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Abstract: Most often, the normal distributionN plays the key role in the process modelling and parameter estimation.
The paper deals withrealistic estimation of model parameters which takes into account limitations on pa-
rameters which arise in industrial applications of the model-based adaptive control. Here the limitation of
a normally distributed random variable is being modelled by specific distribution – the probabilistic mixture
D. It is shown that relationship between distributionsN andD coincides with properties of the generalized
normal distributionG and that relations between their first and second statistical moments can be adequately
approximated byG ’s cumulative distribution function and probability density function, respectively. The de-
rived method is then applied to estimation of bounded parameters. In combination with the idea of parallel
identification of thefull andreducedmodels of the process, a working algorithm is derived. Performance of
the algorithm is illustrated by examples on both simulated and real data.

1 INTRODUCTION

The notion of adaptive control first appeared already
in the fifties of the last century – see, e.g. (Åström
and Kumar, 2014) for further references. Its boom
started in the seventies with the expectation of broad
utilization of the adaptive control not only in the in-
dustrial practice. Presently, this type of control has
found its place in real applications but in the extent
far from earlier assumption. Among reasons of such
progress and today’s situation there is one that orig-
inates in the mismatch between the process model
and the real system or more likely, in disrespecting
such discrepancy which always exists in practice. It
is closely connected with the fact that measured data
which are available for the model and estimation of
its parameters are always burdened with uncertainty.

Searching for a model which preferably approx-
imates behaviour of the observed or even controlled
system in all situations and handling of every conceiv-
able exceptions turned out to be so demanding and
time-consuming that other types of control, PID con-
trol in particular, dominate the scene regarding num-
ber of applications. In effect, the model-based adap-
tive control is being employed just in cases where in-
creased demands on its implementation pay off and
when the search for a model based on the imperfect
data leads to an acceptable result.

It proves that the model-based control is facing the
problem which is inherent also for other theoretical
approaches to control: if we are “inside” the elabo-
rated theory everything fits together and all tasks seem

solvable. The problem occurs on the boundary of the
given theory and real world – the reality does not re-
spect prerequisites of the approach, the model is just
approximation of the real system, data are corrupted
by noise or burdened by uncertainty in general.

The aim of the paper is to contribute usefully to
solution of the problem in the borderland between
theory and reality.

1.1 Bounded Parameter Estimation

Bounded estimation issues are anything but new and
motivation for the solution exists in many application
fields which corresponds to the variedness of journals
and proceedings in which at least partial solutions are
being published. Nevertheless, it has been observed
(Murakami and Seborg, 2000; Kopylev, 2012) that
very few thorough monographs exist in this respect
(Van Eeden, 2006).

1.2 Existing Variety of Solutions

As the result, state of affairs is rather disorganized
but even so, the solutions can be divided by the type
of limitation being applied (with citation examples in
brackets):

• Limitation on the estimation error (Milanese et al.,
1996),

• Limitation on the system noise (Norton, 1987),

• Confidence intervals (Mandelkern, 2002),
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• Statistically bounded (soft-constrained) estima-
tion (Benavoli et al., 2006),

• Sharp restrictions on the parameter estimates
(Kárný, 1982; Benavoli et al., 2006; Ettler and
Kárný, 2010).

The presented solution belongs to the latter type.

2 PROCESS MODEL AND ITS
PARAMETERS

Consider a process model for whichX
.
= [y(t),z(t)]

stand for vector of observations, where the outputy
is in discrete time instantst = 1,2, . . . related to mea-
sured data

z(t) = [y(t −1), . . . , y(t −my), (1)

= u1(t), . . . , u1(t −mu),

= v(t), . . . , v(t −mv),1]

Vector z is composed bymy samples of past
outputsy, mu + 1 samples of controllable inputsu
and mv + 1 samples of measurable disturbancesv.
System outputy is here considered as scalar for the
sake of simplicity, while inputs and disturbances
can be multidimensional. Number one as the last
vector element enables to consider an absolute term
alias offset. The considered stochastic relation is
parameterized by unknown parametersΘ with finite
dimension and can be described by the probability
density function (pdf)f (y|z,Θ).

Note: Most of the discussed variables are considered
to be time-variant. Nevertheless, the time index is
sometimes omitted in the following text for the sake
of simplicity.

