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Abstract: In this paper, a novel human-robot shared control approach is proposed to solve the problem of semi-
autonomous mobile robot navigation with the spatial constraints of maintaining reliable Wi-Fi connection.
In particular, the presented approach benefits from using Gaussian Process Regression method to learn the
distribution of indoor Wi-Fi signal strength (WSS) and to fuse it with the environmental occupancy probabil-
ity. The resulting WSS-Occupancy hybrid map is further utilized for generating paths that prevent the robot
from violating the spatial restriction. A shared control strategy is designed to implement the WSS-aware nav-
igation behaviour. The approach is evaluated by both simulation and real-world experiments, in which the
results validate the practicability and effectiveness of the approach.

1 INTRODUCTION

With the increasing prevalence of wireless LAN
in indoor environments, tele-operated mobile robots
have been applied to environment inspection and
monitoring applications(Sgouros and Gerogiannakis,
2003)(Pitzer et al., 2012). In situations that spatial
constraints other than obstacles are imposed to such
a networked mobile robot, full tele-operation may not
be reliable enough and semi-autonomous robots(Tang
et al., 2009) with human-robot collaboration have be-
come important in network robotic system.

In the context of this study, the focus is particu-
larly on an unknown spatial constraint of maintain-
ing reliable Wi-Fi connections during robot naviga-
tion. Our motivation originates from the fact that in
indoor environments, when a robot navigates through
an area with poor Wi-Fi signal strength (WSS), the
tele-operation system may temporarily lose control
over the robot, neither can continuous and high qual-
ity tele-presence (visual and audio) feedback be en-
sured.

By treating the Wi-Fi distribution as a static spatial
constraint here, the solution is to design a WSS-aware
navigation behavior for ensuring continuous and reli-
able Wi-Fi connection during the robots exploration.
We define the problem mentioned above asspatially
restricted navigationof a tele-operated mobile robot.

Intuitively, learning the distribution of spatial con-

straints in the environment can be benefit to prevent
a robot from violating the restriction. Learning the
spatial distribution of an indoor environment from a
mobile platform can be formulated as a well-known
regression problem, i.e., to predict sensor values at
locations where the robot doesn’t traverse. Gaussian
Process(Rasmussen and Williams, 2006)(Qian et al.,
2016) is a powerful formalism for predict the prob-
ability distributions over sensor values at uncovered
locations. In Jadaliha’s work(Jadaliha et al., 2012),
the authors employed Gaussian Processes (GPs) to
build non-parametric probabilistic models using data
from a pilot sensor work deployment, for monitoring
spatial phenomena of interest. In order to handle the
diffusion and patches effects of complex interaction
of gas, Stachniss(Stachniss et al., 2009) proposes to
learn two-dimensional spatial models of gas distribu-
tions using a sparse Gaussian process mixture model,
which accurately represents the smooth background
signal and the areas with patches of high concentra-
tions. These recent studies(Krause et al., 2008)(Fer-
ris and D. Hahnel, 2006)(Xu et al., 2011)(Xu and
Choi, 2011)(Engel et al., 2003)(Ko et al., 2007) have
shown that Gaussian processes are an attractive mod-
eling technique in this context since they do not only
provide an estimate of sensory data for each point in
the space but also the predictive uncertainty. To our
best knowledge, the GPs approach has not yet been
applied to model the indoor Wi-Fi signal strength dis-
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tribution.
Another challenge is how to utilize the recovered

spatial constraints to implementspatially restricted
navigationbehaviors of a robot. Semi-autonomous
navigation will outperform full tele-operation when
spatial constraints are considered. Two major prob-
lems are concerned in this paper:

• Firstly, if the spatial distribution of WSS is recov-
ered by the GPs, the distribution should be inte-
grating with the occupancy grid map in order to
achieve a WSS-aware navigation behaviour.

• Secondly, a semi-autonomous behaviour of robot
is desired to correct the path designated by the re-
mote user and prevent itself from entering the ar-
eas with low WSS.

To deal with semi-autonomous control of mobile
robots, human-robot shared control methods(Li et al.,
2015) have been applied when multiple inputs and
multiple constraints are considered. The concept of
shared control is to select between the two sources
of commands and combine them to ensure task ac-
complishment while satisfying dynamic constraints.
However, to our best knowledge, there is little re-
search towards the solution of the WSS-aware navi-
gation problem.

