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Abstract: Building discrete event simulation models for studying questions in production planning and control affords 
reasonable calculation time. Two main causes for increased calculation time are the level of model details as 
well as the experimental design. However, if the objective is to optimize parameters to investigate the 
parameter settings for materials, they have to be modelled in detail. As a consequence model details such as 
number of simulated materials or work stations in a production system have to be reduced. The challenge in 
real world applications with a high variant diversity of products is to select representative materials from the 
huge number of existing materials for building a simulation model on condition that the simulation results 
remain valid. Data mining methods, especially clustering can be used to perform this selection automatically. 
In this paper a procedure for data preparation and clustering of materials with different routings is shown and 
applied in a case study from sheet metal processing. 

1 INTRODUCTION 

Manufacturing companies are faced with challenging 
market situations. An increasing number of high 
customized products have to be produced in shorter 
periods of time in order to be competitive. The 
fulfilment of customized orders results in a high 
variant diversity and a high process variety (Jiao et 
al., 2005). To manage this complexity successfully, 
optimized decisions in production planning and 
control are essential. As a result of optimized 
planning decisions low costs, a high service level, 
short lead times and a stable production can be 
achieved. 

Since analytical models for optimization often 
lack the practical applicability, discrete event 
simulation can be used to study the impact of certain 
decisions in production planning and control. With 
simulation the influence of different production 
planning strategies (Huang et al., 1998, Jodlbauer and 
Huber, 2008) or different dispatching rules for 
production systems (Kutanoglu and Sabuncuoglu, 
1999) can be compared and capacity estimations of 
production systems can be made (Abdul-Kader and 
Gharbi, 2002). For a discrete event simulation study 
the most time consuming phase is the input data 
collection and the model development (Perera and 
Liyanage, 2000, Randell and Bolmsjo, 2001). So 

efforts are made to develop flexible discrete event 
simulation structures in an object oriented 
environment (Borenstein, 2000, Anglani et al., 2002). 
The developed simulation generator (SimGen) for 
analysing production planning problems enables the 
implementation of simulation models which are 
parameterized by a database (Hübl et al., 2011). 
Running simulation models can become a runtime 
intensive task for instance in combination with 
heuristic optimization methods for determining 
optimized production planning parameters. So the 
number of different materials which can be simulated 
is limited, however real data from manufacturing 
companies often include a high variant diversity. The 
challenge for building a simulation model under such 
conditions is to reduce the number of materials while 
maintaining valid simulation results. Doing this 
selection manually can become a very time 
consuming task and so a framework using methods 
from data mining, in particular clustering, is proposed 
in this paper. 

First related work for clustering products or 
processes is discussed. Then the simulation generator 
SimGen and its necessary input data are described in 
more details. In the next section a framework for data 
pre-processing including the reduction of material 
numbers by clustering is presented. Towards the end 
of the paper the proposed framework is applied in a 
case study from sheet metal processing. 
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2 RELATED WORK 

Clustering is an unsupervised method in data mining. 
Unlike classification (supervised learning), clustering 
doesn’t rely on predefined classes. Clustering 
partitions data sets into groups according to their 
similarity. Within one cluster, examples are similar to 
one another and are dissimilar to objects in other 
clusters (Han and Kamber, 2006). In manufacturing 
the major areas where clustering is used are customer 
service support, fault diagnostics, yield improvement 
and engineering design (Choudhary et al., 2009).  

In variant design it is advantageous to organize the 
wide variety of products in clusters of similar 
products (product families). Therefore it is necessary 
to measure the distance between products based on 
bill of materials (Romanowski and Nagi, 2005). A bill 
of materials (BOM) is a hierarchical, structured 
representation of products that contains information 
about necessary parts, raw materials and quantities. 
Forming generic bills of material (GBOMs) that 
represent the different variants in a product family 
can be used to facilitate the search for similar 
previous designs and the configurations of new 
variants (Romanowski and Nagi, 2004).  

Another framework for identifying product 
families based on data mining techniques is presented 
in Chowdhury and Nayak, 2014. Here an Extended 
Augmented Adjacency Matrix (EAAM) is proposed 
as a representation of the BOM. Cosine similarity is 
used to generate a similarity matrix of the EAAM 
representations which is the input for a clustering 
algorithm.  

