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Abstract: Providing fine-level and customized storage solutions for novice cloud users is challenging. At best, a limited
set of customization options are provided, often related to volume of data to be stored. We are proposing
a radical different customization approach for cloud users, one where personalization of services provided
is transparently managed and supported. Our approach to building personalized cloud storage services is to
allow the user to specify data management policies that execute in a user space container transparently to
the user. In this paper we describe Balva, a cloud management system that allows users to configure flexible
management policies on their data. To support legacy applications, Balva is implemented at the file system
level, intercepting system calls to effectuate dynamic and personalized management policies attached to files.

1 INTRODUCTION

The convergence and application of IoT sensors, wi-
reless, mobile, and cloud computing enables new and
disruptive ways to quantify information on indivi-
duals and our environment. Small, wearable, non-
invasive, and sensing edge devices are becoming hou-
sehold items, with small manufacturing cost and a
vast array of different uses. When coupled with ad-
vanced machine learning techniques and an abun-
dance of cheap computational infrastructures in the
cloud, the data streams generated by these edge de-
vices have the potential to generate technological in-
novation at a scale never witnessed before (Schwab
2016).

However building storage systems that reliably
and over time can capture, store, and curate data
from a heterogeneous and dynamic pool of cloud-
connected edge devices is not trivial. Examples in-
clude solipsistic lifelogging (Gurrin, Smeaton, and
Doherty 2014), athlete quantification systems (Johan-
sen et al. 2013), or medical research databases (Sten-
haug, Johansen, and Johansen 2016). Requirements
for management policies, security policies, and access
interfaces are likely to change over time and cannot be
all predicted at system design time. Systems currently
available for such applications provide little opportu-
nity to customize or individualize governing manage-
ment and security policies, or data interfaces.

This paper describes Balva, a cross-cloud data ser-
vice that federates input from edge devices into a lo-

gical cross-cloud abstraction. Data hosted by Balva
is governed by expressive management and security
policies, set by the end users themselves. The set of
policies can be adapted over time, in concert with the
changing needs and requirements of individual users
and their applications. The flexibility in Balva stems
from small code snippets attached to individual data
objects. Each such code snippet provides security and
management functionality that can extend or change
various meta properties of the data objects it is atta-
ched to, including how the data is replicated or how it
can be transformed. We therefore refer to such code
snippets as meta-code (Johansen and Hurley 2011; Jo-
hansen et al. 2015). Balva interpositions meta-code
execution in the data access path of hybrid multi-
cloud file systems (Dobre, Viotti, and Vukolić 2014;
Ardagna 2015). Execution is transparent to the ap-
plications and does not require alteration of existing
data APIs. This enables Balva to adapt policies for le-
gacy applications, an important requirement for long
term data storage and curation. The Balva multi-cloud
architecture automates resource management across
multiple clouds, which may include autonomic so-
lutions for fine-grained security and privacy policy
enforcement, data lock-in avoidance, fault-tolerance,
scalability, and performance optimization. We design
Balva to capture these rapid changes while still being
able to preserve and curate this data for the long term.

694
Stenhaug, M., Johansen, H. and Johansen, D.
Managing Personalized Cross-cloud Storage Systems with Meta-code.
DOI: 10.5220/0006377607220728
In Proceedings of the 7th International Conference on Cloud Computing and Services Science (CLOSER 2017), pages 694-700
ISBN: 978-989-758-243-1
Copyright © 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



Application

Balva Kernel 
Module

Local 
Storage

Cloud 
Storage

Device

Cloud 
Storage

Data 
Vendor

…
Data 

VendorData 
Vendor

Application

Balva Kernel 
Module

Local 
Storage

Device

Figure 1: Multi-cloud deployment with Balva.

2 THE BALVA ARCHITECTURE

Recent trends in cloud computing include federating
and orchestrating cloud services spanning multiple
cloud services and providers. By not committing to
a single cloud provider, but rather a collection of ser-
vice providers, application developers can potentially
avoid data lock-in and stay available if the cloud ser-
vice becomes unavailable. The trade-off is (often) an
increase in cost. This cost can be used to the benefit
of the programmer as the service spanning multiple
providers can greedily choose the cheapest solution.
SpanStore (Wu et al. 2013) builds a storage service
spanning multiple cloud providers and optimizes for
low latency at a modest increase in cost. Similarly,
Supercloud (Jia et al. 2016) uses the Virtual Machine
spot market to choose the cheapest available compu-
ting resource at any time, migrating virtual machines
when cheaper resources become available.

