPL artifacts (e.g., source code and re-
quirements documents) can be specified. The authors

of (Filho et al., 2012) propose a process that involves
two main steps: (i) transformation of a feature model
in an ontology (OWL DL), performed automatically
by a tool called Fea2Onto, and (ii) the addition of new
relations with external artifacts in a process guided by
a top ontology called SPLiSEM. When the process is
finished, a more expressive model of SPL is produced.

2.3 Feature Model Verification

Feature Models (FM) are widely used to represent
SPL, and it is relevant to assure the model correct-
ness and consistency. Regarding model verification
of CASPL, (Marinho et al., 2012) propose a formal
process to check correctness and consistency of a
Context-aware Feature Model (CAFM). That process
describes a set of well-formedness rules for Feature
Model and Context Model. They also provide ver-
ification if the model is in accordance with compo-
sition and adaptation rules. In Table 2, the descrip-
tion of a subset of Well Formed Composition Rules
(WFCR), Well Formed Adaptation Rule (WFAR) and
Inter-rules Consistency (IRC) proposed in (Marinho
et al., 2012) are listed.

Table 2: Subset of Rules proposed in (Marinho et al., 2012).

Rule Description
WFCR1 Features referenced in a Composition

Rule should be either an optional
feature or an attribute feature.

WFAR1 Features referenced in the System
Expression should be either an
optional feature or an attribute feature
and should be owned by the SM

IRC1 CRs defined for a CAFM should be
consistent with each other

Based on (Marinho et al., 2012), a tool was devel-
oped in (Costa et al., 2015) and provides CAFM mod-
eling, verification of feature model well-formedness
and consistency and also a simulation of product
derivation. The tool in (Costa et al., 2015), Marinho
et. al approach (Marinho et al., 2012), and seman-
tic enrichment approach (Filho et al., 2012) were the
start point of our proposal.

3 AN APPROACH FOR
SEMANTIC ENRICHMENT
AND VERIFICATION OF CAFM

This work proposes an approach that permits context-
aware feature modeling, semantic enrichment of these

ICEIS 2017 - 19th International Conference on Enterprise Information Systems

544



models, and automatic feature model verification.
Like a traditional SPL, CASPL also takes bene-
fits from the integration of semantic enrichment and
model verification. We aim at assist CASPL model-
ers and all stakeholders involved in the context-aware
applications development.

3.1 Design Principles

Our approach is composed of four main steps: (a)
feature modeling, which includes semantic enrich-
ment, (b) automatic model transformation, (c) auto-
matic verification of feature model, and (d) semantic
search.

In the first step (Feature Modeling and Seman-
tic Enrichment), a domain specialist performs fea-
ture modeling, context modeling, and associates these
models to domain artifacts. In the feature modeling
process, the constraints between features and context
situations are modeled. A CAFM is the output of this
first step.

In the second phase (Automatic Mapping), the
CAFM is transformed in an OWL DL ontology auto-
matically. This ontology represents features, contexts,
rules, and artifacts present in the CAFM. In this pro-
cess, the transformation requires a top ontology con-
taining CAFM concepts (e.g., feature, context situa-
tions, rules). The section 3.2 details this top ontology.

A reasoner analyzes the OWL version of the
CAFM in the “Model Verification” phase. The rea-
soner evaluates the model correctness and consis-
tency. This verification uses the rules proposed in
(Marinho et al., 2012). For instance, if the ontology
is valid (all derived product obey the rules), then it is
ready to last step (semantic search).

The fourth step (Semantic Search) allows to do-
main specialist performing queries over the improved
models. It can retrieve feature’ information and
traces, relationships between context scenarios and
model artifacts. An ontology reasoner is a support
for this kind of query. One example is the DL Query
language provided by Protégé 3.

We implemented a tool called FixOnto, which per-
mits both feature and context modeling. FixOnto
also allows semantic enrichment making association
among features and both use case and test cases.
Moreover, it is possible to perform model verification
and information retrieval.

3.2 Top Ontology for CAFM

Figure 2 shows a fragment of the top ontology rep-
resenting the CASPL. The System Model (SM) ac-

3http://protege.stanford.edu

Figure 2: Top ontology representing System and Context
Models in CASPL.

counts for the variability and commonalities between
features of the domain modeled. Thus, it is important
that concepts like (mandatory feature) and (optional
feature) are presented in the ontology. The context is a
specialization of the system model, which represents
the context situations in the domain, containing enti-
ties and contextual information. Therefore, the ontol-
ogy also contains these concepts.