High product variant diversity results in a high 
process variety and raises the importance of 
addressing the correspondence between these 
varieties in order to make good planning decisions 
and maintain a stable production (Jiao et al., 2005). In 
their approach the coordination between product and 
process variety is based on the unification of BOM 
data and routing data. Routing data describes the 
sequence of operations which are executed to 
manufacture a certain product and includes 
specifications for production planning like set-up and 
processing time. With a product-process variety grid, 
for each customer order, the product design in terms 
of BOM and production process can be configured. 

Companies face a similar challenge when 
generating assembly process plans in an environment 
with high product and process complexity. Clustering 
techniques can be used to identify similar products or 
assembly processes and to group them according to 
the similarity of their characteristics. Beyond that, 
classification can be applied to classify new assembly 

structures into the identified clusters (Wallis et al., 
2014).  

Another application of clustering algorithms is the 
solution of cell formation problems in the design of 
cellular manufacturing systems. This requires the 
identification of machine groups that can produce 
parts with similar processing requirements. 
Alhourani, 2013 developed a procedure for solving 
the machine-part grouping problem using the 
Similarity Coefficient Method. In this approach 
important production data such as operations 
sequence, production volume, lot size and routings 
are considered. 

In the framework presented in this paper, similar 
production data is taken into account, but here the 
objective is to group similar materials together in a 
cluster, not the machines. In our approach it is not 
proposed how to arrange machine into manufacturing 
cells, this is assumed as given. In contrast the goal is 
to identify similar materials. This is the prerequisite 
for reducing a huge number of materials to a 
manageable variant diversity for simulation 
modelling. 

3 SIMULATION OF 
PRODUCTION SYSTEMS 

A central issue of discrete event simulation in the 
field of production planning and control is the 
investigation of different parameter settings and 
planning strategies in order to minimize overall costs 
for inventory, setup and tardiness or maximize 
service level. In the following the Simulation 
Generator SimGen and the necessary input data for 
the simulation models is presented. 

3.1 Simulation Generator SimGen 

The Simulation Generator SimGen, as presented in 
Hübl et al., 2011, Felberbauer et al., 2012 or 
Felberbauer et al., 2013 is a generic, scalable 
simulation model and is parametrized by a database. 
The advantage of the generic and scalable simulation 
model is, that on model start up the necessary data is 
loaded from the database and the production system 
structure is generated automatically. Thereby, 
different simulation scenarios can be defined without 
any adaptation of the simulation model itself and 
model functionalities can be reused. The logic is 
implemented in the simulation model but the 
parametrization is stored in the database and loaded 
on model start up. In the simulation model a 
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hierarchical production planning concept is 
implemented, using Material Requirements Planning 
(MRP). For all materials MRP production orders are 
generated including start and end dates and quantities. 
Then the four steps netting, lot sizing, backward 
scheduling and BOM explosion are performed. The 
input parameters for MRP are, among others, 
planning parameters for the materials and the BOM. 

3.2 Input for Simulation Models 

The input data for the simulation model is exported 
from the Enterprise Resource Planning Systems, pre-
processed and then stored in the database. Necessary 
input data sets are: 
 BOM 
 Routing data including setup and processing times 
 Production planning parameters like lot sizes, 

planned lead times and safety stock for all 
materials 

 Shift calendars defining the available capacity, 
including holidays 

 Skill groups and number of employees 
 Production program and forecast for end items 
 Customer demand, order amount size and 

corresponding customer required lead times 

If product variant diversity is very high, this leads to 
long computation times and an inappropriate level of 
model details. Therefore for a simulation study on 
optimal settings of planning parameters it is desirable 
to reduce the number of materials to a reasonable 
amount which does not harm the objective of the 
simulation study. 

4 FRAMEWORK FOR 
REDUCING VARIANT 
DIVERSITY 

In this section a framework for selecting 
representative raw materials from a huge number of 
existing materials is presented. This framework can 
be divided in two phases. In the first phase, the 
necessary input-data has to be collected and different 
data preparation steps are done. These steps are 
necessary to make the data useable for the application 
of the following clustering steps in the second phase. 

4.1 Input-data 

For the proposed approach two input data sets are 
needed: a data set with the information of the bill of 

material and another data set with the corresponding 
routing of the materials in the production process. 

4.1.1 Bill of Material Data (BOM Data) 

The relationships between end items, subassemblies 
(SA) and raw materials (RM) is described by the bill 
of material (see Figure 1). We assume that P different 
end items are built from N subassemblies and each 
subassembly can consist of different raw materials 
which we denote shortly by materials. The number of 
different materials is indicated with M. 