2.1 Linear Gaussian Model

In practice, the linear regression model is mostly con-
sidered and the uncertainty is approximated by the
normal (Gaussian) probability distributionN defined
by two parameters

f (y|z,Θ) = N (ŷ,σ2
y) , (2)

whereŷ(t) = θ′(t)z(t) and

Θ = [θ,σ2
y] (3)

are unknown parameters of the system,
while θ = [ϑ1, ϑ2, . . . , ϑm]

′, m= my + (mu + 1) +
(mv+1)+1 andσ2

y stands for the variance of the sys-
tem noise. Equivalently, the model can be expressed
as

y(t) = θ′(t)z(t)+e(t) (4)
with the system noisee(t)∼ N (0,σ2

y).

2.2 Estimator of Unknown Parameters

Author’s regular choice regarding parameter estima-
tion is Bayesian probabilistic approach. Here un-
known parameters can be considered to be random
variables described by the pdff (Θ|y,z). It can be
derived (Peterka, 1981; Kárný et al., 2005)) that for
the model (4) and fixed parameters the pdf is fully
specified by the positive definite information matrix
V which – after introduction of some type of forget-
ting (Kulhavý and Zarrop, 1993) to allow tracking of
varying parameters – can be recursively updated as

V(t) = ϕV(t −1)+ [y(t),z(t)]′ [y(t),z(t)], (5)

whereϕ ∈ (0,1〉 is forgetting factor. Partitioning ofV

V =

[
Vy V ′

zy
Vzy Vz

]
(6)

enables to express the parameter estimates

θ̂ =V−1
z Vzy . (7)

Variances of system noise and parameter estimates,
respectively, can be estimated as

σ̂2
y =

Vy−V ′
yzV

−1
z Vzy

κ
, (8)

σ̂2
ϑ = σ̂2

y diag(V−1
z ) , (9)

where
κ(t) = ϕκ(t −1)+1 . (10)

In real-time applications it is appropriate to work with
V in its factorized formV−1 = LDL′ (Peterka, 1981)
for the sake of numerical stability.

3 RESPECTING LIMITATIONS
OF REAL-LIFE QUANTITIES

Even if unlimited quantities exist in the real world,
our observations of them are always bounded. Find-
ings of consideration about an observed general
bounded variable will be used for the parameter es-
timates in the following sections.

3.1 Probabilistic Formulation of
Limitation

Consider a real-world variableξ and its observationx
in discrete time instantst = 0,1, . . .. The observation
is bounded byx= xmin ax= xmax which are given e.g.
by a sensor range. Then it holds

x(t) =





x for ξ(t)≤ x
ξ(t) for ξ(t) ∈ (x, x)
x for ξ(t)≥ x .

(11)
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Let ξ be considered a normally distributed random
variableξ ∼ N (µξ,σ2

ξ). Owing to the limitation (11),
distribution ofx is not Gaussian but can be expressed
by a probabilistic mixtureD the pdf of which is
composed by a central part of normal pdf and two
Dirac functionsδ at boundary points of the interval
〈x,x〉 (Benavoli et al., 2006).

Then, the pdf ofD is represented by

fD(x|µx,σ2
x,x,x) = Aδ(|ξ− x|)+ (12)

fN (ξ ∈ 〈x,x〉 |µξ,σ2
ξ)+

Bδ(|ξ− x|) ,
where

A = FN (x|µξ,σ2
ξ) (13)

B = 1−FN (x|µξ,σ2
ξ) , (14)

whereFN stands for cumulative distribution function
(cdf) of normal distribution and cdf ofD reads

FD(x|µx,σ2
x,x,x) =





0 for ξ < x
FN (ξ |µξ,σ2

ξ) for ξ ∈ 〈x,x〉
1 for ξ > x .

(15)
Example in Fig. 1 shows pdf and cdf ofD with pa-
rametersµx = 0.3, σ2

x = 0.7, x=−1 ax= 1.
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Figure 1: Pdf and cdf of the probabilistic mixtureD.

3.2 Distribution D and Parameter
Estimation

Obviously, properties of the normal distributionN
which make it exceptionally suitable for estimation
algorithm development cannot be expected in the het-
erogenous distributionD.

Exact solution can be found only in the case of one
bounded parameter (Benavoli et al., 2006). General
case leads to utilization of iterative numerical meth-
ods which are not very suitable for real-time applica-
tions. It is necessary to look for another solution.