In this paper, we propose a practical problem
called WSS-aware navigation of a tele-operated mo-
bile robot, which is an example of a general con-
cept of spatially restricted navigation. To tackle
this problem, we present an approach that enables
semi-autonomous navigation of a tele-operated mo-
bile robot by learning WSS-Occupancy hybrid map,
in which Gaussian Process is used as an effective
model to learn the WSS distribution with limited
number of training samples and predict the WSS dis-
tribution in a coordinate frame that is consistence
with the robots occupancy grid map. The concept
of shared control is introduced to implement a semi-
autonomous navigation behaviour of mobile robot
that can avoid the risk of violating the constraints, i.e.,
continuous and reliable Wi-Fi connection during nav-
igation is ensured.

2 WEB-BASED ROBOTIC
SYSTEM FOR MONITORING

A web-based robotic system is developed for re-
mote environment monitoring. The mobile robot is
equipped with a HOKUYO laser range finder for self-
localization and obstacle avoidance and a video cam-
era for capturing local video streams. The onboard
computer integrates a network card to measures the

Wi-Fi signal strength (WSS). The web-based robotic
system is built with three-layer architecture, as shown
in Figure 1:

• Web Client Layer (WCL). The WCL provides a
user with a client GUI to monitor the remote envi-
ronments as well as to get access to the direction
control of a robot.

• Network Service Layer (NSL). The NSL is com-
prised of a Web server and an Audio/Video Server.
Another key role of NSL is to conduct the shared
control strategy, and thus the shared control effect
is transparent to the user.

• Local Robot Control Layer (LRCL), The
LRCL runs various ROS (Robot Operating
System)(Quigley et al., 2009) based nodes to
access robot hardware and to perform perception,
localization, navigation, mapping and other mod-
ules. The proposed WSS distribution mapping
function is also deployed in LRCL for creating
and storing the robots knowledge about the
spatially constrained environment.

Mobile

client

Streaming

Recognition

Decision making

Perception

Localization

Navigation

Navigation

Audio

Video

Mapping

Web Client Layer Network Service Layer Local Robot Control Layer

Shared control

Web server(LAMP)

A/V server

Service management

Autonomous control

Sensor data acquisition

Motor control

Node management

Full supervision Full autonomousSemi-autonomous
Roles of human

intervene

Browser

client

Internet LAN

SLAM

WSS mapping

Direct control

Monitoring

Server

Figure 1: Web-based robotic system architecture.

A browser-based GUI is also provided to receive
human input commands from keyboard, joystick and
other types of interface, as shown in Figure 2. Given
the direction human input commands and the robots
autonomous control commands, the concept of shared
control is to select between the two sources of com-
mands and combine them to ensure task accomplish-
ment while satisfying dynamic constraints.

In our remote monitoring application, a typical
constrain concerned in this paper is to maintain solid
Wi-Fi connection for ensuring smooth video stream-
ing. With regard to this, the key to shared control
is to model the distribution of indoor Wi-Fi signal
strength and fuse such spatial distribution with the en-
vironment occupancy probability distribution, which
we define as WSS-Occupancy hybrid map building.
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Based on this a decision making module is proposed
to select or combine the commands from human in-
puts and the robots autonomous control inputs gener-
ated from a navigation controller based on the WSS-
Occupancy hybrid map. The shared control frame-
work is shown in Figure 3.

Figure 2: Browser-based GUI.
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Figure 3: Shared control framework.

3 LEARNING WSS SPATIAL
DISTRIBUTION

3.1 WSS Samples Accquisition

A robot explores the environment and constructs the
grid map of the environment using its onboard laser
sensor readings. In the situation of both robot posi-
tion and environmental map are unknown, the popu-
lar GMapping algorithm(Grisetti et al., 2007) is em-
ployed to implement highly efficient SLAM (simulta-
neously localization and mapping).

As the exploration and mapping proceeds, the
robot simultaneously captures the Wi-Fi signal
strength (WSS) from the network card of the onboard
computer along the path it travels. At every fixed time

intervalt the robot encapsulates the WSS data as each
data packet:

D = (xi ,yi)|i = 1,2, ...,n (1)

in which xi is the positions of sample points, andyi
is the WSS measured at the corresponding position
timestampti .