 

 

Figure 1: Bill of Material. 

BOM data is stored in a company’s database, but 
there are no common guidelines concerning the 
formatting and the attributes. For our purpose we 
need a table of BOM data with the following 
attributes (in columns): 
 Material ID to identify each material uniquely.  
 Subassembly ID related to the material in the first 

column to identify the corresponding 
subassembly uniquely. 

 End item ID related to the subassembly and the 
material in the first two columns to identify the 
corresponding end item uniquely. 

 Applied lot size policy for the material in the first 
column, e. g. fixed order period (FOP), lot-for-lot 
(LFL), fixed order quantity (FOQ), consumption-
based (CB). 

If there are multiple end items with the same 
combination of raw material and subassembly then 
multiple rows in this input file are needed. The 
material ID and end item ID are mandatory attributes. 
All the other attributes are optional and can be 
complemented by other attributes which are 
important in a certain production environment. 

4.1.2 Routing Data 

A routing describes the sequence of workstations 
passed through by a material in the production 
process (Hopp and Spearman, 2008). The necessary 
routing data has to be stored in a table with the 
following attributes (in columns): 
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 Material ID to identify each material uniquely.  
 Work station (identified with a unique ID) 
 Standard time at the corresponding work station. 
 Operations sequence number to define at which 

position this work station is used to process the 
material 

If the standard time isn’t available by default, it can 
be calculated by the sum of processing time and the 
quotient of set-up time and average lot-size. Since 
commonly each material is processed by several work 
stations, there are multiple rows in the routing data 
table which correspond to the same material in order 
to represent the whole operations sequence.  

4.2 Data Preparation 

In the first phase of the framework four steps of data 
preparation are carried out (see Figure 2). 
 

 
Figure 2: Data Preparation Steps. 

4.2.1 Data Integration 

As a first step the BOM-data and the routing data have 
to be joined into a common master table, whereby the 
material ID serves as primary key attribute. The 
master table includes the attributes material, 
subassembly, end item, lot size policy, work station, 
standard time and operations sequence number. 

4.2.2 Data Cleaning 

In the data cleaning step examples with missing 
values should be removed just like duplicate rows 
which can occur for various reasons. Work stations 
which are not relevant for building the simulation 
model can be filtered. In some situations it can be 

useful to combine similar work stations to a new 
group of work stations if they perform the same 
processing step. Finally for the sake of clarity the 
master table should be sorted by end item, 
subassembly, material and operations sequence 
number. Now the operations sequence of each single 
material of a certain subassembly and end item can be 
read in subsequent rows. 

4.2.3 Data Aggregation 

The goal of this step is that the operations sequence 
of each material appears in a single row and the 
sequence of the workstations is displayed as a new 
attribute. This can be achieved by data aggregation 
for each end item and each subassembly in nested 
loops. The data is grouped by material ID and the 
other attributes in the aggregated data table are the 
mode of the lot sizing policy, the sum of the standard 
times, the operations sequence, subassembly ID and 
end item ID. 

4.2.4 Dummy Coding 

There are two categories of attributes in the 
aggregated data. On the one hand attributes like lot 
size policy, sum of the standard times, operations 
sequence and subassembly are attributes which will 
be used for clustering in the second phase of the 
proposed framework. On the other hand the attributes 
material ID and end item provide information for a 
unique identification and should not be included for 
building clusters. 

Further the operations sequence as a single 
nominal attribute is not appropriate for clustering. 
Measuring similarity of two materials would deliver 
1 if there are identical sequences and 0 otherwise, 
even if there is only a slight difference. For this reason 
the operations sequence is split up into single work 
stations and new attributes are generated by dummy 
coding. Every work station defines a new attribute 
which has value 1 if the material is processed at this 
work station and 0 otherwise. In this way we get 
various numerical attributes instead of one nominal 
attribute. But measuring similarity of two materials 
has more gradations now. The only thing which 
cannot be detected by this kind of coding is the 
chronological order of the operations. Operations 
sequences A-B and B-A have identical attributes and 
therefore a distance of 0. For practical application this 
is negligible. Usually, due to technical dependencies, 
the sequence of operations cannot be changed (e.g. 
turning – milling – drilling).  

