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Abstract: The paper presents the results concerning computational burden analysis of dynamic programming and
bottom-up algorithms when solving knapsack problems. It presents the efficiency of the algorithms infor-
mation expressed both in calculation time, as well as mean number of iterations in knapsack problems up
to 15,000 items and capacity of the knapsack equal to 10,000. The aim of the paper is to present the this
knowledge what of practical use when solving optimization problems where estimate of execution time of the
algorithm is important.

1 INTRODUCTION maximum capacity is not exceeded. This problem has
the form (Moura, 2012)

T

The knapsack problem (KP) is one of the most com- max c
k C

mon, and at the same time, most interesting optimiza-
tion problems, which is defined as NP-hard (Kellerer st wix<Ww,
et al.,, 2004). The main assumptions are based on ;6_3,;”
maximizing the value of items in the knapsack with- = +
out exceeding its capacity. This task appears in col- wherec € #Z" is the price vectorx € Z" is the vec-
umn generation (CG) problem when solving optimal tor comprising decision variables (number of items in
1D cutting problem with dynamic programming and the solution)w € Z" is the weight vector (defining
is present in many engineering problems, e.g. choos-weights of items), antlV is the capacity of the knap-
ing the best strategy to select the most profitable sack.
source of energy in the case of a demand (energy con-
sumption), constrained by some limits.

It appears, as remarked, in a cutting stock prob- 2 SOLVVING KNAPSACK
lem, and this paper aims at analysing further the com-
plexity of the presented algorithms. PROBLEMS

In general, one can divide knapsack problems ac- _ . .
cording to two criteria. The first one is the dimen- | he following methods are crucial when solving 1D

sionality of the problem (1D, 2D or 3D), and the sec- Knapsack problems: greedy algorithm and dynamic

ond one is the kind of the knapsack problem in accor- Programming. The first one is based on locally opti-
dance to type of variables (discrete or continuous do- M@l decisions made at every stage, what makes the

main). In CG problems one encounters discrete knap-rT'emO(.j easy to implement, bUt the qbtained solu-
sack problem with a single constraint, i.e. 1D knap- 10N might not be globally optimal (Hristakeva and
sack problem. Shrestha, 2005; Kellerer et al., 2004; Moura, 2012).

In discretefinteger knapsack problems it is as- The first step of the algorithm is determination of

o N S
sumed that it is impossible to include a fractional Fhe price-to-weight ratio, i.eh; = W’ for every ofn

value of the item to the knapsack, and their types can items (variables), and in order to obtain the solution,
be divided into: 0-1 knapsack problems, constrained the items are selected in an orderly manner from the
and unconstrained knapsack problems. In this paper,Nighest to lowest value di. On can formulate the
the last case is considered, where the solution can in-890rithm in four steps:

clude any feasible number of items, provided that the 1) calculateh; fori=1,...,n,

X
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2) sortitems with respect to descending valuelsipf ~ 2) for consecutive capacitigs= 1, ..., W proceed
setk=1, to Step 3;

3) if the remaining capac_ityvm,k of the knapsaqk at 3) for consecutive itemis= 1, ..., nproceed to Step
k-th stage of the algorithm exceeds the weight of 4
thei-th item, include this itenx; = waifj times o . o
(Wmk is the available capacity of the knapsack 4) if it hqlds t'hat ] = W, then put I.D("]) —
when considering th&-th item); in the opposite max(P(i —1,), P(i,  —wi) + @), gnd, in the op-
case, proceed to the next item and put k+ 1, posite case, puR(i, j) = P(i—1,);

4) repeat Step 3 until all items are considered. 5) repeat Step 2 until=nnN j =W.

Other types of greedy algorithm are not consid- The Bottom-Up algorithm of restoring decision
ered here, as e.g. (Ekel and Neto, 2006), sice the papewariables in the optimal solution is as follows:
is focused on giving background to the DP approach. 1) assume the initial entry to B&n,W) and puti :=
On the opposite to the greedy algorithm, there is a n,ji=W;
brute force algorithm which generates all possible so- - . . S
lutions abiding constraints, and selecting the one for 2) f(_)r P(i,]) = P('_:l.’ i) put| d: : _dl’ m;he ogpc_)-
which the objective function is maximized. Itis easy tSItt? ca§('a,_pgj 1_ J =W and update by subst-
to implement, but at the same time is computationally utingxi :=xi+ 1,
expensive, and can be formulated as follows: 3) repeat Step 2 untR(i, j) # 0.

1) generate matrik € 2™<" of all (m) possible so-
lutions to the knapsack problem (put in rows),

2) generate vector comprising objective functon 3 EXAMPLES
values for all rows oM,

3) find the maximum entry of, and set the corre- 3.1 Greedy Algorithm
sponding solution as optimal.