3.3 Relations between Statistical
Moments of Distributions N and D

As a consequence of (11), mean valuesµx, µξ and
variancesσ2

x, σ2
ξ will differ while it holds

µx ∈ 〈x, x〉,





µx > µξ for µξ < M
µx = µξ for µξ = M
µx < µξ for µξ > M



 (16)

M = (x+ x)/2 (17)

σ2
x ∈ 〈0, σ2

ξ〉 . (18)

In the case of success to evaluate relation

{µξ,σ2
ξ,x,x}→ {µ⋆x,σ

2⋆
x } , (19)

while respecting conditions (17) and (18), it would be
possible to apply the rule for calculation of bounded
parameter estimatesΘ.

3.4 Employment of the Generalized
Normal Distribution G

Extensive experiments led to the result that relations
between variancesσ2

N
andσ2

D of distributionsN and
D can be successfully approximated by the pdf of the
generalized normal distributionG and relations be-
tween meansµN andµD can be approximated by cdf
of the same distribution (see Appendix for properties
of distributionG).

Simple rules were found for computation ofG ’s
parametersµG , α andβ:

µG : For the allowable rangex ∈ 〈x, x〉, it is natural to
place the meanµG in the middleM (17) of the
interval.

α: It is possible to define width of the distributionG
as a distance between inflection points of its pdf
while these points coincide with limits of the in-
terval〈x,x〉. Then, parameterα can be expressed
asα = (x− x)/2.

β: Experiments have shown that the shape offG re-
mains the same for constant ratio of the interval
span (i.e. of parameterα) to the standard devia-
tion σξ. Therefore the shape parameterβ can be
defined asβ = α/σξ.

To sum up, following relations hold forx = 0, x = 1
andσξ = 1:

α =
x− x

2
(20a)

β =
α
σξ

(20b)

µG = x+α (20c)

Modification of equations (20) for general case is
described below.
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3.5 Limiting Functions ℓµ, ℓσ2

As was already mentioned, group of equations (20)
allows to constructfG andFG which approximate re-
lationship between unbounded and bounded moments
for the special case (x= 0, x= 1, σξ = 1).

Let call the limiting functions for both moments
ℓµ, ℓσ2. Following restrictive conditions enabled to
find formulation of the functions for general values of
boundariesx, x and varianceσ2

ξ:

min
µξ∈R

ℓµ(µξ|σ2
ξ,x,x) = x (21a)

max
µξ∈R

ℓµ(µξ|σ2
ξ,x,x) = x (21b)

min
µξ∈R

ℓσ2(µξ|σ2
ξ,x,x) = 0 (21c)

max
µξ∈R

ℓσ2(µξ|σ2
ξ,x,x) = σξ (21d)

While fG is a non-negative symmetrical function,
its maximum lies in the middleµG (20c) of the bound-
ing interval; therefore it holds for extreme values of
fG

fG,min = 0 (22a)

fG,max= fG (µG |µG ,α,β) . (22b)

As FG represents cdf it holds

FG,min = FG(ξ−∞ |µG ,α,β) = 0 (23a)

FG,max= FG(ξ∞ |µG ,α,β) = 1 (23b)

The first conversion coefficient can be specified from
(21d) and (22b)

Kσ2 =
σ2

ξ

fG,max
(24)

and the second one follows from (21a), (21b) and (23)

Kµ = x− x. (25)

Now the sought limiting functions can be defined as

ℓµ(µξ|σ2
ξ,x,x) = x+KµFG(µξ|µG ,α,β) (26a)

ℓσ2(µξ|σ2
ξ,x,x) = Kσ2 fG (µξ|µG ,α,β) . (26b)

The use of the limiting functions and quality of
approximation are illustrated in Fig. 2.

4 BOUNDED PARAMETER
ESTIMATION

Results obtained for general random variablex can
now be engaged for bounding of estimated parame-
ters. It can be formally described as

θ̂⋆ = ℓµ(θ̂, σ̂2
θ,θ,θ) (27a)

σ̂2⋆
θ = ℓσ2(θ̂, σ̂2

θ,θ,θ) , (27b)
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Figure 2: Limitations of the mean and variance of bounded
random variablex and their approximation by converted cdf
and converted pdf of distributionG . The conversions were
realized by the limiting functionsℓµ, ℓσ2 .

where symbol⋆ denotes bounded values of original
estimateŝθ, σ̂2

θ andθ, θ are lower and upper parame-
ter boundaries, respectively.

