
Improving Throughput in BB84 Quantum Key Distribution

Shawn Prestridge and James Dunham
Electrical Engineering, Southern Methodist University, 6425 Boaz Ln, 75205, Dallas, Texas, U.S.A.

Keywords: QKD, BB84, Winnow, B92, CASCADE.

Abstract: Quantum Key Distribution (QKD) is a scheme that allows two parties to exchange a key in a provably secure
manner that will be used in a more conventional encryption system. The first implementation of QKD was
BB84 by Bennett and Brassard. Several techniques have been used to attempt to maximize the number of
bits realized at the end of the BB84 protocol. One of the techniques used is the B92 protocol (and its follow-
on, CASCADE) introduced by Bennett et al. which uses 1-bit parities to reconcile the keystream between
Alice and Bob (Bennett et al., 1992). Another is the Winnow protocol introduced by Buttler et al. which
uses Hamming codes to increase the efficiency of the BB84 protocol to allow error rates up to 13.22%(Buttler
et al., 2003). In this paper, the Winnow protocol is enhanced and extended to allow arbitrarily high error rates
thus greatly improving the effectiveness of the protocol while preserving security. This enhancement also
provides a marked improvement over the original B92 protocol in terms of the number of bits preserved in the
keystream.

1 INTRODUCTION

BB84 is a well-known protocol to do QKD and quite
a bit of research has been done on the last part of
the protocol (commonly referred to as the reconcilia-
tion phase) which ensures that Alice and Bob have the
same bitstream that will be used as a key in their con-
ventional cryptosystem. Most algorithms rely on sim-
ple parity-check schemes to ensure that Alice and Bob
can detect and correct inconsistencies between their
respective bitstreams. Moreover, they also rely on
bit-discarding (often referred to as “burning”) tech-
niques to restore security to the remaining bits. This
paper will briefly describe the manner in which this
resolution takes place and will also provide the basic
framework for systematic codes that extend the Win-
now protocol to be effective at very high error rates.

1.1 Brief Description of BB84 (Bennett
and Brassard, 1984)

The BB84 protocol allows Alice to send a new cryp-
tosystem key to Bob in a manner that is provably se-
cure via a Quantum Channel (QC). Alice chooses a
key k and a series of orthogonal bases b on which she
encodes k so that they can be transmitted across a QC.
Both k and b have maximum entropy and the same
length for reasons that are detailed in the original pa-

per. Bob chooses a random set of bases b′ by which
he measures what Alice sends to him. Due to the na-
ture of the orthogonal bases and the QC, if Bob does
not guess the correct basis by which to measure a bit
of k, then the result becomes random for that bit. At a
high level, the protocol can be summarized in a series
of steps in Fig.1.

Figure 1: BB84 Protocol illustrated.

This paper will focus solely on improving the
methods used in the last step of the protocol, so the
only security concerns that need to be addressed con-
cern the leakage of key information in the reconcil-
iation process. In the last step, Alice and Bob have
approximately the same bitstream which will be dis-

Prestridge, S. and Dunham, J.
Improving Throughput in BB84 Quantum Key Distribution.
DOI: 10.5220/0006422104370443
In Proceedings of the 14th International Joint Conference on e-Business and Telecommunications (ICETE 2017) - Volume 4: SECRYPT, pages 437-443
ISBN: 978-989-758-259-2
Copyright © 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

437



tilled down to a final key. There are a number of
protocols that are designed to resolve these remain-
ing errors, but the underlying theme to most of these
protocols is that that Alice and Bob select a number
of bits from their bitstream to form a block and com-
pute a parity check value on the block. They then
exchange this parity check value across an unsecured
medium (most likely the Internet) to try to determine
if there are errors in the block. If there is an error,
the protocol attempts to correct the errors. These pro-
tocols stipulate that certain bits within the remaining
bitstream must be discarded in order to prevent in-
formation leakage due to the fact that the parity check
information was exchanged on an unsecured medium.
Where these methods typically differ from one an-
other is in the way they comprise blocks, compute
parities, and when they discard bits. Additionally,
some protocols will use Privacy Amplification (PA)
which feeds the distilled key into a hash algorithm to
increase security. Even if a protocol does not include
PA as one of its steps, it can add PA as a bolt-on to
its output to increase security by use of randomness
extractors (Dodis et al., 2004).

