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Abstract: Community discovery is central to social network analysis as it provides a natural way for decomposing a
social graph to smaller ones based on the interactions among individuals. Communities do not need to be
disjoint and often exhibit recursive structure. The latter has been established as a distinctive characteristic of
large social graphs, indicating a modularity in the way humans build societies. This paper presents the im-
plementation of four established community discovery algorithms in the form of Neo4j higher order analytics
with the Twitter4j Java API and their application to two real Twitter graphs with diverse structural properties.
In order to evaluate the results obtained from each algorithm a regularization-like metric, balancing the global
and local graph self-similarity akin to the way it is done in signal processing, is proposed.

1 INTRODUCTION

Twitter is currently the most popular microblogging
platform and the stage for ongoing political, finan-
cial, and cultural conversations with a vast amount
of tweets being posted on a daily basis. Decom-
posing a Twitter social graph to communities yields
a deeper insight to these seemingly chaotic interac-
tions. However, community discovery is by no means
a trivial task. Besides the large volume of accounts,
tweets, retweets, and hashtags that need to be exam-
ined, necessarily implying parallel or distributed pro-
cessing, the question of what constitutes a commu-
nity, although posed in easily understood terms, re-
mains to be definitively answered. This does not im-
ply that no formal community definition exists. Quite
the contrary, a plethora of such definitions has been
in fact proposed, for instance in (Carrington et al.,
2005), (Fortunato, 2010), (Newman, 2010), which
successfully capture crucial aspects of human social
organization. However, they differ in key aspects and,
therefore, lead to different community detection algo-
rithms.

Similarly, there are a number of ways to assess
the clustering quality, namely community coherence.
However, most of the existing coherence metrics
are either prohibitively expensive, such as the maxi-
mum distance between vertices, or are prone to out-
liers, such as the diameter-based metrics (Drakopou-

los et al., 2015b) (Drakopoulos et al., 2016). To this
end, a coherence metric balancing global and local
self-similarity properties with a rationale similar to
the signal processing regularization criterion

K = ‖x−As‖2 +µ0 ‖Bs‖2 , µ0 > 0 (1)

which given a data vector x, possibly with noise and
outliers, computes a smoother version s thereof by
combining global and local patterns coded in matri-
ces A and B respectively. µ0 (Drakopoulos and Mega-
looikonomou, 2016) controls their contribution to s.

Graph databases such as Neo4j1, GraphDB2, and
BrightstarDB3 provide production grade front- or
back-end graph storage. In addition, they also offer
graph analytics such as link prediction and minimum
spanning trees (Panzarino, 2014) (Robinson et al.,
2013). Higher order analytics, such as community
discovery, constitute a significant addition as they of-
fer deeper insight in the graph structure.

The primary contribution of this paper is twofold.
Four community discovery algorithms, namely the
Newman-Girvan, the Walktrap, the Louvain, and the
CNM were implemented in Java over Neo4j. More-
over, the results of these algorithms applied to two
Twitter graphs created with Twitter4j4 are evalu-

1www.neo4j.com
2www.ontotext.com
3www.brightstardb.com
4http://twitter4j.org/en/index.html
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ated with a regularization-like criterion which is effi-
ciently computed and relies on the fundamental self-
similarity property of scale-free graphs.

The rest of this paper is structured as follows.
Section 2 provides an overview of community detec-
tion algorithms. The main characteristics of graph
databases are described in section 3. The inherent
high order nature of graph communities and four im-
plemented algorithms are outlined in section 4. Fi-
nally, section 5 describes the datasets used in this pa-
per and the results obtained from executing the com-
munity detection algorithms in Neo4j, whereas sec-
tion 6 concludes by recapitulating the main findings
and exploring future research directions.

Table 1: Paper notation.