Dynamic programming (DP) is the method based As an example of the greedy algorithm one can give
on successive division of the task into subproblems, the following KP problem:

subproblems into subsubproblems, etc, proposed by

Richard Bellman, who was granted an IEEE medalin mMax  2Xq +Xp X3 + 3Xq + X5+ X6 + 4X7 + 2% + Xg

1979 for this algorithm (Arora, 2004; Nocedal and

Wright, 1999; Igandvidrgin et al., 2006). The next St Xt 30 +2%+ 3+ 4 + 36 + X7+

stage is based on merging solutions to obtain the so- +3Xg + 5xg < 14,

lution of the initial problem. Every subproblem is xe 27

solved once only, what shortens the computation time, The following tableau presents the data of the problem:

and partial solutions are placed in the tableau (Moura, |

2012; Kellerer et al., 2004). However, it may suffer —

from the so-called curse of dimensionality for highly- | » 1 1 3 1 1 2 2 '

dimensioned problems (not discussed here). h | 040 033 050 100 025 033 133 067 020
In the case of the knapsack problem, the DP gy sqrting the items with descendingone getsk =

tableau contains solutions for increasing capacity of 1):

the knapsack in its last columns, and in subsequent

2 3 4 5 6 7 8 9
3 2 3 4 3 3 3 5

: . L i |7 4 8 3 1 2 8 5 9
rows the number of available items is increased. 1135 100 060 050 040 03 03 o= o0 .
In the tableau (see Tab. 1), e.g. the erR(i, 1) 2| 4 4 4 7 2 4 a4 3 2

is the largest objective function value for knapsack of Tﬁe remaining capacithi, — 14 > wy — 3, thus
capacity equal to 1, with a one-element set of avail- ;= 4. The cur?ent capac%; ~ 14— 12; 2 k=
able items,P(n,W) is the largest objective function 2). ’
for the knapsack with capacity &/ and n avail- _
able items. The optimal objective function value is ; | 1?)0 0867 020 Oio 053 053 0255 0290
in P(n,W). In order to restore the values of decision LV%lJ o o i1 o0 o ©o o o
variables, the Bottom-Up algorithm must be used, '
what will be given below.

The DP algorithm for the KP is summarized as

As the resultxz = 1. The remaining capacitfhz =
0 — the algorithm terminates. The optimal solution

follows: becomes:
* T
1) setinitial valuesP(0,0) = 0, putP(0, j) =0V = X" = 1[0,0,1,0,0,0,4,0,0",
1,...,WandP(i,0)=0vi=1,...,n; f(x*) = 17
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Table 1: DP tableau.

ithitem | i-thitem | NO: Ofthe Capacityj
price weight i-thitem | O 1 2 - W
0 0] © 0 0 0
C1 w1 1 0[P(L1) [P(L,2) |- | P(LW)
@ w2 2 |0|P21)|PR22) |- |PRW)
o wh n 0 P(ﬁ,l) P(ﬁ,Z) - P(nI,W)
3.2 Dynamic Programming Algorithm o j=15,i =3, sinceP(3,15) # P(2,15), item no. 3

is included in the optimal solution, putting:=
The sample DP problem in a KP framework is given j—ws andxs =X3+1,

as below: e j=12,i =3, sinceP(3,12) = P(2,12), another
item no. 3 is not included in the optimal solution,
max 11X+ 7%+ 5%3+ X4 puttingi :=1i—1,
X e j=12,i=2,sinceP(2,12) =P(1,12), item no. 2
st. 6X1 + 4%2 + 3X3 + X4 < 15, is notincluded in the optimal solution, putting=
e j=12,i=1,sinceP(1,12) #P(0,12), itemno. 1
Item no. 1 has the price; = 11 and the weight is included in the optimal solution, putting:=
w1 = 6, and item no. 2 — the price; = 7 and the j—wiandxy i =x3+1,
weightwy = 4 etc. In the first step (see Tab. 2),the o j =6, i = 1, sinceP(1,6) # P(0,6), another
DP tableau is created denotes the number of the item no. 1 is not included in the optimal solution,
item). putting j := j —wy andxy :=x; +1,

By performing all calculations according to the ® J =0,i=1, sinceP(1,0) = 0, algorithm termi-
DP algorithm, the DP tableau is obtained (see Tab. 3).  Nnates.

