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Abstract: In the modern data driven era, it is a very common practice for individuals to provide their personalized data in
multiple databases. However, the existence of correlated information in between these databases is a common
source of privacy risk for the database users. In our study, we investigate such scenarios for attribute based
linking attacks. These attacks refer to the common strategy by which an adversary can breach the privacy of
the database respondents via exploiting the correlated information among the database attributes. In our work,
we have proposed an information theoretic framework through which the achievable privacy levels following
an adversarial linking attack are quantified. Our developed model also incorporates various aspects associated
with micro-databases such as sanitization mechanism and auxiliary side information, thereby providing a more
holistic structure to our theoretical framework. A comparative analysis of the various cases associated with
our model theoretically confirms the notion that a sanitization mechanism facilitates in preserving the original
privacy levels of the users.

1 INTRODUCTION

Datasets which contain person specific information
about individual respondents are termed as micro-
databases. Based upon the nature of the data which
they represent, the database attributes can be catego-
rized into three categories namely Identifiers, Key at-
tributes (or quasi identifiers) and confidential (sensi-
tive) attributes (Rebollo-Monedero et al., 2010). Iden-
tifiers are those attributes which unambiguously iden-
tify the respondents. Typical examples of these in
micro-databases include ‘SSN number’ and ‘passport
number’. These values are either removed or en-
crypted prior to distribution due to the high privacy
risks associated with them. Key attributes are those
properties which can be linked or combined with ex-
ternal sources or databases to re-identify a respon-
dent. Typical examples of such attributes include
‘age’, ‘gender’ and ‘address’. Sensitive attributes
contain the most critical data of the users; maintaining
their confidentiality is the primary objective of any
database security scheme. Examples for these type of
attributes include ‘medical diagnosis’, ‘political affil-
iation’ and ‘salary’.

Accumulating person specific data in some central
storage facility poses great risks for the individuals

participating in the data collection process. Although
there are well defined policies and guidelines to re-
strict the types of publishable data (Fung et al., 2010),
they are regularly circumvented in practical data shar-
ing scenarios. As a direct consequence, the likeli-
hood for an adversary to easily retrieve some crit-
ical information about any targeted individual from
the databases remains alarmingly high. From the per-
spective of the adversary, the most effective method
for obtaining critical information about a target is
via exploiting the correlation among the public at-
tributes (quasi identifiers) in multiple databases. Al-
ternatively, it can be said that there exist multiple
‘links’ among databases which subsequently assists
an adversary in performing various malicious attacks.
These type of attacks are commonly known as link-
ing, cross-matching or correlation based attacks. The
severity of the linking attacks comprehensively in-
creases if the adversary possesses some auxiliary
background information about the targeted individual.

In this paper, we have attempted to formally cap-
ture the effects of linking attacks on the privacy lev-
els of the database respondents. Intuitively speak-
ing, the privacy of an individual decreases in the
event that an adversary can successfully establish at-
tribute based linkages. There are two major contri-
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butions of our work. Firstly, we have provided the-
oretical frameworks for modeling micro-databases,
along-with attribute based links, sanitization mecha-
nisms and adversarial background knowledge. Sub-
sequently, we have quantified the amount of resulting
privacy following a successful linking attack based
on a couple of micro-databases. Our study is moti-
vated by the pioneering work of (Sankar et al., 2013),
in which the authors gave an information theoretical
analysis of the trade-off between utility and privacy
in micro databases. The rest of this paper is orga-
nized as follows. Section 2 introduces some back-
ground concepts which subsequently form the ba-
sis of our analytic work, and Section 3 contains the
detailed construction of our formal framework for
micro-databases. The process of quantifying the pri-
vacy after a linking attack is described in Section 4,
and finally Section 5 concludes our work with poten-
tial future scopes.

2 BACKGROUND CONCEPTS

In this section we briefly discuss about multiple as-
pects related to privacy and micro-databases. These
inter-related background notions would facilitate in
the development process of our formal model.