Symbol Meaning
4
= Definition or equality by definition
deg(vk) Degree of vertex vk
Kn Complete graph with n vertices
(v1, . . . ,vn) Path with vertices v1, . . . ,vn
{sk} Set containing elements sk
|S| or |{sk}| Cardinality of set S or {sk}
〈sk〉 Sequence of items sk

2 RELATED WORK

Community detection is related mostly to graph clus-
tering (Scott, 2000), Web retrieval (Newman, 2010),
and user influence (Carrington et al., 2005). Con-
cerning graph clustering, it can be performed either
structurally or spectrally. In the former case parti-
tioning is based on the properties of the graph adja-
cency matrix (Kernighan and Lin, 1970) (Shi and Ma-
lik, 2000), whereas in the latter connectivity patterns
such as edge density or modularity (Newman, 2004b)
(Newman, 2004a) play a primary role with notable
examples being (Blondel et al., 2008), (Girvan and
Newman, 2002). Vertex ranking, computed for in-
stance with PageRank (Brin and Page, 1998) includ-
ing its variants (Langville and Meyer, 2006) or HITS
(Kleinberg, 1998), can be used to build communities
with vertices which share common topics. Authority
estimation can also be used to construct graph com-
munities. In (Agichtein et al., 2008) several graph
features as well as hub and authority scores are used
to model the relative importance of a given user. Al-
ternatively, in the expertise ranking model (Jurczyk
and Agichtein, 2007), authorities are derived by per-
forming link analysis to the graph induced from in-
teractions between users. Moreover, in (Weng et al.,
2010) authors employ Latent Dirichlet Allocation and
a PageRank variant to cluster the graph according to

topics and subsequently the authorities for each topic
are identified. This was extended in (Pal and Counts,
2011) with additional features, advanced clustering
and real-time capabilities. In addition, a previous
work regarding influential communities identification
is presented in (Kafeza et al., 2014). Finally, an over-
all and extensive overview of the community discov-
ery field is (Fortunato, 2010).

Signal regularization is a common technique aim-
ing at deriving a smoother or cleaner version of
a data vector without altering the regions of inter-
est. It has numerous applications in signal process-
ing (Drakopoulos and Megalooikonomou, 2016), ma-
chine learning (Girosi et al., 1995), system identi-
fication (Johansen, 1997), and inverse problem the-
ory (Vogel, 2002), while it also has connections to
Sobolev space theory (Adams and Fournier, 2003)
and to reproducible kernel Hilbert space theory (At-
touch and Azé, 1993).

The interest in the graph processing field has been
invigorated with the advent of open source graph
databases such as Neo4j, GraphDB and BrightStar.
Graph processing is usually implemented with the
use of massive distributed graph computing systems
like Google Pregel and graph based machine learning
frameworks like GraphLab. In these systems, graphs
play a twofold role as the data flow model and as the
learning model.

3 ARCHITECTURE AND
SOFTWARE

Graph databases such as Neo4j constitute one of the
four major database technologies collectively known
as NoSQL. RDBMSs assume that data can be repre-
sented in a structured and tabular manner. However,
the modern Web and the IoT generate unstructured or
semistructured, higher order, linked data which can-
not be easily described by a schema. The primary
properties of Neo4j include (Robinson et al., 2013)
(Panzarino, 2014) (Drakopoulos et al., 2015a)

Property 1. Neo4j is schemaless.

Property 2. Neo4j conforms to BASE requirements.

Property 3. The property graph model is the primary
conceptual data model of Neo4j.

Property 4 . Neo4j supports SPARQL, a W3C RDF
query language, and Gremlin, a path query language
(Drakopoulos et al., 2015a). However, queries to
a Neo4j system are mostly submitted in Cypher, an
ASCII art, pattern based, declarative language. The
basic Cypher query has the form
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[ s t a r t <p a t t e r n >]
match <p a t t e r n >
[ with <p a t t e r n > [ as <p a t t e r n >]]
where <p a t t e r n >
re turn <e x p r e s s i o n >
[ order by <f u n c t i o n > [ desc ] ]

Cypher queries can be submitted directly in Neo4j
console or, most frequently, through an application
over a Neo4j API. For Java the Neo4j API is included
in the Neo4j NetBeans extension library.

Figure 1 illustrates its components, including the
social crawler, Neo4j, and the graph analytics, as well
as the data flow between them.

Neo4j

Twitter
crawler

Java
driver Client

NetBeans
library

White box
(user)

White box
(developer)

Gray box

Black box

Figure 1: System architecture.

The social crawler has been implemented in Java
using the Twitter4j API for collecting Twitter data
and NetBeans for interfacing with Neo4j. Concerning
system configuration, the Twitter crawler is currently
inaccessible from the client, excluding thus any loops
with user feedback in subsequent Twitter crawlings.
The Neo4j version is 2.2.5, the latest available ver-
sion at the beginning of development.