Initial stages of filling-in of the DP tableau: The optimal solution becomes:
e =2 i=2 weightw, =6> j—1=1, thus X = [2,0,1,0,

e |=2,i=3: weightwg=4>j—1=1, thus
P(3,2) =P(2,2) =0,
o j=2,i=4 we|ghtw4_3>j—1_l thus

P(42] =P(32) - 4 COMPARISON OF
o :2 = 5: We|ght =1<j-1= ALGORITHMS
1, thus ( ,2) = max(P ( ,2),P(5,1)+1) =
max(0,1) =1, 4.1 Computation Time Comparison for
e j=3,i=2: weightw, =6> j—1=2, thus ' P . . P
P(2,3) =P(1,3) =0, the Considered Algorithms
e |=3,i=3: weightwg=4> j—1=2, thus
P(3,3) =P(2,3) =0, As the performance indicator of the considered meth-
e j=3,i=4: weightws =3> j—1=2, thus ods, the computation time of the given algorithm has
p(4 3)=P(3,3) =0, been selected. The first of the carried out tests (Prob-
e =3, i=5 weightws=1<j-1= lem 1) was the comparison of calculations for algo-
2, thus P(5,3) = max(P ( ,3),P(5,2)+1) = rithms with the knapsack with the capacity of 25 and
max0,2) = 2, number of available items from 5 to 16. The results
o ... are presented in Figure 1 and are averaged over 100

feasible and randomly-generated problems.

As can be seen, for problems with lesser num-
ber of available items, i.e. up to 9, the greedy algo-
rithm was the fastest, but it was with no guarantee
e j=15,i=4,sinceP(4,15) =P(3,15),itemno. 4 that the solution found was actually global. For large

is notincluded in the optimal solution, putting= problems, i.e. from 10 available items and above,
i—1, the fastest was the DP algorithm. It can be said

The optimal objective function equals 27, and in
order to retrieve optimal solution, the Bottom-Up al-
gorithm must be used:
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Table 2: Table in first step from the example.
Knapsack sizg

G Wi L 0 1 2 3 4 5 6 7 8 9 10 | 11 | 12 | 13 | 14 | 15

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 6 1 0
7 4 2 0
6 3 3 0
1 1 4 0

Table 3: Final DP tableau from the example.

L Knapsack sizg
G Wi ! 0 1 2 3 4 5 6 7 8 9 10| 11 | 12| 13 | 14 | 15

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 6 1 0 0 0 0 0 0 11|11 | 11| 11 | 11 | 11| 22 | 22 | 22 | 22
7 4 2 0 0 0 0 7 7 |11 |11 | 14| 14| 18| 18 | 22 | 22 | 25| 25
6 3 3 0 0 0 5 7 7 11| 12 | 14 | 16 | 18 | 19 | 22 | 23 | 25 | 27
1 1 4 0 1 2 5 7 8 11|12 | 14| 16 | 18 | 19 | 22 | 23 | 25 | 27
o ‘ Solving time of a kP with capacity 25 a function of number of decision variables for knap-

S Dynamic programming sack capacity of 15 (Problem 2). Despite the increase

10° H —— Brute force in decision variables, mean calculation time remains

approximately the same, what is caused by very small
capacity of the knapsack with respect to the number
of variables. Secondly, the DP algorithm, on the con-
trary to the brute force method, might be successfully
implemented in problems with number of variables

exceeding 20.

10° ¢

Solving time [s]

N
Ow

| Solving time of a KP with capacity 15
10

] ——&— Dynamic programming:

. . . . .
4 6 8 10 12 14 16
No. of variables

Figure 1: Computation time of all considered algorithms.

Solving time [s]
B|
[
¢

that computation time in the case of the DP methods
does not change much with the number of available
items, what can be related to a relatively small num-
ber of both the items and the capacity of the knap-
sack. Another information is that brute force algo-
rithm solution times increases approximately expo- - ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
nentially from 9 available items and above with in- s 0 15 20 2 303404580
creasing number of available numbers. Thus itis only
the DP algorithm that is dedicated for large knapsack
problems, since the greedy algorithm does not guar-  Figure 3 depicts solution time for DP algorithm as
antee one to obtain the global solution, and brute force a function of number of decision variables for knap-
method is computationally expensive, e.g. the calcu- sack capacity of 100 and maximum number of items
lation time for 16 items too over 20 minutes! reaching 100 too (Problem 3). Once again, solution
Since the computation time for both brute force time are approximately the same, what states that DP
and greedy algorithms does not depend on the ca-algorithm is a good tool for solving such problems.
pacity of the knapsack, the next results are related to  Figure 4 depicts solution time for DP algorithm as
computation time for DP algorithm with respectto the a function of number of decision variables for knap-
number of variables and varying capacity of the knap- sack capacity of 100 and maximum number of items
sack, where tests have been carried out for randomlyreaching 5,000 (Problem 4). Now, for a large num-
selected integer values of prices and demands. ber of items and large capacity of the knapsack, the
Figure 2 depicts solution time for DP algorithm as proper relation of solution time to available items can

Figure 2: Solution to Problem 2.
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Solving time of a KP with capacity 100 accuracy of the performance tests, every configuration
has been randomly generated 1,000 times, and results

have been averaged.