2.1 Privacy

Traditionally, privacy has been used as a metric for
measuring the level of uncertainty of information cor-
responding to an individual within a database. Privacy
preservation was first described by (Dalenius, 1977)
as the guarantee that an adversary learns nothing extra
about any target if the adversary gains access to pub-
lished data. Regarding databases, public and private
attributes are generally modeled as random variables
having a specific joint probability distribution. The
privacy of an individual remains intact (i.e. there is no
privacy loss) if the disclosure of the associated pub-
lic attributes provide no additional information about
the corresponding private attributes. In a probabilistic
sense, it can be stated that the conditional entropy of
the private attribute should remain as high as possi-
ble after an adversary observes the public attributes.
Conventionally, privacy has been accounted for in an
information theoretic way. The uncertainty about a
piece of undisclosed information is related to its infor-
mation content. The information content of a source
S is measured by its entropy H which is defined as-

H(S) = ∑
i

pi log
1
pi

where pi is the probability with which a character
si is emitted from the source S.

Let Xprv denote the set of random variables which
represent sensitive attributes in a database. Similarly,
let XPUB characterize the set of random variables cor-
responding to the public information which is accessi-
ble by the adversary. As demonstrated in subsequent
sections, the source of this information can be exter-
nal public attributes, as well as correlated auxiliary
side information. Furthermore, let’s assume that Xprv
and XPUB are correlated by a joint probability dis-
tribution function p(Xprv,XPUB)(y,x) where ∀(y,x)|y ∈
Xprv,x ∈ XPUB. Under such a naive scenario, the pri-
vacy (P ) can be quantified as -

P = H(Xprv|XPUB)

where H(Xprv|XPUB) represents the conditional
entropy (equivocation) of Xprv given XPUB. The pa-
rameter P accurately captures the essence of pri-
vacy as it represents the leftover entropy of the pri-
vate data on the disclosure of the associated public
data. An equivalent metric privacy risk (R) (Rebollo-
Monedero et al., 2010) is defined as the mutual infor-
mation between the public and private random vari-
ables. Thus,

R = I(Xprv;Xpub) = H(Xprv)−H(Xprv|Xpub)

Both privacy risk (R) and privacy (P ) are com-
plementary and essentially capture the same notion.
However in our work we would define privacy by the
equivocation P .

2.2 Linking Attacks

Privacy breaches through linking can occur by three
separate mechanisms namely record linkage, attribute
linkage and table linkage. These three techniques cor-
respond to the situation when an attacker is able to
link an individual to a record in a published data ta-
ble, to a sensitive attribute in a published data table, or
to the published data table itself respectively. Regard-
ing record and attribute linkages, it is assumed that the
attacker has the prior knowledge that the targeted in-
dividual’s record is present in the database. However
the objective of the attacker in table linkage based at-
tacks is to determine whether the individual’s record
is present or absent in the released table.

Our present work is concerned only with attribute
linkages since the most famous and influential at-
tacks in the real world were carried out by link-
ing correlated attributes. Prominent examples of at-
tribute based linking attacks include re-identifying
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the sensitive medical record of William Weld (gov-
ernor of Massachusetts) by joining it with public
voter databases (Sweeney, 2005),(Sweeney, 1997);
de-anonymization of individual DNA sequences (Ma-
lin and Sweeney, 2004) and privacy breaches owing
to AOL search data (Hansell, 2006). Perhaps the
most influential work was done by (Narayanan and
Shmatikov, 2006) where de-anonymization of Net-
flix subscribers was performed by correlating it with
external data obtained from Internal Movie Database
(IMDB). This study resulted in identification of Net-
flix records of known users, thereby revealing their
apparent political preferences and other related sensi-
tive information.

2.3 Sanitization Mechanisms

Almost all the micro-data datasets are published in
the public domain after removing the Identifiers as-
sociated with the database subjects. This process
is known as anonymization. However even after
anonymization, an adversary can query critical infor-
mation about the subjects by the virtue of their pub-
lic attributes present in the dataset. This problem
motivated for the development of techniques which
suppress the disclosure risk of individual information
as much as possible while maximizing the utility of
the published data. These privacy preserving mecha-
nisms are generally termed as sanitization processes.
Broadly speaking, there are three main approaches for
performing sanitization prior to publishing the micro-
data datasets. Although the methods for achieving
privacy are different, their underlying concept is the
same - modification of the original data that is to be
released. These techniques are termed as general-
ization, anatomization and perturbation (Fung et al.,
2010).