4.1 Special Case: Single Parameter

Consider a single parameter model

y(t) = ϑu(t)+e(t) . (28)

In this simple case, information matrixV can be
partitioned into scalars according to (6)

V =

[
Vy V ′

zy
Vzy Vz

]
=

[
vy vzy
vzy vz

]
. (29)

Givenϑ, ϑ and limiting functions (27) for evalu-
ation of the limited estimatêϑ⋆, a modified matrix is
sought as

V⋆ =

[
v⋆y v⋆zy
v⋆zy v⋆z

]
, (30)

which corresponds to bounded valuesϑ̂⋆, σ̂2⋆
ϑ . Origi-

nal estimate can be described regarding to (7) as

ϑ̂ =
vzy

vz
. (31)

Using (8) the variance of output reads

σ̂2
y =

vy− v2
zy/vz

κ(t)
. (32)

Variance of the parameter estimate (9) is

σ̂2
ϑ =

σ̂2
y

vz
=

vy/vz− v2
zy/v2

z

κ(t)
. (33)

The estimate of the bounded parameter is then given
by

ϑ̂⋆ =
v⋆zy

v⋆z
= ℓµ(ϑ̂, σ̂2

ϑ,ϑ,ϑ) . (34)

As the variance of measured output does not de-
pend on the estimated parameter it can be assumed
that

v⋆y = vy (35)
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and therefore

σ̂2⋆
ϑ =

vy/v⋆z − v⋆2
zy/v⋆2

z

κ(t)
. (36)

It holds (34)
v̂⋆zy= ϑ̂⋆ v̂⋆z , (37)

which using (36) results in

σ̂2⋆
ϑ =

vy/v⋆z − ϑ̂⋆2

κ(t)
= ℓσ2(ϑ̂, σ̂2

ϑ,ϑ,ϑ) (38)

v̂⋆z =
vy

κσ̂2⋆
ϑ + ϑ̂⋆2

. (39)

After introducing functionℓV which modifies matrix
V while using relations (35), (37) and (39), the modi-
fied matrix can be written as

V⋆ =

[
vy v⋆zy
v⋆zy v⋆z

]
= ℓV(V, ϑ̂⋆, σ̂2⋆

ϑ ) . (40)

Resulting algorithm consists of two parts:

• Initialization

V⋆(0) = k I (41a)

κ(0) = 1 , (41b)

whereI is an identity matrix andk > 0 is an ini-
tialization constant.

• One step of recursion

V(t) = ϕV⋆(t −1)+ [y(t),z(t)]′ [y(t),z(t)]

(42a)

κ(t) = ϕκ(t −1)+1 (42b)

ϑ̂(t) =
vzy(t)
vz(t)

(42c)

σ̂2
y(t) =

vy(t)− v2
zy(t)/vz(t)

κ(t)
(42d)

ϑ̂⋆(t) = ℓµ(ϑ̂(t), σ̂2
ϑ(t),ϑ,ϑ) (42e)

σ̂2⋆
ϑ (t) = ℓσ2(ϑ̂(t), σ̂2

ϑ(t),ϑ,ϑ) (42f)

V⋆(t) = ℓV(V(t), ϑ̂⋆(t), σ̂2⋆
ϑ (t)) (42g)

4.1.1 Illustrative Example

Consider a model

y(t) = ϑu(t −1)+ey(t) (43)

with one parameter

ϑ = 0.15 , (44)

where boundaries, noise and number of steps are

ϑ = 0.0 ϑ = 0.25
ey(t) ∼ N (0,1)

n = 1000
(45)

The control signal was generated according to equa-
tion

u(t) = sin(t/20) . (46)

Behaviour of inputu(t) and outputy(t) are shown
in Fig. 3. Due to intentionally big variance of the sys-
tem noise, the harmonic component can be hardly rec-
ognized in the output signal.

0 100 200 300 400 500 600 700 800 900 1000
-4

-2

0

2

4

Figure 3: Special case: single parameter model – behaviour
of input and output.

The unbounded parameter was estimated by the
algorithm described in section 2.2. The bounded esti-
mate resulted from algorithm (42). Behaviour of both
unbounded (blue) and bounded (green) parameter es-
timates is depicted in Fig. 4. Value of the true param-
eter is represented by the yellow line and the black
lines show the given boundaries.

100 200 300 400 500 600 700 800 900 1000
-0.1

0

0.1

0.2

0.3

Figure 4: Special case: single parameter model – behaviour
of unbounded (blue) and bounded (green) parameter esti-
mates.

4.2 General Case

Exact solution for general case cannot be found be-
cause of the absence of a definite rule how to modify
an off-diagonal element in a general position within
the information matrix. An alternative solution had to
be found.