3.2 Learning WSS Distribution with
Gaussian Processes

A Gaussian process defines a distribution over a space
of functions. LetD = {{x1, ȳ1},{x2, ȳ2}, ...,{xn, ȳn}}
be a set of training data generated from a noisy pro-
cess ¯yi = f (xi) + εi , wherexi ∈ Rd is an input sam-
ple data andyi ∈ R is a target or an observation.εi
is additive Gaussian noise with zero mean and un-
known varianceσ2

ε , i.e.,ε ∼N(0,σ2
ε). A Gaussian

Process considersf (·) as a random function and esti-
mates the posterior distributionp( f |D) based on the
prior p( f ) and the training dataD. A GP prior p( f )
is completely specified by its mean function and co-
variance function,i.e.,f ∼ GP(mf ,kf ),which can be
formulated as:

p( f (x)) ∼N(mf (x),kf (x,x)) (2)

Assuming that we have two input pointsxp andxq,
and the corresponding function values at these points
are f (xp) and f (xq), respectively. We consider a prior
mean functionmf ≡ 0 and a typical squared exponen-
tial (SE) covariance function, or called kernel func-
tion:

cov(yp,yq) = kSE(xp,xq)+ δpqσ2
ε (3)

in which:

kSE(xp,xq) := α2 exp

(
−1

2
(xp− xq)

TΛ−1 (xp− xq)

)

(4)
with xp,xp ∈ Rd. In the above equation,
Λ = diag([l21, ..., l

2
d]) is a diagonal matrix of squared

characteristic length-scalesl2i , i = 1, ...,d. α2 is the
signal variance andδpq is the Kronecker symbol that
is unity whenp= q and zero otherwise.

If we denoteX as the entire set of input values,
Equation (3) can be rewritten as:

cov(y) = K +σ2
ε I (5)

whereK is then×n covariance matrix withK[p,q] =
kSE(xp,xq). The prior over functionf depicted by
Equation (5) indicates that one can generate the ma-
trix K from a set of input valuesX and then sample a
set of corresponding target valuesy∼N(0,K +σ2

ε I).
Given a training datasetD of n input-

output pairs that contains samples positions
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X = {xi |i = 1,2, ...,n} and their corresponding
WSS valuesy= {yi |i = 1,2, ...,n}, a GP model is
trained. Based on the trained GP model the posterior
distribution can be computed. For a new inputx∗
that represents a position where WSS at this position
is never measured, the joint conditional distribution
of the estimated target valuey∗ can be estimated by
the prediction distributionp(y∗|x∗,D). The posterior
over function values, conditioned on the training
dataX andy is Gaussian with meanµx∗ and variance
σ2

x∗ (Deisenroth et al., 2014):

p( f (x∗)|x∗,X,y) =N(µx∗ ,σ
2
x∗) (6)

where
µx∗ = k∗T(K+σ2

ε I)−1y (7)

σ2
x∗ = k(x∗,x∗)− kT

∗
(
K+σ2

ε I
)−1

k∗ (8)

The chosen kernel function determines the perfor-
mance of the GP regression. The hyper-parameters
of a GP with Gaussian kernel for a particular dataset
can be learned from the training data, in which the
hyper-parameters are derived by maximizing the log
marginal likelihood using empirical Baysian infer-
ence(Rasmussen and Williams, 2006).

3.3 Fusion of Grid Map with Wi-Fi
Signal Strength Distribution

The learned WSS distribution map models the spa-
tial distribution of WSS within a given indoor context.
We use Equation (9) to transfer raw WSS dataS into
GW that takes similar value as a grey image pixel:

GW = 255(S+Smin)/(Smax−Smin) (9)

, in whichSmin andSmax are the lower bound and the
upper bound of transformation, which are set as:

Smin =−113dBm (10)

Smax= 0dBm (11)

, according to our inspection of the range of sam-
ple WSS values in typical indoor environments. We
define the minimal value of WSS that ensures reli-
able network connection in the environment isSaccept
and thus the corresponding value after the transform
is Gaccept. Furthermore, since the Wi-Fi distribution
map is learned on actual sensor readings recorded at
locations in the world coordinate that is consistent
with the occupancy grid map of the environment, the
WSS distribution map can be fused with the occu-
pancy grid map, resulting in a WSS-Occupancy hy-
brid grid map. DenoteGI as the grey value of a pixel
in the occupancy grid map andGW are defined in

Equation (9). The resulting grey valueGB of the cor-
responding pixel in the WSS-Occupancy hybrid grid
map is given in Equation (12):

GB = { GW GW < min(Gaccept,GW)
GI else

. (12)

4 SHARED CONTROL
STRATEGY

Using the WSS-Occupancy hybrid grid map de-
scribed in Section 3, a desired trajectory can be com-
puted by a regular navigation controller that is com-
prised of a global path planner and a reactive local
planner. The path will ensure goal-directed naviga-
tion while avoid the robot to pass through the areas
with low WSS, so that continuous network connec-
tion will be strictly ensured.