Generalization techniques alter the original data
so that they cannot be identified later on. These
methods calculate a common value for a group of
records and then replace the individual records con-
tained within the groups with the computed com-
mon value. Prominent privacy preservation schemes
which employ generalization as their underlying no-
tion include k-anonymity (Samarati and Sweeney,
1998), t-closeness (Machanavajjhala et al., 2007) and
l-diversity (Li et al., 2007). Anatomization algo-
rithms (Xiao and Tao, 2006) disassociate the relation-
ship between quasi identifiers and sensitive attributes.
This method partitions the original data into two sep-
arate tables - one containing only quasi identifiers
and the other one consisting solely of sensitive at-
tributes. However both the tables contain a connect-
ing attribute termed as GroupID. All records in an

equivalent group will have the same value of GroupID
in both tables, and therefore remain linked to the sen-
sitive values in the group in the exact same way.

Offering an alternate solution for achieving data
privacy is the perturbation method. The driving prin-
ciple behind this technique is the addition of exter-
nal noise to the original data to produce a synthetic
output. However the perturbation must be carried
out specifically such that any statistical information
computed from the original database must not signifi-
cantly differ from the same statistical information es-
timated form the synthetic output. Although exhaus-
tively researched, perhaps the most famous example
of perturbation based sanitization mechanism is Dif-
ferential privacy (Dwork, 2006). This method is gen-
erally based on a query-response framework wherein
external noise sampled from a pre-defined distribution
is added to the statistics of the original database.

As already discussed, micro-databases are re-
leased in the public domain only after sanitizing them
through one of the discussed mechanisms. However,
the records of the database can also be obtained (by
the adversary) in their original form in the event of
a database leakage. Hence to make our model more
practical, we have taken into consideration all the dis-
tinct possibilities regarding the sanitization procedure
while quantifying the attainable privacy levels in Sec-
tion 4.

2.4 Auxiliary Background Knowledge

In addition to the public information available, an
adversary can also utilize any background informa-
tion related to the subject. Incorporating this aspect
gives more power to the adversary for mining sen-
sitive information about individuals. A famous ex-
ample of this notion can be described by the com-
monly referred Terry Gross’s height (Dwork, 2006).
It basically states that supposing ‘height’ was consid-
ered a sensitive information, an adversary possessing
the background knowledge that “Terry Gross is two
inches shorter than the average Lithuanian women”,
can accurately calculate Terry Gross’s height from
a statistical database containing average heights of
woman of different nationalities. Inclusion of back-
ground information is crucial for the construction
of any real-world data dependent framework since
it accurately captures the adversarial model. More-
over it provides a realistic estimate of privacy limits
since it has been showed that absolute privacy protec-
tion is not possible due to presence of related back-
ground information (Dalenius, 1977). Intuitively it
can be understood that the privacy of an individual de-
creases with the amount of background information
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possessed by the adversary. This observation stems
from the fact that privacy is inversely proportional to
the net amount of disclosed information about an in-
dividual.

3 MODEL CONSTRUCTION

This section is dedicated towards formally modeling
a generic micro-database along-with its related de-
pendencies. We have developed our models consid-
ering the availability of two micro-databases since
the majority of real-world attacks on privacy were
carried out involving a couple of databases. For in-
stance, the Netflix de-anonymization (Narayanan and
Shmatikov, 2006) was executed utilizing Netflix and
Internet Movie Database (IMDb).

3.1 Assumptions

Prior to initiating our formal constructions, we first
present some assumptions which we have made re-
garding the distribution and correlation of attributes in
a micro-database. These suppositions assist us in de-
veloping a formal and consistent mathematical model.
All these assumptions have been already justified and
subsequently used in previous works (Sankar et al.,
2013). Firstly, we model a micro-database as a collec-
tion of n observations (rows) generated by a memory-
less source whose outputs are independently and iden-
tically distributed (i.i.d). Additionally, the rows of the
database is a collection of correlated attributes that is
generated according to its probability of occurrence
from a well defined source. Some assumptions are
also made with respect to the adversary. We consider
him/her to possess some auxiliary background infor-
mation regarding either any particular targeted indi-
vidual or the entire group of subjects in the database.
For instance, the adversary may know whether or not
an individual had participated in a database. This as-
sumption enables us not only to take into consider-
ation the various possibilities of privacy breach, but
also makes our model more generic.