1.2 B92 Protocol (Bennett et al., 1992)

In the reconciliation phase, the B92 protocol divides
the bitstream into blocks of length k (the paper pro-
vides empirical data on how to determine the length
of k) and then computes a 1-bit parity on each block.
Each block has a random selection of bits from the
bitstream with each bit only going into one block per
round to ensure that all bits are checked. When the
parity information is exchanged, a bit is burned from
the block to preserve security. If the parities agree,
then they move on to the next block. If the parities
between Alice and Bob disagree, they split the block
in half and perform a 1-bit parity on each half of the
block, burning a bit on each half to preserve security;
this process is repeated until the error in the block is
eliminated. When all blocks have been checked, the
process is repeated again with the smaller bitstream
(because bits have been discarded along the way to
preserve security). These rounds of error-detection
with 1-bit parities are repeated until 20 successive
rounds have been completed with no errors found in
any of the blocks. At the end of this reconciliation,
the remaining bits can be used as-is or can be fed into
a PA scheme.

1.3 Winnow Protocol (Buttler et al.,
2003)

The reconciliation phase of the Winnow protocol
computes a simple 1-bit parity for the block and if
the parities computed by Alice and Bob match, then
they assume that the block does not contain an er-
ror and a single bit is discarded from each of their
blocks to restore maximum entropy to the remain-
ing bits in the block. If the parities do not match,
the block is bisected and a 1-bit parity is computed
for each half of the block to determine in which half
the error lies. This protocol sacrifices a bit for every
parity bit that is exchanged on the unsecured chan-
nel, therefore it preserves security in a fashion that
most closely resembles the one that will be presented
in this paper and will thus be the primary baseline
for comparison. Once this single-bit parity round is
complete, Winnow uses Hamming codes to attempt
to further eliminate errors and preserve information-
theoretic security. Winnow is typically compared to
the CASCADE protocol and B92 for efficiency pur-
poses (Bennett et al., 1992). CASCADE delays the
burning of bits but uses privacy amplification to ad-
dress the issue, therefore it is better to compare our
new protocol to Winnow and to B92.

2 PDG CODES

This paper will introduce a protocol called Prestridge-
Dunham Guardian (PDG) Codes that will further the
Winnow protocol by exploiting probabilities concern-
ing the Hamming code syndrome and the number
of estimated errors remaining in code blocks. PDG
codes will allow them to resolve errors in the bit-
stream with a much greater frequency than Winnow
and at much higher bit error rate (BER) values. PDG
Codes consist of a series of rounds that iteratively
search through the string identifying and correcting
errors. After several rounds, Bob’s string will then be
compared with Alice’s to see if they are indeed equiv-
alent.

In general, the PDG Coding System will mirror
Winnow by taking the entire message that was trans-
mitted from Alice to Bob and break it up into a series
of blocks of a particular length (the specifics of which
length to choose are detailed in section 2.2). Where
PDG will differ from Winnow and how it achieves
much higher error detection and correction rates is in
how the syndrome information is exploited to maxi-
mize the error detection and correction capability. In
both PDG and Winnow, the following takes place for
each block:

SECRYPT 2017 - 14th International Conference on Security and Cryptography

438



1. Alice computes a Longitudinal Redundancy
Check (LRC) of the block (essentially a one-bit
parity check) and sends the result to Bob;

2. Bob computes the LRC for his received block;

3. If Bob’s computation matches that of Alice, they
assume that the bits in that block have no errors
and sacrifice one bit in the block to re-randomize
the data;

4. Otherwise, Alice and Bob independently compute
Hamming Code parity bits and Alice sends hers to
Bob via the unsecured public channel; Bob uses
this information to correct his received data and
he and Alice sacrifice as many message bits as
there were parity bits exchanged on the unsecured
channel.