CASPL is composed by elements, which are re-
lated to system diagrams and context diagrams (Fig-
ure 2). The system model consists of a feature hi-
erarchy. In this top ontology, the Feature subclasses
can have self-relationships. For instance, an individ-
ual of Mandatory Feature can have a subfeature and
individual of Variation Point. The opposite is also
possible. The domain specialist relates features to
other features by using the properties hasFatherFea-
ture and hasChildFeatures. The first property indi-
cates that feature C is a subfeature of B, and we can
say that hasFatherFeature(C,B). The second property
indicates that B has the child feature C. The axiom
hasChildFeatures(B,C) represents it.

The context model has a ContextRoot, which rep-
resents the context variation in which applications
need to perform adaptations. ContextEntity is the ob-
ject or entity that is observed by the context in ques-
tion, for instance, a mobile device. Context informa-
tion indicates which information the system will read
since not all elements provided by the context entity
are relevant to context-aware applications. The bat-
tery level and the Wi-Fi signal strength are examples
of context information that can be captured by a mo-
bile device.

Figure 3 shows the composition rules and adap-
tation rules that compose a CASLP. They are repre-
sented by Composition Rule and Context Rule classes
respectively.

3.3 Verification Rules of CAFM

The third process of our approach is the CAFM verifi-
cation. An OWL ontology is the input of this process.

Semantic Enrichment and Verification of Feature Models in DSPL

545



Figure 3: Fragment of Top ontology representing the Com-
position Rules and Adaptation Rules in a CASLP.

In this step, we verified if the ontology obeys a sub-
set of well-formedness and consistency rules, which
were proposed in (Marinho et al., 2012). To do this,
we represent these rules in SWRL.

An SWRL rule is composed of a body expression
that implicates a head expression. If the body expres-
sion is reached the head sentence is executed. We
mapped the composition and adaptation rules writ-
ting the SWRL body as an inconsistent state of model
(the state of ontology individuals that means a broken
rule). We created OWL classes and individual proper-
ties that represents each type of inconsistency to write
the head expressions. Thus, when an ontology indi-
vidual reaches an inconsistent state, it is highlighted
associated to corresponding OWL class error.

In the expression CompositionLiteral (?x) ∧
MandatoryFeature(?y) ∧
hasFeaturedElement (?x,?y) → WFCR1(?x),
the rule WFCR1 indicates which an action re-
lated to a mandatory feature is an exceptional
situation. In case this inconsistency occurs the
individual will be highlighted as a WFCR1 type.
The same meaning is applicable to the expres-
sion ActionLiteral (?x) ∧ MandatoryFeature(?y) ∧
hasFeaturedElement (?x,?y) → WFAR1(?x). If
a mandatory feature y is present in a System Ex-
pression on adaptation rules, it will be highlighted
as a WFAR1 individual. Therefore, it is possible
to identify inconsistencies in the ontology after a
reasoner analysis.

4 FixOnto TOOL

We implemented a tool to help domain expert with
the enrichment and verification process. FixOnto tool
allows CAFM modeling and semantic enrichment,
mapping CAFM into OWL files, model verification,
and semantic search. Figure 4 shows a screenshot of
tool.

Figure 4: Fragment of FixOnto

4.1 CAFM Modeling and Semantic
Enrichment

FixOnto is an extension of the tool proposed in (Costa
et al., 2015). The modeling editor on the original soft-
ware was the start point towards FixOnto implemen-
tation. We inherited the tool area to graphically model
CAFM represented by (1) and the pallet represented
by (2) in Figure 4. We added concepts to assist do-
main experts in the SPL semantic enrichment process.
The options “TestCase” and “UseCase” represented
by (3) in Figure 4 can be associated with features and
context situations, making the model a richer CAFM.

The FixOnto is an Eclipse-based tool, gener-
ated from UML-like models using Eclipse Modeling
Framework (EMF) and Eclipse Epsilon 4. By the use
of Epsilon, mapped CAFM can work with Java, the
programming language used to code the others steps
in FixOnto.