3.2 Micro-database Model

We start by defining the notations for two micro-
databases DB1 and DB2. 1 Let K1 and K2 denote the
number of attributes in the two databases; also let K 1

and K 2 be the sets representing these attributes. Let

1We will refer to properties of the first and second
databases with superscripts 1 and 2 respectively

X1
K and X2

K denote the set of random variables rep-
resenting the attributes of the two databases respec-
tively, thus X1

K = {X1
i : i= 1,2, ...K1} and X2

K = {X2
i :

i = 1,2, ...K2}. Let DB1 and DB2 consist of n inde-
pendent observations (i.e. rows) which follow joint
probability distributions -

pX1
K
(xK 1) = pX1

1 X1
2 ...X

1
K1
(x1,x2, ...xK1)

and

pX2
K
(xK 2) = pX2

1 X2
2 ...X

2
K2
(x1,x2, ...xK2)

The above dependencies captures the correlation
between the attributes in the corresponding databases.
However in accordance to previous works, we assume
independence among the rows.

Let K 1
pub;K 1

prv and K 2
pub;K 2

prv represent public and
private attributes in the two databases respectively. It
should be noted that (K 1

pub ∪K 1
prv) = K 1 ,(K 1

pub ∩
K 1

prv)= φ, (K 2
pub∪K 2

prv)=K 2 and (K 2
pub∩K 2

prv)= φ.
We further denote the set of their corresponding ran-
dom variables by X1

Kpub
, X1

Kprv
, X2

Kpub
and X2

Kprv
respec-

tively. Thus,

X1
Kpub

= {X1
i }i∈K 1

pub
;X1

Kprv
= {X1

i }i∈K 1
prv

X2
Kpub

= {X2
i }i∈K 2

pub
;X2

Kprv
= {X2

i }i∈K 2
prv

3.3 Attribute based Correlation

Now we proceed in expressing attribute based cor-
relation between the two databases DB1 and DB2.
For introducing similarity, we assume that some of
the public attributes from both the databases overlap.
This assumption is practical since real world micro-
databases normally contains interrelated attributes.
We restrict the type of overlapping attributes to pub-
lic (and not private) since linking attacks are based
solely on public attributes. Let the number of these
common attributes be denoted by K◦. Since both the
databases are distinct, K◦ < min(K1,K2). Let these
attributes be represented as a set K ◦, thus |K ◦|= K◦

and K ◦ = {K 1
pub ∩K 2

pub}. Accordingly, let the ran-
dom variable representing K ◦ be denoted by XK ◦ .
Let these common records follow the joint probability
distribution -

pXK ◦ (xK ◦) = pX◦1 X◦2 ...X
◦
K◦
(x1,x2, ...xK◦)

Thus this distribution essentially captures the
attribute based association between the two databases.
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3.4 Sanitization Process

We present generic sanitization mechanisms on both
the databases. Accordingly, we define encoding func-
tions F1 and F2 which maps DB1 and DB2 to a set
of indices J1 = {1,2, ...M1}, J2 = {1,2, ...M2} and a
set of associated output sanitized databases SDB1 and
SDB2. Here M1 and M2 denotes the number of sani-
tized databases for DB1 and DB2 respectively. Thus,

F1 : DB1→ J1,{SDB1
k}M1

k=1

and

F2 : DB2→ J2,{SDB2
k}M2

k=1

This encoding function is a little different to that
previously used (Sankar et al., 2013), in the sense that
our functions maps only the databases, thereby mak-
ing the encoding a one-to many function. Addition-
ally we do not require the decoding function since we
are not concerned about the utility of the databases.

3.5 Background Knowledge

For our framework, the background information is
modeled as n-length sequences and denoted by the
random variables Z1 and Z2 corresponding to DB1

and DB2 respectively. Thus,

Z1 = (Z1
1 ,Z

1
2 , ...Z

1
n) and Z2 = (Z2

1 ,Z
2
2 , ...Z

2
n)

where (Z1
i ,Z

2
i ) take values from a finite set Z.

Also, let the side information corresponding to the
correlated attributes be represented by Z◦. It should
be noted that it is not necessary that Z◦ ⊆ (Z1 ∪Z2),
i.e. the correlation among the attributes might reveal
some additional background information to the adver-
sary. On the other hand, the side information itself
must be correlated with the databases to be mean-
ingful. These correlations are denoted by the joint
probability distribution functions pX1

K Z1(xK 1 ,z1) and

pX2
K Z2(xK 2 ,z2) corresponding to DB1 and DB2 re-

spectively.