Since the LRC is a linear systematic code, sacri-
ficing a message bit in the block will re-randomize
the data to account for the single parity bit that was
exchanged on the unsecured channel; this result has
been proven many times (Prestridge, 2017). As PDG
progresses, it will always sacrifice as many message
bits as there were parity bits exchanged on the public
channel, so at each step along the way the data is re-
randomized in such a way that Eve gleans no informa-
tion about the remaining bits. Hamming codes were
selected for that very reason: the number of parity bits
that it uses are low thus providing a good throughput
of message bits. Other error-detection and -correction
codes can be used, but they will require delaying the
sacrificing of message bits to preserve message bit
throughput. Therefore, there will be some amount of
information leakage before a PA scheme is used to
distill a final key. As it stands, PDG gives the user
the option whether they want to use PA or not since
the bits it distills are secure. Once all the blocks have
been processed, it is likely that Alice and Bob will
engage in a second round of resolution with a larger
block size to account for the fact that the number of
errors in the message bits has decreased, thereby gain-
ing performance for the second round. The real effi-
ciency of PDG comes from how Hamming codes are
exploited to get better results than other codes.

2.1 Getting More from Hamming Codes

To see how we can more effectively exploit the syn-
drome, let us first examine a very simple Hamming
code. A standard [7,4] Hamming code has seven
overall bits in the codeword, of which four are infor-
mation and three are parity bits. The mechanics of
how to compute the syndrome for single-error detec-
tion and correction can be found in many textbooks
(MacWilliams and Sloane, 1978). A standard syn-

drome for decoding single-bit errors is:



s3 s2 s1

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1



=




Bit in error
No Error

1
2
3
4
5
6
7




(1)

Using the [7,4] code, four information bits are be-
ing transmitted over the noisy secure (quantum) chan-
nel and the three parity bits are being transmitted over
a noiseless insecure channel (Internet). It is known
that the Hamming distance of this code will allow the
user to correct all single-bit errors, but what about cor-
recting double-bit errors since it is now known that an
error cannot occur in the parity bits? A standard In-
formation Theory maxim is that any error rate at or
below 1E−6 is considered negligible (MacWilliams
and Sloane, 1978). Since the parity information is
transmitted on the Internet which has a BER less
than 1E−6, the parity information can be considered
a lossless transmission as the IEEE 802 Fuctional Re-
quirements Document provides that the error rate on
the MAC Service Data Unit is below this threshold
(IEEE, 1991). A traditional analysis of the [7,4] Ham-
ming code says that if there is more than a single bit
error per packet, the error is undetectable and uncor-
rectable. For a 5% BER, the probability of an unde-
tected error is given by:

4

∑
i=2

(
4
i

)
pi(1− p)4−i = 0.0140. (2)

Thus, the probability of an undetected error is approx-
imately 1.40%.

Because the parity bits are transmitted perfectly,
if the syndrome indicates that an error has been en-
countered in one of the parity bits it can be logically
assumed that what has actually happened is that more
than one bit error has occurred. Because of the sym-
metric nature of Hamming codes, it is only necessary
to examine one case of the pool of possible informa-
tion bit combinations, so vector [0000] is used. Table
1 shows that six different double-bit errors can occur
within the four information bits.

Table 1: Syndromes for all single-bit errors.

Received vector Bit errors Syndrome
0010100 3, 5 110
0010010 3, 6 101
0010001 3, 7 100
0000110 5, 6 011
0000101 5, 7 010
0000011 6, 7 001

Improving Throughput in BB84 Quantum Key Distribution

439



In the case of a double-bit error, there are two pos-
sibilities: the resultant syndrome indicates a single bit
error in either a parity bit or a single-bit error in a
non-parity bit. When the syndrome indicates that an
error has occurred in a non-parity bit (double errors
in code bits [3, 5], [3, 6] and [5, 6]), an undetectable
error has occurred. However, three of the six pos-
sible double-bit error patterns indicate an error in a
parity bit ([3, 7], [5, 7] and [6, 7]); since we know
that a parity bit error cannot occur, then we know that
one of these three double-bit error patterns has oc-
curred. Three of the four information bits will be dis-
carded, so the user only needs to be concerned about
correcting the bit that will be kept. Therefore, there
are really only three possible double-bit error patterns
that concern the user and so no matter which bit the
user selects to keep, there is one double-bit error pat-
tern that is detected and corrected, thus improving the
[7,4] Hamming code by lowering the probability of
an undetected error to 0.95%:

2
3

(
4
2

)
p2(1− p)2 +

4

∑
i=3

(
4
i

)
pi(1− p)4−i

= 0.0095066.

(3)

The chosen bit will still be correct half of the time,
so the effective error rate is approximately 0.475%, a
29.52% improvement over the traditional method.

This same technique can be extrapolated to larger
Hamming codes, e.g. consider a block that is being
checked with a (31,26) Hamming code and Bob’s
computed syndrome is 00100. There are eleven dif-
ferent double-bit error patterns that map to the same
syndrome. Since there were five parity bits p j that
were exchanged across the unsecured public channel,
five bits of the block b j must be burned to preserve
the security. If Bob chooses one bit from five of the
eleven possibilities, he has a 5

11 = 55.6% chance of
eliminating one of the bits that was in error. More-
over, if Bob was successful in eliminating one of the
errors in the block, then it is easier to eliminate the
other error in the block on a different pass.

2.2 Detailed Outline of the PDG Coding
System

PDG begins by looking at both k and k′ to remove the
remaining errors. In most QKD schemes, both Alice
and Bob have an estimate of the BER for their channel
because they run a preliminary string of data through
the QC to estimate the BER. With this BER in mind,
the PDG code proceeds like this for each round:
1. Choose block length k to divide the string into k-

length blocks, zero-padding the last block to make

it fit the proper length.

2. Randomly select bits from the string to fill the
block; each bit will be selected only once per
round.

3. Compute a one-bit LRC check for the block; if the
LRC check passes, burn one bit and move to the
next block.

4. If the LRC fails, use a Hamming code in the man-
ner described in section 2.1 to eliminate the error;
burn (n− k) bits as this is how many parity bits
were used in the Hamming code.

5. Repeat until all blocks have been processed for
this round.

The number of rounds necessary have been deter-
mined experimentally for different initial BERs. Now
we will delve into the details for each step mentioned
above.

2.2.1 Choosing Block Lengths

Since the BER (pBER) on the QC is known, we can
compute the probability of having more than one bit
error in the block via the formula:

pUDE =
k

∑
i=2

(
k
i

)
pi

BER(1− pBER)
k−i (4)

where pUDE is the probability of an undetected error
for a Hamming code. We adjust our block length such
that the pUDE is approximately 1% to get maximum
efficiency for our code by balancing the need to burn
bits but still having a high-rate Hamming code. There
are only certain Hamming codes available (e.g (7,4),
(15,11), etc.), so the selection of k must take this into
account and err on the side of caution so that results
will be skewed conservatively.

2.2.2 Randomly Selecting Bits to Fill Each Block

Assuming that an (n,k) Hamming code is chosen,
the string will be broken up into a series of k-length
blocks, the last block being 0-padded if necessary.
These blocks are filled with bits randomly selected
from the distilled bits of Alice and Bob’s respective
collections; they each select the same random pattern
from their collections to fill blocks and each bit goes
in precisely one block for the round. The rationale for
this mixing is to prevent “bursty” errors (a string of
successive bit errors) from corrupting the entire string
which would burn more bits than is necessary.

SECRYPT 2017 - 14th International Conference on Security and Cryptography

440



2.2.3 Computing the LRC on the Block

Once the blocks are filled, Alice and Bob will run
a Longitudinal Redundancy Check (LRC) on each
block b j. The results are compared across the unse-
cured public channel which allows Alice and Bob to
do a rudimentary check for an odd number of bit er-
rors without burning a great deal of information bits.
If the LRC does not detect an odd number of errors,
then the block is considered to be free of errors be-
cause the careful selection of the block size minimizes
the probability that there are two or more errors con-
tained within a single block. Clearly, this can some-
times be incorrect but these errors are almost always
caught by running successive rounds of the algorithm.