4.2 Automatic Mapping

By using FixOnto, domain specialist needs only to
perform a right-click on feature modeling area, select
option “wizard” and select “FixOnto - Fea2Onto Ext”
to translate the model into OWL, such as represented
by (4) in Figure 4. This option will generate the file
fixonto.owl, representing a rich CAFM that is ready
to be analyzed.

FixOnto CAFM transformation is inspired by
the Fea2Onto tool proposed in (Filho et al., 2012).
Fea2Onto steps are: (i) Java objects generation from
the feature model, and (ii) ontology generation from
objects, using OWL Java library and guided by a top
ontology. In the FixOnto, we coded a Fea2Onto ex-
tension, which is a new implementation that including

4http://www.eclipse.org/epsilon/

ICEIS 2017 - 19th International Conference on Enterprise Information Systems

546



context-awareness concepts.

4.3 Model Verification and Semantic
Search

To perform model verification, the user should se-
lect option “CAFM Analyser”, represented by (5) in
Figure 4. The FixOnto searches for a file named
fixonto.owl and performs an update including SWRL
rules contained in a file named rules.fix. After update
fixonto.owl, our tool calls the Pellet reasoner that in-
terprets and checks the SWRL rules. Among several
reasoners, we chose Pellet because of its rule support
(SWRL) and its free license (Dentler et al., 2011).

Figure 5: FixOnto broken rule message.

At last, after Pellet reasoning, FixOnto displays a
box containing found errors. In Figure 5, we can see
violated rules and OWL element to be verified.

Once ontology is enriched and valid, it is ready to
semantic search phase. Into FixOnto, domain experts
are able to make semantic searches using Protégé
Query Syntax, and the OWL individuals are pre-
sented. Figure 6 shows an example of information
recovering (details in section 5.1).

5 EVALUATION

We modeled the CASPL Mobiline (Marinho et al.,
2013) into FixOnto to show benefits of our approach
and examine its drawbacks. To control the results,
we selected only a part of Mobiline, represented in
Figure 1. The modeling example followed the steps
presented in the sequence of this paper.

5.1 Modeling a CASPL into the Tool

Firstly, we modeled the diagrams with FixOnto. Fig-
ure 1 placed in section 2.1 shows the System Model
and the Context Model used in this tool execution.
The expressions (1) and (2) in the section 2.1 are the
modeled rules. We included illustrative Test Cases
(TC1, TC2, and TC3) for increasing the CASPL ex-
pressivity.

After the initial modeling phase, FixOnto trans-
formed the CAFM in OWL-DL ontology. The gener-
ated ontology was stored in a file called fixonto.owl.
Then, we verified the model correctness and con-
sistency by using well-formed rules. The modeled
CAFM did not present errors. We, then, inserted in-
consistencies into the model to check if error detec-
tion worked. Section 5.2 discusses in details the pro-
cess of fault insertions.

Finally, we performed a semantic search over the
ontology (fixonto.owl), using DL Query. We selected
the option DLQuery Search in FixOnto. We queried
about test cases existent in the model. It may be im-
portant to developers verify the scope of a software
evolution. The queries and results can be viewed in
Figure 6.

5.2 Fault Insertion

We inserted errors corresponding to rules viewed in
Table 2 in section 2.3 and also extras rules. We
changed some axioms of fixonto.owl file. In the
first example, the original axiom was hasFeaturedEle-
ment(DisableMessage, ExchangeType.Synchronous).
The ExchangeType.Synchronous feature is an alter-
native feature. In this case, the rule WFAR1 in Table
2 is not broken.

For instance, in order to insert an error, we
changed the consequent of the context rule. We re-
moved the consequent ExchangeType.Synchronous
and, after, we included a mandatory feature (i.e.,
MessageExchange). The generated axiom after our
change was hasFeaturedElement(DisableMessage,
ExchangeType.Synchronous). Figure 5 shows the
tool result. It shows the broken rule.

Other implemented rule is represented
by expression hasFatherFeature(?x,?y) ∧
hasFatherFeature(?y,?x) → hasCycle(?x,?y) ∧
WFSMR4(?x). If a feature x is father of y and y is
father of x, it is said a cycle, and x is highlighted as
an individual of WFSMR4 error and the individuals
x and y are associated by the property hasCycle.
In this case, the original axiom was hasFatherFea-
ture(Privacy, Security). We changed the axiom to
hasFatherFeature(Security,Security), and the error
was thrown.