4 COMMUNITY DISCOVERY

This section outlines four popular community detec-
tion algorithms. It should be noted that these commu-
nity detection algorithms rely on the inherently higher
order information found as the graph structure. The
latter is expressed in terms of the number of vertices
or edges that need to be visited or traversed respec-
tively in order to compute a graph function. Typi-
cal examples include the diameter or the number of
shortest paths connecting two given vertices. This can
be at least partly attributed to the linked graph nature
which balances local and global information. There-
fore, graph processing systems should be of similar
nature, if useful information is to be extracted.

A manifestation of the higher order nature of the
graph community detection problem is that the small-
est community is a triangle. In terms of vertices, it can

be considered as a third order quantity. If a triangle
is closed, then it is a third order quantity in terms of
edges as well. This stems from the fact that single re-
lationships between individuals, namely edges in so-
cial graphs, do not qualify as communities. Thus, in
a group there has to be at least one common acquain-
tance connecting the individuals in this group. This is
reflected by the fact that successful community detec-
tion algorithms rely on higher order metrics directly
or indirectly. For instance, graph clustering or spec-
tral graph partitioning algorithms exploit higher or-
der constructs such as the primary eigenvector or the
resolvent of the graph adjacency matrix (Benzi and
Boito, 2010).

4.1 Louvain Algorithm

Louvain or multilevel algorithm (Blondel et al., 2008)
is a hierarchical clustering algorithm operating on
weighted graphs. Initially each vertex is a single com-
munity. Then, communities are progressively merged
with neighboring ones based on the local edge density
change. The objective is to create communities where
edge density is high, while intercommunity density
remains low.

Louvain algorithm expresses the intuitive notion
of edge density with modularity, a scalar m ranging
from −1 to +1 is defined as

m 4
=

{
1

2|E| ∑(i, j)

(
wi, j− deg(vi)deg(v j)

2|E|
)
,vi ∈ ci∧ v j ∈ c j

0, vi,v j ∈ ci
(2)

In (2) ci and c j denote the communities vi and v j
belong to and wi, j is the weight of (i, j). Although
the Louvain algorithm can be applied to unweighted
graphs, the result is always a weighted graph where
weights are proportional to local edge density. An
unweighted graph is treated as a weighted graph with
initial weights equal to one.

Modularity is maximized through a sequence of
two alternating steps. In the first step, each vi is
merged with each of its neighbors into a single com-
munity C and the modularity change ∆m is computed
as the difference between the new modularity minus
the old one. Finally, vi is assigned to the c j yielding
the bigger ∆m. In the second step, a new graph is con-
structed where all vertices belonging to the same com-
munity are merged into a single vertex. All edges con-
necting two communities form a single edge whose
weight is the sum of the individual weights.
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Algorithm 1: Louvain (multilevel) algorithm.

Require: Graph G(V,E)
Ensure: G is partitioned into communities

1: if G is unweighted then
2: for all (vi,v j) ∈ E do
3: wi, j ← 1
4: end for
5: end if
6: k ← 0 and V0 ← V and E0 ← E
7: for all vi ∈V0 do
8: vi becomes a separate community
9: end for

10: Compute m as in (2)
11: repeat
12: for all vi ∈Vk do
13: for all v j 6= vi | (i, j) ∈ Ek do
14: Assign temporarily vi to c j.
15: Compute ∆m.
16: end for
17: end for
18: Assign vi to c j with the biggest ∆m
19: Merge vertices of ci to a single vertex
20: Merge edges within ci to a single loop
21: Merge edges between ci and c j to a single edge
22: k ← 1 and update Vk, Ek
23: until no ∆m can occur.
24: return

4.2 Newman-Girvan Algorithm

Newman-Girvan or edge betweeness algorithm (Gir-
van and Newman, 2002) relies on betweeness central-
ity, an edge centrality metric which counts the fraction
of the number of the shortest paths connecting two
vertices vi and v j a given edge ek is part of, denoted
by ζk

i, j, to the total number of shortest paths connect-
ing vi and v j, denoted by ζi, j. Then the betweeness
centrality for ek, denoted by Bk, is computed by aver-
aging over each vertex pair