2.2.4 If LRC Fails, Run Hamming Code

If the LRC indicates the presence of an odd number of
errors, Bob will ask Alice over the unsecured public
channel for the parity bits p j of the Hamming code for
the block being examined. The block b j is combined
with those parity bits to form c j and then multiplied
by the corresponding parity check matrix H to gener-
ate the syndrome s:

c j •H = s. (5)

This syndrome is then used in the manner previ-
ously described to determine if Bob’s b j has no er-
rors, a single error or two errors. If two errors are
detected, Bob uses the syndrome tables to determine
which combination of bits in b j can produce the com-
puted syndrome. Depending on which (n,k) Ham-
ming code is currently being used, it may be possi-
ble for Bob to correct one or both errors; if not, Bob
earmarks all the suspect bits as being “sacrificable”
in order to minimize the number of times the suspect
bits are checked. This process is continued for each
block bi in the string.

For each block, Bob must burn as many bits in b j
as the number of parity bits p j that were communi-
cated on the unsecured channel. If a single-bit error
has been detected, then Alice sends Bob the parity in-
formation for the corresponding Hamming Code. If a
double-bit error has been detected, Bob will examine
the number of possible pairs of bits in b j that could
generate such an error and select one bit from sep-
arate pairs to burn; this increases the probability that
Bob has removed at least one of the errors in the block
without burning a bit in the rest of b j that has a high
probability of being correct.

2.2.5 Repeat for all Blocks

This process is repeated for all the blocks remain-
ing in the round. When all the blocks have been
checked, Bob uses the unsecured public channel to
send a list of the bits that he has burned so that Al-
ice will also remove those bits from her pool. Again,
knowing the position of the bits that have been burned
does not compromise the security because the parity
of the remaining bits in the sundry b j blocks are re-
randomized which prevents Eve from gleaning any in-
formation about them.

The number of rounds and which Hamming codes
to use have been determined experimentally and are
summarized in Table 2 for BERs of 1%-10%.

Table 2: PDG Selection parameters by BER.

BER Pass 1 Pass 2 Pass 3 Pass 4
1% (15,11) (31,26) (63,57) (127,120)
2% (15,11) (31,26) (63,57) (127,120)
3% (15,11) (31,26) (63,57) (127,120)
4% (15,11) (31,26) (63,57) (127,120)
5% (15,11) (15,11) (63,57) (127,120)
6% (15,11) (31,26) (31,26) (31,26)
7% (15,11) (15,11) (31,26) (31,26)
8% (15,11) (15,11) (15,11) (31,26)
9% (15,11) (15,11) (15,11) (31,26)

10% (15,11) (15,11) (15,11) (15,11)

The bits that remain can be used either as a key for
a cryptosystem or they can be used in a PA scheme.
For comparison, we look at B92 and Winnow since
they give the number of raw bits remaining before a
PA stage is applied.

3 RESULTS

We will now compare PDG against two of the most
commonly used techniques for performing bit recon-
ciliation, namely B92 and Winnow.

3.1 PDG vs. B92

On average, the PDG codes return better results 80%
of the time than the B92 protocol because either:

1. PDG returns more bits to Alice and Bob than B92.

2. PDG corrects all errors in the block and B92 does
not.

Clearly, the PDG codes demonstrate a remarkable im-
provement over B92 while still preserving the security
of the key exchanged by the protocol.