Another benefit of federating cloud services is that
companies can utilize in-house computing resources
while expanding into the cloud when in-house capa-
city is reached. While dynamically moving the exe-
cution and storage of an in-house resource is compel-
ling, it increases the complexity of managing and de-
veloping such services. Typically, a federation layer
implementing an IaaS cloud platform is added to the
software stack to alleviate some of the programming
effort. This comes at the cost of having to rely on a
set of middleware services and APIs defined by the
provider of the federation software, with the potential
risk of relying on a software provider that may stop
supporting the software.

2.1 Object Model

Balva operates on objects consisting of a data layer
and a meta layer. We have designed Balva to impose
few restriction on what objects it can handle, their
granularity, and how they are stored and processed.

An object may be stored as a file, database record,
or any sequence of bytes that can be interpreted by
applications accessing that object. Balva does, howe-
ver, require that each object o has a unique identifier
o.id, for example when stored as a file: an UUID or a
host and path name combination. The identifier does
not have to be static, and may change over time. We
also require that all Balva storage backends support a
meta-layer that can store textual or binary key-value
metadata with each object. The object storage bac-
kend must always keep meta-data together with the
data, even if the object is renamed or transformed by
applications. Each object can potentially exist in in-
finitely many discrete states between its creation and
its deletion.

In Balva, the meta-layer of each data object o in-
cludes a lists a of named and well-defined meta-code
modules o.metacode = [m0,m1, . . . ,mn] that applica-
tions and Balva can invoke. Invocation of a meta-code
module may include parameters and may return some
value to the caller. Meta-code modules are execu-
ted by the Balva runtime in the isolated context of
the object they are attached to, and may manipulate
contained data and metadata. As such, the meta-code
functions in o.metacode constitute o’s public and pri-
vate interfaces. Balva supports objects with different
and dynamic o.metacode members, adapted to how
each object will be used. Each meta-code module
m ∈ o.metacode is set by some principal m.u, iden-
tified by the hash of u’s public key. Whenever the
meta-code m is executed, it will run with the privile-
ges of its governing principal m.u and isolated within
the execution context of o.

We take a minimalist approach to federating cloud
storage resources. Balva requires only a few meta-
code modules on objects for its own operations, de-
pending on what particular backend objects are sto-
red in or its indented usage. For instance, in our file
system implementation of the Balva architecture, as
will be described below, the meta-code array includes
modules for read, write, and delete operations. In ad-
dition, Balva provides meta-code modules for mani-
pulating an object’s meta layer, including adding and
removing elements of the o.metacode array. We adapt
a programming model where users and their appli-
cations can extend, replace, or remove elements of
o.metacode over time, avoiding the need to define
in advance a static set of data-access operations for
all cloud backend systems that are to be supported.
The ability to extend objects with operations imple-
menting various management policies enables users
to build a powerful and personalized storage system
tailored for their individual needs.
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2.2 Access Tokens

Balva is designed to be deployed across multiple
cloud computers or even hybrid and multi-clouds
spanning different vendors, as illustrated in Figure 1.
Balva therefore may run in multiple administrative
domains: from trusted cloud vendors to individual
user devices and community owned IoT devices. A
program executing locally on a client device must still
be able to transparently access protected data through
the local file system or a shared library. With traditi-
onal Access-Control Lists (ACLs), users would need
to maintain accounts with each individual federated
service, and have little opportunity to delegate their
rights beyond sharing their passwords. Bearer tokens
are seemingly better suited for federated cloud opera-
tions, as individual services do not need to keep lo-
cal state on access rights. In particular, Balva grants
access to invoke meta-code operations based on a me-
chanism similar to the Codecaps as described by Re-
nesse et al. (2013).