Bk
4
=





1
(|V |2 )

∑(vi,v j)∈V×V
ζk

i, j
ζi, j

, vi 6= v j

1, vi = v j

(3)

In (Girvan and Newman, 2002) a process for
computing Bk for each ek, in a manner resembling
breadth-first search, is described. The rationale is that
vertices belonging to different communities should
rely on edges connecting communities for informa-
tion exchange. However, note that the converse does
not need to be true. Moreover, depending on graph
topology, some of the community connecting edges
may not be high ranked in terms of betweeness cen-
trality, as other edges may be more preferable. There-

fore, the edge e∗ with the highest betweeness central-
ity should be removed and subsequently the process
should be again applied to the new graph. Eventually,
all edges connecting communities will be identified.
Intuitively, the edge sequence 〈e∗〉 should contain the
graph bridges as well, which are a subset of the com-
munity connecting edges. In case the graph becomes
disconnected, then the process is repeated for each of
the connected components.

Algorithm 2: Newman-Girvan algorithm.

Require: Graph G(V,E); Termination criterion τ0
Ensure: G is partitioned into communities

1: while E 6= ∅ and τ0 not satisfied do
2: Compute Bk as in (3)
3: e∗ ← argmaxk{Bk}
4: E ← E \{e∗}
5: end while
6: return

4.3 Walktrap Algorithm

Walktrap algorithm is based on the principle of ran-
dom walker. Starting from any random vertex the ran-
dom walker will eventually spend more time steps in
densely interconnected graph segments, as it is more
probable for a randomly picked edge to lead to an-
other vertex inside the segment than to a vertex out-
side it. Since such densely connected segments in-
tuitively correspond to communities, random walks
based metrics for community detection has been pro-
posed in (Pons and Latapy, 2005). The probability
that the walker moves from vi to v j is

pi, j =
A[i, j]

deg(vi)
(4)

where A denotes the adjacency matrix

A[i, j] 4=

{
1, i = j∨ (i, j) ∈ E
0, i 6= j∧ (i, j) 6∈ E

∈ {0,1}|V |×|V | (5)

As the probability that the random walker reaches
v j from vi through a path of length `, is denoted by
p`i, j, then if vi and v j belong to the same community,
then p`i, j should be large for at least large values of `.
Note that the converse is not always true, depending
on graph topology

p`i, j = ∑
πk|π|=`

∏
(vi,v j)∈πk

pi, j (6)

where
π =

(
vk1 , . . . ,vk`+1

)
, |π| = ` (7)
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Equations lay the groundwork for defining the dis-
tance di, j between vi and v j as

d`
i, j
4
=

√√√√√ |V |
∑
k=1

(
p`i,k− p`j,k

)2

deg(vk)
(8)

The transition probability p`C,k from any vertex be-
longing to a community C to vk in ` steps, is defined
as

p`C,k =
1
|C|∑i∈C

p`i,k (9)

Generalizing (8), the distance rCi,C j between the
communities Ci and C j is defined as

rCi,C j =

√√√√√ |V |
∑
k=1

(
p`Ci,k
− p`C j ,k

)2

deg(vk)
(10)

Algorithm 3: Walktrap algorithm.

Require: Graph G(V,E); Termination criterion τ0
Ensure: G is partitioned into communities

1: for all vk ∈V do
2: Assign vk to a separate community
3: end for
4: repeat
5: for all distinct community pairs Ci and C j do
6: Compute rCi,C j as in (10).
7: end for
8: Merge communities which minimize rCi,C j .
9: until one community remains.

10: return

4.4 CNM Algorithm

The CNM algorithm is also a hierarchical vertex par-
titioning algorithm. As such, initially each vertex
constitutes a separate community. Then, neighbor-
ing communities are progressively merged to larger
ones until no more merging is feasible according to
the structurality criterion a. For a single vertex vi, ai
is defined as

ai
4
=

deg(vi)

2|E| (11)

For two neighboring vertices, ∆ai, j is defined as

∆ai, j
4
=

1
2|E| −

deg(vi)deg(v j)

4|E|2
(12)

and it is zero for non-neighboring vertices. ∆ai, j
corresponds to the structural changes incurred from
adding (i, j) to a community. In order to keep track of