Let the parameters of the general model (4) be di-
vided into two parts

θ = [θa, θb] , (47)

whereθa is ama-elements parameter vector for which
limitation should be applied andθb is amb-elements
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vector of parameters without boundaries. It must hold

m= ma+mb, ma < m, mb ≥ 1 . (48)

Process model which uses all the defined parame-
ters can be called thefull model

y= θ′aza+θ′bzb+e , (49)

whereza, zb are parts of the data vectorz (2) which
correspond to the parts of parameter vector (47).

Unbounded estimation can be based on the algo-
rithm from 2.2 while the vectorΘ (3) was enlarged by
estimates of parameter variancesσ2

θ

Θ = [θ,σ2
θ,σ

2
y] . (50)

Note: Calculation of parameter variances accord-
ing to (9) is influenced by behaviour of the auxiliary
variableκ defined by(10). It might be better to calcu-
late the variances explicitly in a moving window the
length of which enables to tune sensitivity of the algo-
rithm to variance changes.

4.2.1 Basic Algorithm of Bounded Estimation

The basic algorithm can be divided into following
parts:

• Initialization ofV andκ similarly to (41)

• One step of the recursion

– EstimationΘ̂ = [ θ̂, σ̂2
θ, σ̂

2
y] of the full model.

– Application of the limiting function (27a) on
subset of the estimatesθ̂a

θ̂⋆a = ℓµ(θ̂a, σ̂2
θ,a,θ a,θa) (51)

Vector of estimated parametersθ̂◦ is now com-
posed by the bounded and unbounded estimates

θ̂◦ = [ θ̂⋆a, θ̂b] . (52)

4.2.2 Enlarged Algorithm

Bounded parameter estimatesθ̂⋆a from the basic al-
gorithm can be, for a particular recursion step, tem-
porarily considered known constants. Then, they can
be – together with corresponding dataza – moved to
the left side of model equation. It results inreduced
model

y− θ̂⋆
′

a za = θ′bzb+e , (53)

the parametersθ′b of which can be newly estimated
by the common algorithm from 2.2.

Thus, the basic algorithm is enlarged to consist of
parts

• Initialization ofV andκ similarly to (41)

• One step of the recursion

– EstimationΘ̂ = [ θ̂, σ̂2
θ, σ̂

2
y] of the full model.

– Employment of the limiting function (27a) on
subset of the estimatesθ̂a

θ̂⋆a = ℓµ(θ̂a, σ̂2
θ,a,θ a,θa) (54)

– Moving θ̂⋆a together with dataza to the left side
to create the reduced model (53)

– Estimation of parameterŝθ⋆b of the reduced
model. Vector of estimated parametersθ̂⋆ is
now composed by the bounded estimated pa-
rameters of the full model and by the modi-
fied estimate of unbounded parameters coming
from the reduced model

θ̂⋆ = [ θ̂⋆a, θ̂⋆b] . (55)

The enlarged algorithm ensures lesser prediction
error than the basic algorithm. In many real cases is
the prediction error even comparable to the one of the
entirely unbounded estimate. Particular results can be
influenced by the choice of forgetting factors for esti-
mation of the full and reduced models.

4.2.3 Simulated Example

Consider a process model

y(t) = ϑ1y(t −1)+ϑ2u(t −1)+ϑ3+ey(t) (56)

with parameters

ϑ1 = 0.8 ϑ2 = 0.3 ϑ3 = 4.0
(57)

and given boundaries, noise and number of samples

ϑ1 = 0.6 ϑ1 = 0.9
ϑ2 = 0.0 ϑ2 = 0.35

ey(t) ∼ N (0,1)
n = 5000

(58)

The control signal was generated from

u(t) = u(t −1)+eu(t) , (59)

whereeu(t) is a random variable with the uniform dis-
tributioneu(t)∼ U(−0.5,0.5).

Behaviour of inputu(t) and outputy(t) is shown
in Fig. 5.

Behaviour of parameter estimates is depicted in
Fig. 6. True parameters are represented by yellow
lines while black lines in the first two graphs repre-
sent their given boundaries. Unbounded estimates are
depicted in blue while the bounded ones are green.
The estimate of the single-parameter reduced model
is plotted in red in the lowermost graph.
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Figure 5: Simulated example – input and output.
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Figure 6: Simulated example – behaviour of unbounded
(blue) and bounded (green) parameter estimates. Estimated
parameter of the reduced model is plotted in red.