Balva access tokens are signed sequences meta-
code predicates, or heritages, hn = [p0, p1, . . . , pn] that
are evaluated in the context of an object o whene-
ver m ∈ o.metacode is invoked. Given a heritage h,
a meta-code operation m ∈ o.metacode, Balva only
admits an invocation if

∀p ∈ h | eval(p,m,o) = true

Thus, having some heritage hn, a principal can create
a derived heritage hn+1 by appending new predicates:

hn+1 = hn|pn+1

Doing so attenuates the rights granted by hn with ad-
ditional restrictions imposed by pn+1. Because herita-
ges are cryptographically sealed so that hn cannot be
retrieved from hn+1, principals can safely share subset
of their rights with others. Each heritage have a root
predicate p0 that only returns true for some objects.
By convention, a principal holding a heritage h such
that eval(h[0],m,o) = true is said to be the owner of
o, and is typically granted full access.

3 IMPLEMENTATION DETAILS

Balva is a cloud storage service designed to allow
configuration of advanced management and security
meta-code policies on stored objects. Balva targets
supporting the wide-range of existing data-driven ap-
plication stacks available today, and hence meta-code
based policy configuration and enforcement must be
transparent to existing legacy applications accessing
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Figure 2: Control flow of write operations.

data. Balva is therefore placed at the Operating Sy-
stem (OS) and file system level within existing Linux-
based software stacks. As such, files and blocks are
our unit of storage and data access; open, read, and
write are our main operations. We assume the under-
lying file system has the traditional semantic of uni-
quely identifiable and hierarchical organized file na-
mes and the ability to attach metadata to files, a com-
mon function in most Linux files systems (e.g., ext-4,
the journaling file system for Linux).

Balva meta-code policies are executed based on
up-calls from the kernel into a user space daemon,
in response to file system calls. As such, the core
components of our runtime is a Linux kernel module
and a collection of processes that implements file sy-
stem policies. This enables Balva to take advantage
of hooks inserted into the file system, and execute
code in the critical path of regular file system opera-
tions such as open, read, and write. The Balva kernel
module communicates with a user process, which in
turn invokes the appropriate callback function. We
have implemented hooks for several system calls as
required to interposition meta-code in the file system
access path. These includes the sys_open, sys_read,
and sys_write calls.

The Balva kernel module makes scheduling and
configuration decisions on how to execute the meta-
code policies associated with the data according to a
configuration set by the user. In addition to the ker-
nel module, Balva manages a set of processes running
inside containers in user space (Felter et al. 2015; Sol-
tesz et al. 2007). The runtime launches a kernel mo-
dule that listens for specific system calls, contacting
the user space processes if there is a policy set to exe-
cute given the system call parameters and the current
configuration. From this, we can construct and com-
bine modular mechanisms and policies to implement
a personalised data store that can capture specific user
needs.

When Balva initializes, the kernel module loca-
tes the system call table and replaces specific system
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Figure 3: Control flow of read operations.

calls with Balva prototype functions. These prototype
functions perform additional logic in addition to nor-
mal system call execution. To execute the read system
call, the runtime will identify any meta-code attached
to the file access operation, and invoke the associ-
ated code before executing the original system call.
Access token predicates are handed to Balva through
the metadata layer of the files, which ensures API
compatibility. To protect the Linux kernel, we have
decoupled the predicate and meta-code execution by
handling the former within the kernel and the latter
in user space. Since predicate functions are designed
to be simple regular expression evaluations, the pen-
alty of executing a predicate function for every file is
minimal.

Figure 2 depicts how writes are executed within
the kernel space and the user space. Balva intercepts
the initial write and passes the intermediate buffer to
our meta-code interface or the system call depending
on the output of the predicate evaluation. If the pre-
dicate returns true, the kernel thread handling the sy-
stem call will block while waiting for the user level
meta-code callbacks to be completed. The user level
meta-code will read the intermediate buffer and pass
it back to the kernel with any potential changes. Once
the user-level execution has completed, the Balva ker-
nel module will invoke the original system call with
the modified buffer. Once the routing completes, the
kernel module will return to the original calling ap-
plication. Similarly, Figure 3 shows the control flow
of a read operation. The difference between handling
read and write operations is that we call the original
system call prior to the user space policy for reads,
while write operations call the policy prior to the sy-
stem call.