We implemented 12 rules and inserted 2 faults per
rule, resulting in 24 faults. The percentage of fault
detection for the implemented rules was 100%.

5.3 Discussion

This research proposes a solution for maximizing
reuse. We aim at helping domain experts to model and

Semantic Enrichment and Verification of Feature Models in DSPL

547



Figure 6: FixOnto Query Search and Result.

retrieve information on CASPL development. The
proposed solution also includes model verification,
helping to prevent modeling errors and reduce costs.
The tool in (Costa et al., 2015), Marinho et. al ap-
proach (Marinho et al., 2012) and semantic enrich-
ment approach (Filho et al., 2012) were the start point
of this proposal.

Regarding the first research question (RQ1: How
to semantically enrich a DSPL and ensure that the
mapping remains correct after this association?), the
FixOnto provides an automatic model verification the
can be performed after semantic enrichment. If the
verification does not throw errors, we ensure that
mapping remains correct.

Concerning the second research question (RQ2:
How to make information retrieval and traceability
in DSPL easier?), we were able to trace the modeled
Test Cases, by using ”Query Search” FixOnto func-
tionality. A drawback is that domain specialist needs
to learn the DL Query syntax.

This research generated results that highlight the
benefits of performing a semantic search over an ex-
pressive and valid CAFM ontology. The information
retrieval and traceability allow to the domain mod-
eler and other stakeholders take important decisions
along the development of context-aware applications.
However, some threats to validity were detected. We
categorized the threats to validity using the following
classification proposed in (Wohlin et al., 2012): Con-
clusion, Internal, Construct and External. We iden-
tified threats to Conclusion and External validity as
follows.

Only one modeler used the FixOnto tool to ver-
ify its functionality implying in its threat to Conclu-
sion validity, which makes necessary to do an experi-
ment with a greater number of context-aware special-
ists. Moreover, we demonstrate the tool by using a
single academic CASPL, restricting the results to its
scope. This choice represents its threat to External va-
lidity. The modeling should be performed with more
CASPL to generalize the results.

6 RELATED WORK

The proposal in (Filho et al., 2012) provides a solution
to add semantic to SPLs. The authors use an ontology
to represent a feature model and use it as start points
to semantic enrichment. Narwane et al. (Narwane
et al., 2016) focus on formal modeling and analysis
of traceability in an SPL. Their work involves the re-
lation between features and core assets.

Regarding feature model verification, Rincon et
al. (Rincón et al., 2014) propose a rule based ap-
proach using ontologies to analyse dead features and
false optional in feature diagrams. Their proposal
identifies causes of inconsistencies and explaining
them in natural language. In (Zaid et al., 2009), au-
thors provide an ontology-based framework for fea-
ture modeling with a rule-based model to check con-
sistency and detect conflicts.

All these related work do not address contextual
aspects, which is the key point of our paper. In fact,
our approach is an extension of (Filho et al., 2012) re-
search. As previously discussed, the authors in (Mar-
inho et al., 2012) propose an approach to context-
aware model verification and the authors in (Costa
et al., 2015) propose a tool that implements the ap-
proach. Thus, they address CAFM modeling, veri-
fication of feature model well-formedness and con-
sistency. However, unlike our work, their proposals
do not address semantic enrichment, which relates the
model to the core assets.

7 CONCLUSIONS AND FUTURE
WORK

Information retrieval and traceability help stakehold-
ers to take a decision during the development of
context-aware systems. Our research motivation has
been both the importance of the domain informa-
tion retrieval in CAFM and the importance of con-
sistency verification of a DSPL (i.e. CASPL) during
the project initial steps. Early detection of modeling
inconsistencies allows time and money economy dur-
ing software development cycle. In the literature, it is
possible to find solutions that verify traditional SPL
and DSPL, however, using these existing solutions,
the information in a feature model can still be insuffi-
cient. To fulfill this gap, we proposed an ontology-
based approach and a tool for adding semantic in
CASPL and for verifying its correctness and consis-
tency automatically.

For the proposition of our approach and respective
tool, we combine some existing solutions. For seman-
tic enrichment, the approach proposed by (Filho et al.,

ICEIS 2017 - 19th International Conference on Enterprise Information Systems

548



2012) was one start point for our work. For automatic
verification in CASPL, we used the framework pro-
posed in (Zaid et al., 2009), which suggests the imple-
mentation of rules in SWRL. The rules into FixOnto
were then implemented in SWRL following the rules
proposed by (Marinho et al., 2012).