∆ai, j, they are stored in a sparse matrix. Also the com-
munities are stored in a binary tree where the leaves
are the individual vertices. Each time two commu-
nities are merged, the resulting community is their
parent at the tree. Moreover, the two corresponding
columns of the ∆ai, j sparse matrix are merged and
their elements are updated according to the following
rules (assuming communities i and j are to be fused):

• If community k is linked with communities i and
j, then

∆a j,k = ∆ai,k +∆a j,k (13)

• If community k is linked with community i but not
with j, then

∆a j,k = ∆ai,k−2a jak (14)

• Finally, if community k is linked with community
j but not with i, then

∆a j,k = ∆a j,k−2aiak (15)

Algorithm 4: CNM algorithm.

Require: Graph G(V,E); Termination criterion τ0
Ensure: G is partitioned into communities

1: Assign each vertex to a separate community
2: for all discrete pairs (vi,v j) ∈V ×V do
3: Compute pairwise ∆ai, j as in (12)
4: end for
5: repeat
6: for all remaining communities do
7: Compute pairwise ∆ai, j as in (12)
8: end for
9: Find max∆ai, j and fuse communities

10: Update binary tree and ai and matrix ∆ai, j
11: until one community is left.
12: return

5 Results

5.1 Data Synopsis

Definition 1. The (log)completeness σ0 (σ′0) of a
graph is defined as the ratio of the (log)number of
edges to the (log)number of edges of Kn.

σ0
4
=
|E|(|V |

2

) =
2|E|

|V |(|V |−1)
≈ 2|E|
|V |2

σ′0
4
=

log |E|
log
(|V |

2

) ≈ log |E|
2log |V | (16)
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Definition 2. The (log)density ρ0 (ρ′0) of a graph is
defined as the ratio of the (log)number of edges to the
(log)number of vertices.

ρ0
4
=
|E|
|V | =

|V |σ0

2

ρ′0
4
=

log |E|
log |V | ≈ 2σ′0 (17)

Notice that the base of the logarithm affects nei-
ther σ′0 nor ρ′0 since

logb1
x =

logb2
x

logb2
b1

, x 6= 0 (18)

It follows from (16) and (17) that

ρ′0
ρ0

=
4
|V |

σ′0
σ0

(19)

implying a balance between density, which connects
the number of vertices and edges of the same graph,
and completeness, which relates the number of edges
of a graph to those of K|V |.

In order to demonstrate the differences between
the algorithms of section 4, two social graphs with
anonymized Twitter users were constructed. Twit-
ter4j retrieved users as well as information regarding
who follows whom using a topic sampling approach.
A keyword search query collected the users whose
tweets or retweets contained #Grexit, a trendy and po-
litically highly controversial topic, whereas a second
query used the hashtag #SocialNetwork, a generic and
by no means inciendiary topic. Subsequently, users
following each other or having a common follower
were connected with an edge as in (Kanavos et al.,
2014). Tables 2 and 3 review graphs #SocialNetwork
and #SocialNetwork respectively. Both seem to have
similar properties on a macroscopic scale, however
the seemingly subtle differences correspond to sig-
nificant structural differences at the community level
stemming from the nature of the two topics.

Table 2: #Grexit graph sunopsis.

Feature Value Feature Value
Directed True Weighted False
|V | 3696 |E| 8225
ρ0 2.2313 ρ′0 1.0973
σ0 0.0012 σ′0 0.5486

5.2 Analysis

Table 2 outlines the size of each community, ex-
pressed as a percentage of the total number of ver-
tices, as generated by the four aforementioned algo-
rithms. Louvain and CNM algorithms yield fewer

Table 3: #SocialNetwork graph sunopsis.

Feature Value Feature Value
Directed True Weighted False
|V | 4246 |E| 12054
ρ0 2.8387 ρ′0 1.1249
σ0 0.0013 σ′0 0.5624

communities than Newman-Girvan and Walktrap.
Another observation is that communities tend to be
clustered in size.