Figure 4 shows how an open system call is execu-
ted. The user space policy is called if the predicate
function returns true, and if the return value of the
policy is to deny access the kernel module will im-
mediately return an appropriate error value to the cal-
ling program. If the meta-code policy returns success-
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Figure 4: Control flow of open operations.

fully, the kernel module will call the file system im-
plementation of sys_open, and return the file handle
returned by the system call. The sys_open call crea-
tes a new file descriptor handle for the calling process.
Access control is implemented by associating specific
files with access control mechanisms. If a mechanism
denies access to a file, the mechanism can simply re-
turn the appropriate error message without invoking
the original system call.

3.1 Policy Examples

Adding policies to be executed on data accesses is
done by incrementally adding meta-code modules in
Balva.

Data Transformation We implement data transfor-
mation policies by adding a transformation step to re-
ads and writes. For a write operation, we relay the
data d from the system call to the callback function
implementing the transform. The callback function
will then transform the input data and the runtime will
return the transformed data d′ to the kernel module
which then completes the system call. The data d′ is
viewed by the file system and mirrored to the local
hard drive. Conversely, we can retrieve the original
data by calling the read callback for a reverse trans-
form policy with the transformed data d′.

Using this technique, we can implement an en-
cryption policy. The callback routine for write can
encrypt the data d and write the encrypted data d′ to
disk. An application reading the data will invoke the
callback routine for the read operation, and transform
the encrypted data d′ into the decrypted data d viewed
by the application. With an encryption policy, we can
retrofit encryption to existing systems without having
to modify the application or file system.

Implementing filtering functionality in Balva can
be done during both reads and writes. Filtering data
during a write operation persists the data in the filtered
state. Filtering can also be implemented by transfor-
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ming the output data according to the policy for each
read, with the unfiltered data residing on disk. Balva
supports writing filtering and declassification policies
that can adapt according to specific parameters, such
as user and device privileges.

Access Control We can implement fine-grained
access control policies by encrypting the data during
writes and relying on a decryption key that is fet-
ched remotely and stored temporarily. This enables us
to write policies that reason with high-level concepts
such as user roles within a corporation in relation with
the contents of the files. To revoke access to the data,
the key owner can revoke the access to the remote en-
cryption key. By leveraging trusted computing plat-
forms such as Intel SGX (McKeen et al. 2013), these
policies can be enforced by executing within a secure
environment.

Data Management Replication policies can be
constructed by monitoring files for changes, and per-
form replication to an offline location according to the
consistency and durability needs of the policy. We
have implemented mechanisms for replicating data
to the major cloud vendors: Amazon S3, Windows
Azure Storage and Google Storage. With these me-
chanisms, we can construct replication specific po-
licies where data is replicated to one or more cloud
storage services in different geographical regions. For
example, a user may be restricted to storing offsite
backups within EU or US for certain types of files.
We can also construct auditing policies to track the
provenance and changes in files by logging file acces-
ses to a remote location.

4 EVALUATION

We perform a series of benchmarks to identify ad-
ditional latency incurred when interpositioning meta-
code policies in the access path of data. When a file is
associated with a specific policy, the runtime will exe-
cute user space code during a system call execution in
the kernel, and the resulting additional context switch
can be an expensive procedure. This context switch
overhead is measured with a series of benchmarks to
evaluate the validity of the meta-code execution mo-
del.

We deployed Balva on a Linux server equipped
with an Intel Xeon E5-1620 processor running at
3.70 GHz, 64 GB of memory and a 500 GB Samsung
840 EVO SSD. We are running Ubuntu server 16.04,
and we use a standard deployment of Linux Server.
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Figure 5: Read latency.
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Figure 6: Write latency.

When the Balva kernel module is loaded into the run-
ning Linux kernel, all subsequent invocation of sy-
stem calls will trigger evaluation of policy predicates.
The overhead of such predicate evaluations are neg-
ligible as they do not trigger any context switch out
from the kernel space.

4.1 System Call Latency

We calculate the system call latency by measuring the
entry and exit difference in a user space program in-
voking the open, read and write system calls, avera-
ging the measurements over a million individual calls
to the kernel. We open three different files that will
behave differently. The first will not invoke any meta-
code policies. This provides us with a baseline me-
asurement to compare the different implementations.
The second will invoke a Balva meta-code policy that
mirrors the input, and represents a minimal no-op po-
licy. Additionally, we compare our kernel module to
an implementation using FUSE to capture file system
calls.