Using a local path planner such as VFH or ND
algorithm(Minguez and Montano, 2005), the au-
tonomous control setur is obtained. Given the hu-
man direct controluh = [vh,wh]

T and the output of the
reactive local plannerur = [vr ,wr ]

T , in which v and
w represent the translational speed and the rotational
speed of the robot, respectively, the shared controller
adopted in this work can be formulated as a combi-
nation of both two sources of command as shown in
Equation (12).ρ is the allocation weight with domain
0≤ ρ ≤ 1.

us = (1−ρ)uh+ρur (13)

Since a robot control command will not exactly
cause ideal movement but introducing certain uncer-
tainties, we roughly predict the distribution of the
robot’s possible future positions in a small time inter-
val ∆t ahead by adding Gaussian noises to the transla-
tional and rotational velocity. Firstly we assume that
the robot’s heading is constant but the translational
velocity isv, thus the robot’s possible movements are
placed along a vector

−→
OA after ∆t. Then we assume

that the robot’s rotational velocity changes randomly
within [−∆w,∆w] in ∆t. The result is a fan-shaped
area as shown in Figure 4 that contains all possible
ur .

Let the feasible autonomous control input set asUr
and feasible human input set asUh. Four types of rela-
tionships betweenUr andUh as shown in Figure 5 are
considered. IfUh is a subset ofUr , i.e.,Uh ⊆Ur , the
tele-operation command is regarded safe for ensuring
both goal-reaching and obstacle avoidance. In this
case, anyρ that satisfies 0≤ ρ ≤ 0.5 can be taken to
generate a synthetic control command. In three other
situations such asUr ⊆Uh, Uh∩Ur 6= {O,Uh,Ur} and
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Figure 4: Definition ofUr .

Uh∩Ur = {O}, the tele-operation commands exceed
the safe range of the autonomous decision and it is
therefore difficult for the user to manually direct the
robot to achieve the goal while meeting the constrains.
In this case, we simply assign the allocation weight
ρ = 1 to ensure successful task accomplishment by
robot’s autonomy only.
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Figure 5: Four types of relations betweenUh andUr .

5 EXPERIMENTS

5.1 WSS-Occupancy Hybrid Mapping

We firstly verify the performance of WSS distribu-
tion mapping in a simulation experiment. A Wi-Fi
signal generator is utilized to simulate the Wi-Fi sig-
nal that travels in a simulated indoor environment as
shown in Figure 6(a). In the simulation, we use In-
door Propagation model, a.k.a, the MK model(Motley
and Keenan, 1988), to generate the ground truth Wi-Fi
distribution. This model takes into consideration the
signal decline when it travels through various kinds
of obstacles. Table 1 gives the signal attenuation rate
when the signal propagates through different types of
obstacles, such as walls, wood or glasses, et al.

The MK model based simulator uses Equation
(14) to compute the predicted path loss for a testing
receiver place:

Spico = S0+10×n0× log(x)+ (N1S1+L+NnSn)
(14)

in which S0 equals to the pass loss at 1m from the
transmitter,n0 is the signal attenuation rate long the

Table 1: WI-FI Signal attenuation rate.

Types of obstacles Attenuation rate
electromagnetic interference 30∼ 50dBm

Concrete walls 12∼ 32dBm
Block walls 5∼ 15dBm

Wooden walls 3∼ 8dBm
Glasses 1∼ 5dBm

propagation path due to electromagnetic interference,
x is the distance between the transmitter place and
the testing receiver place,Ni is the number of inte-
rior walls between the transmitter and testing receiver
place andSi is the loss factor of different interior wall
materials. The result of the simulated WSS distribu-
tion is shown in Figure 6(b), which is taken as the
ground truth.

Wireless AP

(a) (b)

Figure 6: Simulated environment and the ground truth.

Using a Stage(Vaughan, 2008) based robot sim-
ulator, a robot travels through the environment and
obtains the training dataset. Figure 7 shows the re-
sults of occupancy grid map and the robot trajectory
for collecting the WSS sample data. Subsequently, a
WSS distribution map is trained with Gaussian Pro-
cess Regression method and the predicted WSS spa-
tial distribution in shown in Figure 8. The result is
evident that by utilizing a limited number of training
samples, a smooth 2D spatial distribution of WSS can
be inferred and the WSS at positions that is not mea-
sured can be predicted.