In order to get only numeric attributes, dummy 
coding is also applied to the lot size policy and the 
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subassembly ID. This enables the use of k-means 
clustering in the next step. 

4.3 Clustering and Selection of 
Materials 

The goal of the second phase of the proposed 
framework is the selection of representative materials 
for each end item to reduce the high variant diversity. 
This phase consists of two steps: The application of a 
clustering method for each end item and the selection 
of representative materials of each cluster (see Figure 
3). For clustering the k-means algorithm is applied 
because k-medoid results in considerable longer 
calculation times and worse performance regarding 
the average distance within each cluster.  

4.3.1 k-Means Clustering 

As all attributes in the prepared dataset are numeric, 
k-means clustering can be applied. There are two 
parameters which have to be defined for this data 
mining method: the number of clusters k and a 
measure to define the similarity of two examples. In 
the proposed framework clustering is applied for 
every end item. As end items consist of different 
numbers of materials the number of clusters has to be 
adjusted to the number of materials: 
 

i
i

m
k (i 1,..., P)

c
   (1)

 

where ki denotes the number of clusters and mi the 
number of materials of end item i. The number ki is 
rounded to the next integer. Constant c is determined 
by selecting a number K of desired representative 
materials (so that running the simulation model is 
within an acceptable time-frame) and the assumption 
that every cluster delivers one representative:  
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For measuring the similarity of two materials we use 
cosine similarity: 
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where A and B are two row vectors in our dataset with 
I attributes. RapidMiner provides different numerical 
measures for clustering. But an analysis with the data 

of the case study (see section 5) reveals that cosine 
similarity outperforms other numerical measures 
comparing them by averaging the distance between 
the centroid and all examples of a cluster. 
 

 

Figure 3: Clustering Steps. 

The basic idea of k-means can be described by the 
following steps: 
Step 1: Initialize k different cluster centroids. 
Step 2: Calculate the similarity between every 
example and every cluster centroid 
Step 3: Assign each example to the most similar 
cluster centroid. 
Step 4: Update the cluster centroid for each cluster by 
calculating the arithmetic mean of all corresponding 
examples. 
Step 5: Repeat steps 2, 3 and 4 iteratively until no 
change in the mapping of the examples occur. 

This data mining method is applied to every end item 
i and the result is the grouping of all relevant materials 
into ki clusters.  

4.3.2 Selection of Cluster Representatives 

As a final step the selection of cluster representatives 
is performed. Choosing the cluster centroid as cluster 
representative results in unrealistic values of 
attributes, because for instance decimal values can 
occur for integer attributes. So the material with the 
highest similarity to the cluster centroid is selected as 
cluster representative. This step delivers ki 
representative materials for end item i and all in all K 
materials are selected for the further use in the 
simulation model. 
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5 CASE STUDY 

The described concept is applied to real-life 
manufacturing data from sheet metal processing. The 
high variant diversity in this production is represented 
by 40,000 different material numbers, 400 
subassemblies, 40 end items and up to 1,500 
production orders every day. In a simulation model of 
the complete sheet metal processing different 
questions of production planning and control have to 
be studied. 

To guarantee a reasonable calculation time for the 
simulation runs, the number of different materials has 
to be reduced to a size of approximately 1000. Doing 
this manually is a challenging and time consuming 
task. So the framework shown above was applied 
with RapidMiner 7.3, an open source software tool 
for data mining and machine learning (Mierswa et al., 
2006). 

5.1 Input Data 

From the company’s databases the necessary input 
data was extracted and saved in two different Excel-
files. The BOM-table includes 54,265 examples with 
five different attributes:  
 material ID 
 subassembly ID 
 end item ID 
 corresponding business unit 
 applied lot size policy 
The routing-table consists of 369,535 examples with 
six different attributes: 
 material ID 
 material name 
 work station 
 process ID 
 operation description  
 planned standard time (in hours) 
The process ID includes information about the 
sequence of the sheet metal processing steps. Sorting 
the examples of the routing-table with a particular 
material ID by ascending process ID results in a 
correct sequence of the work stations which are run 
by this material. 

5.2 Data Preparation Steps 

In the first phase of the framework the data 
preparation steps according to section 4.2 are 
performed. In the data cleaning step the business unit 
which should be simulated is selected and only work 
stations for in-house-manufacturing are extracted. 
(External processing is not part of the simulation 

model.) Another simplifying step was the aggregation 
of all work stations with laser cutting. 