4 PRIVACY LEVELS AND
LINKING ATTACKS

In this section, we formally quantify the privacy guar-
antees following a successful execution of attribute
based linking attacks by an adversary. As mentioned
previously, privacy is defined as the reduction in en-
tropy of sensitive information given that an adver-
sary has access to some correlated public information.

Since in our work we deal with two databases, pri-
vacy quantification is done in two levels. In the first
level we estimate the privacy loss on account of pri-
vate attributes present in both databases, whereas in
the second level we approximate the further reduction
in privacy while considering the correlated attributes
for the databases. This provides a hierarchical mecha-
nism for calculating the final privacy loss correspond-
ing to the micro-database subjects. Based on the im-
plementation of a sanitization procedure, we can for-
mulate three distinct cases regarding the mechanism
of privacy loss. These cases correspond to the scenar-
ios when - (i) None of the databases are sanitized, (ii)
Only one of the databases is sanitized, and (iii) Both
the databases are sanitized. The final privacy level in
each case is denoted by P i, where i denotes the case
number.

4.1 No Database is Sanitized

First we consider only DB1. Since the private at-
tributes are available to the adversary in their original
form, privacy (P1) is given by -

P1 = H(X1
Kprv
|X1

Kprv
,Z1)≥ E1

where P1 is lower bounded by E1. For this case,
the value of P1 equates to 0. This observation is con-
sistent with the intuition that the micro-database sub-
jects would have no privacy in case their private at-
tribute values are accessible by the adversary (via a
leakage). Moreover, the side information correlated
with the first database would have no significance in
this first level of privacy quantification as the privacy
cannot be further reduced from 0. Next we consider
the second database DB2. Similar to the previous
case, the privacy (P2) is quantified as -

P2 = H(X2
Kprv
|X2

Kprv
,Z2)≥ E2

where E2 is a general lower bound on P2. The
quantity P2 also equates to 0 since the private at-
tributes of the second database are also available to
the adversary in the unaltered form.

In level two, we determine the effects of correlated
attributes on the level 1 privacy states. Essentially, we
estimate the remaining entropy of the two databases
when the adversary performs linking attacks on the
basis of the overlapped attributes. For such a case, the
quantities P1 and P2 serve as the maximum amount of
remaining information (privacy) for the database sub-
jects. Moreover since P1 is a function of (X1

Kprv
,Z1),

it can be represented by a random variable XP1 with
the mapping-

XP1 : (X1
Kprv

,Z1)→ [E1,H(X1
Kprv

)]
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Similarly P2 can be represented by a random vari-
able XP2 with the mapping -

XP2 : (X2
Kprv

,Z2)→ [E2,H(X2
Kprv

)]

In this special case, the random variables XP1 and
XP2 are defined on the range {0} since P1,P2 = 0.
Let the leftover privacy involving DB1 and DB2 after
observing the correlated attributes be denoted by P3
and P4 respectively. Thus -

P3 = H(XP1 |XK ◦ ,Z◦)≥ E3

and

P4 = H(XP2 |XK ◦ ,Z◦)≥ E4

where E3 and E4 are general lower bounds on P3
and P4 respectively. However in this particular case
both P3 and P4 equate to 0, since the random variables
XP1 and XP2 are defined on {0}.

Hence the total leftover privacy for this case
equates to -

P 1 = P3 +P4 = 0 (1)

4.2 Only One Database is Sanitized

For the sake of simplicity, we assume that DB1 is san-
itized whereas DB2 is not. The privacy quantifica-
tion process for the alternative assumption is simply
the symmetrically opposite case (i.e. the notations
for DB1 and DB2 gets interchanged). Since the first
database is sanitized in this case, the only attack strat-
egy of the adversary is to obtain sensitive information
from the sanitized database and the related side infor-
mation. Thus the privacy of the subject (P1) equates
to -

P1 = H(X1
Kprv
|J1,Z1)≥ E1

To reiterate, J1 is the index of the sanitized
database corresponding to DB1. The maximum value
of P1 occurs when (J1,Z1) reveals no information
about X1