Table 4: Community sizes (%) of #Grexit graph.

id Edge Walktrap Louvain CNM
1 9.30 10.50 6.50 9.70
2 6.10 12.60 13.60 10.20
3 5.10 7.00 11.20 22.10
4 13.10 7.20 6.40 18.50
5 2.70 11.20 7.90 14.30
6 13.20 10.20 12.50 11.40
7 5.20 8.40 13.60 5.50
8 15.10 6.30 12.20 8.30
9 12.10 5.50 6.30 -

10 11.10 11.40 5.20 -
11 1.10 2.10 4.60 -
12 3.40 3.40 - -
13 2.50 4.20 - -

Table 5: Community sizes (%) of #SocialNetwork graph.

id Edge Walktrap Louvain CNM
1 9.10 12.50 6.90 9.70
2 6.60 14.60 18.40 12.00
3 5.10 7.10 13.20 25.10
4 15.10 7.10 6.70 18.50
5 2.80 13.30 7.90 17.30
6 15.20 11.20 13.50 11.90
7 5.40 9.40 18.20 5.50
8 15.10 6.50 15.20 -
9 13.10 5.60 - -

10 12.50 12.70 - -

A metric for evaluating the clustering quality
is inspired by the regularization cost function from
(Drakopoulos and Megalooikonomou, 2016)

J(λ0) = J1 +λ0J2, λ0 ∈ R+ (20)

where λ0 is a strictly positive factor expressing the
relative importance of J1 compared to J2.

The first term measures the combined and
weighted relative deviation of k-th community in
terms of logdensity and logcompleteness in macro-
scopic or global scale, namely from the entire graph

J1
4
=
|Ck|
∑
k=1

|Vk|
|V |

(∣∣ρ′k−ρ′0
∣∣

ρ′0
+

∣∣σ′k−σ′0
∣∣

σ′0

)
(21)
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(a) #Grexit (b) #SocialNetwork
Figure 2: Graph community sizes.

where ρ′k and σ′k are the logdensity and the logcom-
pleteness of the k-th community whereas Ck is the set
of communities. The weight of each community is the
ratio of its vertices to the total number of vertices.

The second term quantifies the combined and
weighted deviation from the expected scale-free be-
havior, again expressed in terms of logdensity and
logcompleteness as in (19), in microscopic or local
scale, namely at the community level

J2
4
=

√√√√|Ck|
∑
k=1

|Vk|
|V |

(
ρ′k
ρk
− 4
|Vk|

σ′k
σk

)2

(22)

Once communities are derived, computing logdensity
and logcompleteness is straightforward. This is an
advantage over community metrics such as diameter.
Moreover, J(λ0) is less prone to outliers and captures
the scale-free behavior of the graph.

Table 6: J score for #Grexit graph.

λ0 Edge Walktrap Louvain CNM
0.1 14.94 15.55 13.67 21.44
0.3 11.61 12.69 12.33 18.12
0.5 09.11 11.07 10.59 18.37
0.7 08.42 11.01 11.12 19.95
0.9 09.73 12.45 13.49 21.17

Table 7: J score for #SocialNetwork graph.

λ0 Edge Walktrap Louvain CNM
0.1 18.42 20.42 20.61 25.34
0.3 17.75 20.11 19.70 24.99
0.5 18.04 19.23 17.44 23.18
0.7 19.78 18.92 18.63 22.34
0.9 20.53 19.53 21.00 21.53

As a general remark, there is no single optimum
value for λ0. Nonetheless, Newman-Girvan is consis-
tently better with Walktrap and Louvain closely fol-
lowing and sharing the second position. CNM has the
worst performance, which can be attributed to the fact

that it creates fewer communities, which are bound
to be heterogeneous. As Newman-Girvan is typically
an exhaustive algorithm, it seems that Louvain and
Walktrap algorithms are balanced options.

6 CONCLUSIONS AND FUTURE
WORK

This paper outlines the implementation of Newman-
Girvan, Walktrap, Louvain, and CNM community de-
tection algorithms over Neo4j. Also, a criterion for
assessing the compactness of the communities com-
bining global and local scale-free graph behavior is
proposed and tested on the results of applying these
algorithms to two real Twitter graphs created from a
neutral as well as a politically charged topic.

As future work, the scalability properties of com-
munity discovery should be considered in parallel or
distributed environments. In addition, the proposed
criterion should be tested on larger graphs. Finally,
regarding λ0, a scheme for computing its optimum
value in finer granularity should be developed.
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