4.2.4 Real Data Example

The example is based on the real data set which was
used in (Ettler and Kárný, 2010). System outputy is
represented by deviation of the output strip thickness
during the process of cold rolling. Its behaviour is
being approximated by the model

y(k) = ϑ1u(k−1)+ϑ2v(k−1)+ϑ3+ey(k) , (60)

where indexk means sample number while the sam-
pling is triggered by the movement of the rolled strip
and∆k ∼ 0.08 m of the strip length. Control signalu
corresponds to so-called uncompensated rolling gap
of the rolling mill and the measured disturbancev is
represented by the nonlinear function of the rolling
force. The model is based on thegaugemeter princi-
ple, see, e.g. (Ettler and Andrýsek, 2007) for details.

Fig. 7 shows undesirable variations of measured
output thickness in the intervalk ∈ (3300, 4200)
which was caused by dirt influencing the contact
thickness measurement.

Situation depicted in Fig. 7 caused a temporary
discrepancy between both sides of the model (60)
which may drive unbounded parameter estimates out
of their reasonable ranges.
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Figure 7: Real data example – the measured output.

Based on the knowledge of the process, it was pos-
sible to determine boundaries for the first two model
parameters:

ϑ1 = −1.0 ϑ1 = −0.02
ϑ2 = −100.0 ϑ2 = 0.00
n = 4700

(61)

Behaviour of parameter estimates is shown in Fig.
8. The second unbounded parameter (in blue)
needs relatively long timek∈ 〈1, 700〉 to reach the
allowed range, which can be explained by a moderate
excitation of the model because selected data come
from the middle of the rolled strip. Concerning the
bounded estimation, the situation is balanced by the
parameter of the reduced model (in red) in the third
graph.

Note: Real on-line identification starts with the
beginning of rolling when the system is excited
enough. Here the off-line identification starts in the
steady-state to illustrate behaviour of the estimator
under unfavorable conditions.

As a consequence of the measurement error dur-
ing k ∈ (3300, 4200), the blue unbounded estimates
ϑ̂1, ϑ̂2 exceeded their limits. The bounded estima-
tor coped with the problem reasonably which is il-
lustrated by the behaviour of the green bounded esti-
mates. Again, the red parameter of the reduced model
deviated from its unbounded version to minimize the
prediction error.

5 CONCLUSIONS

The paper deals with therealisticestimation of model
parameters which takes into account limitation on
model parameters existing in real applications.

In general, limitation of a random variable with
normal distributionN is described by the introduced
heterogenous probability distributionD. Relations
between mean and variance of both distributions can
be adequately approximated by cdf and pdf of the
generalized normal distributionG , respectively. After
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Figure 8: Real data example – behaviour of unbounded
(blue) and bounded (green) parameter estimates. The es-
timated parameter of the reduced model is plotted in red.

determination of rules for construction of the fictiveG
it was possible to introduce the limiting functions for
the mentioned statistical moments and integrate them
into recursive algorithm of bounded parameter esti-
mation. In addition, parallel estimation of thefull and
reducedmodels enable to minimize the prediction er-
ror in each estimation step.

Behaviour of the estimator was illustrated on
simulated data and then on real data taken from a
cold rolling mill.
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Åström, K. J. and Kumar, P. (2014). Control: A perspective.
Automatica, (50):3–43.

Benavoli, A., Chisci, L., Farina, A., Ortenzi, L., and Zappa,
G. (2006). Hard-constrained vs. soft-constrained pa-
rameter estimation.IEEE Transactions on aerospace
and electronic systems, 42(4):1224 – 1239.
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Canada.
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APPENDIX

Generalized Normal Distribution

Symmetric version of the generalized normal distribution
G is defined by 3 parameters:µG (location),α (scale) and
β (shape).

Pdf of G is given by

fG (x|µG ,α,β) =
β

2αΓ(1/β)
exp

{
−
∣∣∣∣
x−µG

α

∣∣∣∣
β
}
, (62)

whereα > 0, β > 0 andΓ denotes the gamma function

Γ(x) =
∫ ∞

0
tx−1 exp(−t)dt . (63)

For β = 2, G coincides with the normal distribution

N (µG ,
α2

2 ). Forβ → ∞, G converges pointwise to uniform
density on(µG −α,µG +α).

Cdf of G is given by

FG (x|µG ,α,β) = (64)

1
2

[
1+

sgn(x−µG )

Γ(1/β)
γ

(
1/β,

∣∣∣∣
x−µG

α

∣∣∣∣
β
)]

,

whereγ means the lower incomplete gamma function

γ(x,x0) =
∫ x0

0
tx−1 exp(−t)dt . (65)

Remaining properties ofG can be found for example in
(Toulias and Kitsos, 2014).
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