Kprv
, i.e. when X1

Kprv
is independent of both

J1 and Z1. Privacy in that case equates to the entropy
of X1

Kprv
,i.e. H(X1

Kprv
). However the second database

is available in the original format, and consequently
the adversary is able to directly extract all critical in-
formation from there. In such a case the privacy (P2)
becomes -

P2 = H(X2
Kprv
|X2

Kprv
,Z2)≥ E2

As in the previous case, P2 equates to 0. Now we
begin the quantification process for level 2. First we

represent P1,P2 as random variables XP1 ,XP2 with the
following mapping functions -

XP1 : (X1
Kprv

,J1,Z1)→ [E1,H(X1
Kprv

)]

and
XP2 : (X2

Kprv
,Z2)→ [E2,H(X2

Kprv
)]

Subsequently, the second level privacy equates to -

P3 = H(XP1 |XK ◦ ,Z◦)≥ E3

and
P4 = H(XP2 |XK ◦ ,Z◦)≥ E4

In this case, P4 equates to 0 since XP2 is defined on
{0}. Hence the final remaining privacy equates to -

P 2 = P3 +P4 = H(XP1 |XK ◦ ,Z◦) (2)

4.3 Both Databases are Sanitized

This final case accounts for the majority of practi-
cal scenarios since micro-databases are generally san-
itized prior to public distribution. In this case, the ad-
versary is able to obtain sensitive information about
the subjects on the basis of attribute based linking at-
tacks. The amount of meaningful information which
the adversary is able to mine from them depends upon
the effectiveness of the sanitization mechanism. The
level 1 privacy for DB1 and DB2 are denoted by -

P1 = H(X1
Kprv
|J1,Z1)≥ E1

and

P2 = H(X2
Kprv
|J2,Z2)≥ E2

Due to the effects of sanitization, both P1,P2 6= 0.
They are subsequently represented by the random
variables XP1 and XP2 , which are defined by the map-
pings -

XP1 : (X1
Kprv

,J1,Z1)→ [E1,H(X1
Kprv

)]

and

XP2 : (X2
Kprv

,J2,Z2)→ [E2,H(X2
Kprv

)]

Subsequently, the level 2 privacy for DB1 and DB2

are represented by -

P3 = H(XP1 |XK ◦ ,Z◦)≥ E3

and

P4 = H(XP2 |XK ◦ ,Z◦)≥ E4
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Similar to the level 1 privacy (i.e. P1 and P2), both
P3,P4 6= 0. Thus the final privacy levels can be quan-
tified as -

P 3 = P3 +P4 = H(XP1 |XK ◦ ,Z◦)+H(XP2 |XK ◦ ,Z◦)
(3)

On comparing the values of P 1, P 2 and P 3 from
Eqn. 1, Eqn. 2 and Eqn. 3 respectively, we can repre-
sent a ordinal relationship among them as -

P 1<P 2<P 3

This relationship follows from the facts that P 1 =
0 and H(XP2 |XK ◦ ,Z◦) is a positive quantity. The max-
imum amount of privacy gets preserved when we im-
plement appropriate sanitization procedures on both
the databases, whereas the total privacy attains the
lower bound of 0 (i.e. no privacy is preserved) when
none of the databases are sanitized. Hence this re-
lation also vindicates the notion that a sanitization
mechanism facilitates in preserving the user’s privacy.

5 CONCLUSION AND FUTURE
SCOPES

In our work, we have attempted to formally quantify
the achievable privacy levels in the lieu of attribute
based linking attacks involving micro-databases. We
have taken into consideration the various possibilities
in which an adversary may try to learn sensitive in-
formation about an individual and provided the ap-
propriate levels of privacy in each case. Addition-
ally, we have computed the privacy levels for three
distinct cases based on the application of a sanitiza-
tion mechanism on the micro-database. Our findings
theoretically confirm the intuitive notion that a sani-
tization procedure assists in preserving the privacy of
the database respondents.

Privacy breaches in micro-databases primarily oc-
cur due to the existence of multiple attribute based
links among the records of the databases. Although
our work successfully models this setting, the only
constraint of our work is related to the number of
available micro-databases (to the adversary). More
specifically speaking, we have assumed that an ad-
versary is able to perform the linking based attacks
on the basis of two micro-databases. Modifying our
framework for incorporating more than two micro-
databases is a natural extension of our work. Finally
we would like to experimentally evaluate our frame-
work on real-life datasets, which would provide em-
pirical validation of our study.
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