To get the right sequence of work stations for 
every material ID (for a certain end item and 
subassembly) the examples are sorted by end item, 
subassembly ID, material ID and process ID (see 
Table 1). For instance for end item 1, subassembly 
135 the material 30700 is passed from work station 
W1 to W5 and W4 with lot size policy fixed-order 
quantity 1. The standard times on these three work 
stations are 0.011, 0.15 and 0.022 hours. After this 
preparation step the dataset contains 183,103 
examples. 

Now all examples are aggregated by material ID 
and the work stations are concatenated as a string to 
represent the operations sequence for this material. 
The attribute process ID is omitted in this 
aggregation, it only served as an auxiliary attribute for 
the sequence generation. Before proceeding with 
clustering the sequence of work stations, the sub 
assembly ID and the lot size policy are transformed 
by dummy coding as described in section 4.2.4. The 
result for the sample dataset after this aggregation is 
shown in Table 2. For instance, material 21000, 
which belongs to subassembly 135 and end item 1, 
passes through the work stations W1 and W2 with 
total standard time of 0.084 hours and lot size policy 
Fixed-Order Period 28. After the aggregation step 
34,192 examples with 119 attributes are available. 
Apart from the end item, material ID and the total 
standard time 75 different work stations, 37 different 
subassemblies and 4 different lot size policies 
generate the remaining attributes.  

Table 1: Sample dataset after data preparation. 

 

Table 2: Sample dataset after aggregation by material ID. 

 

5.3 Clustering Steps 

In the second phase of the framework the k-means 
clustering algorithm is performed on the aggregated 
dataset for 37 different end items separately. The 
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number of desired representative materials is 
specified with K = 2,000 considering that various 
materials will appear in multiple clusters of different 
end items and so the number of different 
representative material will be much smaller than 
2,000. The number of clusters ki for end item i is 
calculated according to formula (1) and it varies from 
5 to a maximum of 141.  

Then immediately before the clustering 
algorithm, the standard time is transformed to a range 
of 0 to 1 to make it comparable to all other attributes 
which are binary. Cosine similarity is used to measure 
similarity between examples and k-means clustering 
is applied to every end item. The results are 37 cluster 
models with different number of clusters and 
materials. For instance 562 materials which are part 
of end item 35 are grouped in 28 clusters. Within one 
cluster there are materials with similar properties 
concerning the operations sequence, the type of 
subassembly, total standard time and lot sizing policy. 
To illustrate the result of this cluster model, the 
number of materials and the number of different 
operations sequences are displayed in Figure 4. 

In the final step the cluster centroids are calculated 
for every cluster of each end item. Then for every 
cluster the similarity between the cluster centroid and 
all examples belonging to this cluster is calculated. 
Cosine similarity is used here again and the material 
with the highest similarity is chosen as representative 
material for this cluster.  

This procedure results in a list of 1711 
representative materials. This number is smaller than 
K = 2000, because it can happen that some of the 
clusters are empty. Furthermore some materials 
appear multiple times in this list of representatives. 
For instance the most frequent representative material 
can be found in 18 different end items. But the 
majority of 945 materials are unique. All together we 
determined 1183 different materials by this approach. 
This is a magnitude of material which can be used in 
SimGen to generate a simulation model of the sheet 
metal processing.  

 

 

Figure 4: Number of materials and operations sequences for 
end item 35. 

Table 3: Frequencies of representative materials. 

 

6 CONCLUSIONS 

Real world manufacturing environments are 
generally too complex to be modelled in discrete 
event simulation accurately. The proposed 
framework shows how to select a manageable and 
representable number of materials for simulation 
modelling. For this purpose the necessary input data 
and preparation steps are shown in a first phase of the 
framework. In the second phase a clustering 
algorithm is applied to group similar materials and 
finally one representative material is selected from 
each cluster. This approach was applied in a case 
study to real world manufacturing data from sheet 
metal processing.  

In further research the proposed framework 
should be applied to other real world scenarios and a 
comparison to other heuristic approaches for 
selecting material is planned. The results of multiple 
simulation runs have to be compared in order to 
evaluate if the proposed framework delivers better 
results than simple heuristic selection criteria. If the 
results are promising this framework should be 
integrated in the developed simulation generator 
SimGen as an automatic data pre-processing step for 
simulation modelling.  
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