Figure 7: Robot trajectories for collecting the training sam-
ples.

In addition, a WSS-Occupancy hybrid map is ob-
tain by fusing the WSS distribution map with the oc-
cupancy grid map, resulting in WSS-aware path plan-
ning results. A comparison of WSS-aware and non
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Figure 8: Learned WSS distribution.

WSS-aware path planning results are shown in Figure
9. The result implies that using a WSS-Occupancy
hybrid map instead of a traditional occupancy grid
map, the robot detours to avoid entering areas with
poor WSS. In the experiment the threshold is taken
asSaccept=−75dBm, i.e.,Gaccept= 68 to obtain the
shaded area in Figure 9(b). A comparison of the WSS
captured along two different paths is shown in Fig-
ure 10, which indicates that the WSS-aware naviga-
tion behavior guarantees continuous and reliable Wi-
Fi connection.

A

B

Path

(a) Without WSS-constrain

Area with low

WIFI signal

strength

Path

(b) With WSS-constrain

Figure 9: Path planning results.

5.2 Shared Control using
WSS-Occupancy Hybrid Map

The shared control performance was further validated
in two other real world environment scenarios. The

Area with low

WSS

Non WSS-

aware path

WSS-aware path

Figure 10: The WSS along two paths.

experiment made use of Turtlebot mobile robot plat-
form in an office environment of size about 100m2,
where Wi-Fi networks were deployed over multiple
Access Points (APs). Scenario 1 was designed as a
WSS-aware navigation trial experiment. The actual
position of the Access Point (AP) in the testing en-
vironment was outside the room as marked in Figure
11. By building the WSS-Occupancy hybrid map of
the environment the robot was aware of the area with
low WSS, depicted by the shaded area in Figure 11.
When the robot was steered by a remote user to travel
from point A toward the top-right corner of the map
as shown in Figure 11, the shared controller drove the
robot to avoid the area with low WSS, as shown by
the Part B of the trajectory in Figure 11. The results
of the translational and rotational velocity of the robot
during the corresponding trial test are given in Fig.12,
which reveal the decision making results of the shared
controller. The result implies that a robot is capable of
adapting its behavior to reduce the risk that confronts
with the spatial constrains we have exerted.

A

B

C

x

y

Full autonomous to
avoid the area with low

WIFI signal

Part A: Tele-operation only

Part B: Full autonomous

Part C: Tele-operation only

Area with low WIFI signal

Wireless
Access Point

Figure 11: Shared control result in scenario1.

Scenario 2 validates the effectiveness of human
supervision for assisting robot’s autonomy. The task
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Figure 12: The robot’s velocity in scenario1.

assigned to the robot in this scenario was to travel
from P1 to P3 autonomously, but the robot had to
travel through a short part of corridor which is too
narrow for a robot to pass on its own. When the
robot’s path planner failed to report a path across the
corridor, the shared controller withρ = 0 led to full
human supervision, which was achieved by receiving
human direction control through the GUI. The robot
therefore successfully reached the goal. This experi-
ment indicates that the proposed shared control strat-
egy is also beneficial to the general purposes of semi-
autonomous control in a web-based robotic system.

6 CONCLUSIONS

In this paper, a novel human-robot shared control
approach is proposed to solve the problem of semi-
autonomous navigation with a static spatial constraint
of maintaining reliable Wi-Fi connection. In the train-
ing mode, a robot explores the environment while
building the WSS-Occupancy hybrid map based on
Gaussian Process Regress method. In the runtime

A

B

C

x

y

P1

P2

P3

B

P2

Pass through the
narrow corridor by
human supervision

Part A: Full autonomous

Part B: Tele-operation only

Part C: Full autonomous

Wireless
Access Point

Figure 13: Shared control result in scenario2.

mode, the robot utilizes the WSS-Occupancy hybrid
map in a shared control framework to generate paths
that prevent itself from entering areas with low Wi-
Fi signal strength. A series of experimental stud-
ies have been performed, where promising results are
obtained. The presented approach can be extended
to solve other similar problem of spatially restricted
navigation of a tele-operated mobile robot to reduce
the risk of violating the constraints while reaching the
goal.
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