10

T
—&— Dynamic programming:

5.2 Resaults

The results have been presented in the tables below,
with corresponding plots included, in order to enable
better interpretation of the obtained results. The tests
have been carried out for the two following sets of
data:

10 i i : 1

Solving time [s]

e data set no. 1: the number of decision variables up
to 40 (see Tab. 4),

e data set no. 2: the number of decision variables
from 50 to 500 (see Tab. 5).

10 i i i i i i i i
5 10 15 20 25 30 35 40 45 50

No. of variables

Figure 3: Solution to Problem 3.

be observed. This relation is approximately linear. In

addition to the latter, a single test for 15,000 items and Table 4: Results for data set no. 1.

capacity of the knapsack equal to 10,000 has been car- Conaci No. of decision variables
. .. . . . apaci
ried out, giving solution reaching 109s. In practice, Y[ 5 10 15 20 25 30 _ 40
however, such problems are rarely encountered. 10 | 1063 1525 1865 2278 2775 3210 40.85
20 1553 21.39 2531 2887 3356 36.69 42.62
Solving time of a KP with capacity 10000 30 18.69 26.54 32.16 34.33 40.21 41.60 48.60
9 ‘ ‘ owving fn ‘ apacly ‘ 40 21.88 31.06 37.09 4135 47.04 50.03 56.75
l —o&— Dynamic programming ‘ 50 26.64 35.08 43.25 46.71 55.62 57.34 65.22
gl 4 60 27.86 38.24 4587 50.25 60.66 64.13 71.49
70 26.07 35.51 49.99 57.51 62.78 68.26 76.26
7L i 80 30.54 46.28 51.41 66.72 68.22 75.27 81.08
90 27.00 48.87 55.33 66.50 79.24 75.11 91.40
6l ] 100 31.91 51.37 59.70 71.52 75.31 80.67 87.69
% 200 47.28 64.64 84.44 94.23 105.7 109.1 144.9
é 5l ] 300 44.07 67.06 70.67 122.7 129.6 156.1 171.2
g 400 4940 89.36 85.67 9581 139.6 150.8 190.3
g alb ] 500 69.69 99.52 91.78 116.2 150 189.8 207.1
3 4 Mean iteration count of the Bottom-Up algorithm, data set no. 1
i d
500 1000 1500 2000 2500 3000 3500 4000 4500 5000

No. of variables

Figure 4: Solution to Problem 4.

5 ANALYSISOF EFFICIENCY

5.1 Introduction

5 10 15 20 25 30 35 40
No. of decision variables

Since the number of iterations necessary to fill the
DP tableau can be easily calculated for every defined gjg e 5: Mean iteration count of the Bottom-Up algorithm
problem (can be calculated only on the basis of the (gata set no. 1).

size of the DP tableau). The mean number of iter-

ations of the Bottom-Up algorithm must be verified. In the majority of cases, the increase in knapsack
For the given capacity of the knapsack and available capacity and increase in the number of decision vari-
items, random weight and price vectors have beenables, causes the mean number of iterations to in-
generated from a given range, and number of itera- crease. This is easily interpretable, since the larger
tions necessary to retrieve the values of the decisionthe problem, the more iterations the algorithm must
variables has been identified. In order to improve the perform.
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Table 5: Results for data set no. 2. ACKNOWLEDGEMENTS

. No. of decision variables
Capacity
10 52.67 75.74 100.7 200.8 299.7 400.0 499.7
20 49.76 72.15 91.94 187.0 279.5 381.1 476.7
30 55.84 72.06 86.34 1559 2521 3159 430.6
40 64.46 77.13 95.25 170.7 221.5 303.1 426.0
50 71.96 88.56 101.7 156.7 216.7 284.7 396.2

50 75 100 200 300 400 500 The author wishes to thank to Mr. Mateusz Pacek for
his help with formulating the benchmark problem.
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Figure 6: Mean iteration count of the Bottom-Up algorithm
(data set no. 2).

In the second table, the increase in knapsack ca-
pacity and in number of variables causes the number
of iterations of the Bottom-Up algorithm to increase.
However, for a large problem with 500 variables and
capacity equal to 500, the mean number of iterations
becomes 685, what verifies the applicability of the
dynamic programming algorithm here.

6 SUMMARY

It is important what the efficiency of the algorithms
used in solving, e.g. knapsack problems will be. This
paper aimed at giving the answer to this question for
problems with applicable dimensions, related to solu-
tions obtained in matter of seconds (if not — fractions
of a second) on a standard PC and Matlab. Results
presented in the figures related to mean number of it-
erations can be used easily to assess the time of calcu-
lations necessary to implement the algorithm on any
machine.
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