We demonstrated the semantic enrichment and
automatic verification of CAFM with a tool called
FixOnto, which is an extension of Fixture (Costa
et al., 2015). We also demonstrated the traceability,
which is very important to prevent errors and provide
time efficiency, using the model with DL Query.

There are evidences that our approach can be used
for traditional FM, but we still need to evaluate that in
future work as well as we aim to automatize the whole
approach. A usability evaluation should also be per-
formed over FixOnto to verify the benefits to the final
user, specifically the domain specialist. It is also im-
portant to model a second CASPL into the tool to an-
alyze different scenarios. We also aim to increase the
tool usability, displaying only human readable mes-
sages and excluding OWL individuals information.

REFERENCES

Benavides, D., Felfernig, A., Galindo, J. A., and Reinfrank,
F. (2013). Automated Analysis in Feature Modelling
and Product Configuration, pages 160–175. Springer
Berlin Heidelberg, Berlin, Heidelberg.

Costa, P. A. d. S., Marinho, F. G., Andrade, R. M. d. C.,
and Oliveira, T. (2015). Fixture - A tool for auto-
matic inconsistencies detection in context-aware SPL.
In ICEIS 2015 - Proceedings of the 17th International
Conference on Enterprise Information Systems, Vol-
ume 2, April, 2015, pages 114–125.

Dentler, K., Cornet, R., ten Teije, A., and de Keizer, N.
(2011). Comparison of reasoners for large ontologies
in the owl 2 el profile. Semant. web, 2(2):71–87.

Dermeval, D., Tenrio, T., Bittencourt, I. I., Silva, A., Isotani,
S., and Ribeiro, M. (2015). Ontology-based feature
modeling: An empirical study in changing scenar-
ios. Expert Systems with Applications, 42(11):4950
– 4964.

Filho, J. a. B. F., Barais, O., Baudry, B., Viana, W., and
Andrade, R. M. C. (2012). An Approach for Semantic
Enrichment of Software Product Lines. Proceedings
of SPLC 2012, II.

Hallsteinsen, S., Hinchey, M., Park, S., and Schmid, K.
(2008). Dynamic software product lines. Computer,
41(4):93–95.

Marinho, F. G., Andrade, R. M., Werner, C., Viana, W.,
Maia, M. E., Rocha, L. S., Teixeira, E., Filho, J. B. F.,
Dantas, V. L., Lima, F., and Aguiar, S. (2013). Mo-
biline: A nested software product line for the domain
of mobile and context-aware applications. Science of
Computer Programming, 78(12):2381 – 2398. Spe-
cial Section on International Software Product Line

Conference 2010 and Fundamentals of Software En-
gineering (selected papers of {FSEN} 2011).

Marinho, F. G., Maia, P. H. M., Andrade, R. M. C., Vi-
dal, V. M. P., Costa, P. A. S., and Werner, C. (2012).
Safe adaptation in context-aware feature models. In
Proceedings of the 4th International Workshop on
Feature-Oriented Software Development, FOSD ’12,
pages 54–61, New York, NY, USA. ACM.

Narwane, G. K., Galindo, J. A., Krishna, S. N., Benavides,
D., Millo, J., and Ramesh, S. (2016). Traceability
analyses between features and assets in software prod-
uct lines. Entropy, 18(8):269.

Rincón, L., Giraldo, G., Mazo, R., and Salinesi, C. (2014).
An ontological rule-based approach for analyzing
dead and false optional features in feature models.
Electronic Notes in Theoretical Computer Science,
302(0):111 – 132. Proceedings of the {XXXIX} Latin
American Computing Conference (CLEI 2013).

Wohlin, C., Runeson, P., Hst, M., Ohlsson, M. C., Reg-
nell, B., and Wessln, A. (2012). Experimentation in
Software Engineering. Springer Publishing Company,
Incorporated.

Zaid, L. A., Kleinermann, F., and De Troyer, O. (2009). Ap-
plying semantic web technology to feature modeling.
In Proceedings of the 2009 ACM symposium on Ap-
plied Computing, pages 1252–1256, New York, NY,
USA. ACM.

Semantic Enrichment and Verification of Feature Models in DSPL

549