Figure 5 shows the average latency of a read sy-
stem call. We observe that Balva incurs an additio-
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nal cost for our setup. With a buffer size of 1 byte,
Balva has a 13.7 times higher read latency compared
to the baseline. For 100 kB buffer sizes, Balva is 7.4
times slower. The write system call latency can be
seen in Figure 6. Compared to the FUSE implemen-
tation, Balva performed better for all sizes. Compared
with the baseline system call, Balva incurs an additi-
onal latency cost of approximately two to three times
the baseline latency. The results for the open system
call can be seen in Figure 7, and show comparable
results to the read and write latency.

Our experiments reveal that even with the incur-
red overhead of additional policy execution, Balva is
able to perform comparably to the base Linux file sy-
stem. Invoking a user defined policy is not a costly
operation, but the overall additional cost of executing
these depends on the individual meta-code functiona-
lity. Note that we do not make any specific assump-
tions on the underlying file system mechanisms such
as caching and prefetching. We do not specify that
the file system should bypass the cache for our expe-
riments.

4.2 Replication Policy Latency

In this experiment, we measure the write latency of a
policy where each write is replicated to Amazon S3.
Specifically, the meta-code policy writes a copy of all
data updates to an Amazon S3 instance before allo-
wing the application to continue. The S3 instance is
located in Ireland (eu-west-1), and we measured an
average ping latency of 74.0 milliseconds between the
local machine and the Amazon S3 front ends. Since
S3 does not allow incremental updates, we need to re-
write the entire file each time. To avoid reading and
writing to a large file for each operation, we partition
the file with a fixed block size of 4096 bytes. With a
partitioned file, we can perform incremental updates
by only updating the respective blocks. We average

Table 1: Average latency of write system calls when repli-
cating to Amazon S3.

Policy latency
None (Baseline) 6.8 µs
No-op policy 14.7 µs
Replicate to S3 (Ireland) 188.0 ms

the time it takes to complete a million random write
operations of 1 byte to a 1 GB file, and compare the
results with writing to the local hard drive. The results
can be seen in Table 1.

We observe as expected that the latency cost of the
additional remote cloud write is quite high compared
to only writing to the local disk. However, the incur-
red cost comes with the added benefit of having the
data replicated to a remote location with a strong con-
sistency model. The meta-code policy is implemented
with approximately 300 lines of C. A more refined
solution would be to relax consistency requirements,
and cache data locally before writing to the cloud
asynchronously. This solution would mask some of
the write latency at the cost of additional code com-
plexity and a weaker consistency model.

5 RELATED WORK

FUSE (Singh 2006) allows users to implement cus-
tom file systems without having to reason with the OS
kernel. However, a FUSE implementation of Balva li-
mits us to operate on files within a subdirectory (Hur-
ley and Johansen 2014). Additionally, we would need
to implement the file system itself or simply mirror
the local file system. By interpositioning policies be-
tween the application and the I/O system calls, we do
not have to reason with implementing a file system or
the details of the underlying file system.

Data capsules (Song et al. 2012) resemble our
model of adding functionality to data items. Howe-
ver their data protection as a service paradigm does
not appear to extend beyond the reach of a single
cloud; Balva is built for hybrid and multi-cloud en-
vironments where security policies are implemented
throughout. Associating code with individual data
items also has similarities to the active documents
work (Dourish et al. 2000) and Monitoring-Oriented
Programming (Chen and Roşu 2007). Our scope is a
bit broader than verifying code execution, but some
of the techniques employed are similar.

Guardat (Vahldiek-Oberwagner et al. 2015) ta-
kes a similar approach to enforcing policies at file
accesses. Their approach is to allow users to spe-
cify data access policies using the Guardat policy lan-
guage. Balva allows users to write policies in fami-
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liar programming languages, only relying on a mini-
mal library that communicates with the kernel mo-
dule. Executing the policies in user space isolates the
OS kernel from faulty policies while supporting a rich
set of policies.

6 CONCLUSION

This paper describes Balva: a cloud storage service
that transparently interpositions meta-code between
applications and file system calls. By implementing
security and management policies as meta-code at-
tached to objects, Balva enables users to extend the
storage system at runtime to enforce customized po-
licies for encryption, replication, auditing, and access
control. The experimental evaluations of the Balva
kernel module show that our flexible security and ma-
nagement policies can be supported with little over-
head on the I/O performance.
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