Running a slate of tests that allow the BER to vary
from 1% to 10% and the initial message size to vary
from 1k to 10k bits (a total of 100 test parameters with

Improving Throughput in BB84 Quantum Key Distribution

441



10k tests per parameter) reveals some surprising re-
sults for the B92 protocol. While PDG maintains ap-
proximately the same performance for a given BER
regardless of the initial packet size, the performance
of the B92 protocol suffers drastically as the size of
the packets increases for all BERs greater that 2%.
Selecting typical use cases of a BER of 1%, 3% and
7%, it is easily seen that the PDG code outperforms
the B92 protocol on almost all of the test cases per-
formed. Given that the PDG performance is equiva-
lent regardless of the packet size (and to allow B92
to perform its best), a packet size of 1,000 bits can
be compared. For the 1% case, PDG returns a total
of 252,095 bits more than B92, a 3.1% improvement.
For the 3% case, PDG returns a total of 200,443 bits
more than B92 for a 2.8% improvement. For the 7%
case, PDG returns a total of 2,466,405 bits, an 83.9%
improvement. From these cases, it is clear that PDG
provides a more efficient coding solution than B92 for
extracting bits in a QKD scheme. For the grand total
of 1,000,000 tests run to compare how PDG performs
against B92, PDG was able to outperform B92 more
than 50% of the time on 99 of the 100 parameters and
missed a perfect record by a mere 4% on the test pa-
rameter in question.

Table 3 shows a typical use case where Alice and
Bob would exchange 2,000 bits. Each row of the ta-
ble shows the results of running 10k tests with the
selected BER and 2k packet size. The column for
“% Int” is the percentage of results that were deemed
interesting, i.e. where PDG successfully returns bits
and either B92 does not return as many bits or B92
does not remove all the bit errors. The columns “PDG
Bad” and “B92 Bad” indicate the number of test cases
where PDG and B92 did not remove all the errors, re-
spectively. The column of “Bit diff” shows the total
number of bits that PDG leaves in excess of those left
by B92 when both PDG and B92 were able to elimi-
nate all errors in the packet.

Table 3: Comparing PDG to B92.

BER % Int PDG Bad B92 bad Bit diff
10 84.01 1,370 8,856 6,634,518
9 85.15 1,240 8,864 7,446,470
8 90.12 304 8,868 8,777,072
7 89.04 310 8,750 9,509,198
6 68.19 1,679 8,125 7,700,175
5 58.40 2,130 6,044 5,315,023
4 70.81 2,417 3,050 1,110,910
3 93.06 421 822 873,984
2 99.17 37 110 419,612
1 100.0 0 10 304,615

PDG returns a successful result at least 75% of
the time and quite often more than 85% of the time.
When you divide the total number of PDG bits by the
number of test cases run (10000), you can see that the

average number of bits for each test would leave
an adequate key length regardless of which standard
cryptosystem was employed by Alice and Bob for
their communication (at 10% BER, an average of 759
bits per case and at 1%, an average of 1685 bits per
case). It is interesting to note that PDG leaves more
bits than the B92 in all cases, particularly when the
BER is high. At a high BER, B92 can rarely correct
all errors in Bob’s bitstream. As the physical distance
between Alice and Bob increases, so does the BER
on the quantum channel. These results indicate that
PDG would permit a greater physical distance to ex-
ist between Alice and Bob than could be tolerated by
B92.

3.2 PDG vs. Winnow

Winnow is capable of distilling a key so long as the
BER on the quantum channel is below 13.22% (But-
tler et al., 2003). However, PDG is capable of return-
ing keys for error rates up to 47%. PDG effectively
has some double-error detecting and correcting capa-
bility that Winnow does not; as such, PDG is capa-
ble of distilling at least some key between Alice and
Bob when Winnow cannot. As one would expect,
the probability of successfully distilling a key and the
length of the distilled key become arbitrarily low as
the BER increases and the size of the initial packet
decreases. Table 4 shows the effectiveness of PDG
at a 47% error rate when the initial packet size varies
from 10000 bits down to 1000 bits. In this table, the
“% Int” column shows the number of times PDG was
able to correct all errors in the packet and “PDG Bad”
is the number of cases where PDG could not success-
fully remove all errors in the string; “Ave. bits” is the
average number of bits left when PDG successfully
removed all errors.

Table 4: PDG performance at 47% BER.

BER Size % Int PDG Bad Ave. bits
47 10000 99.39 61 204
47 9000 99.25 75 183
47 8000 99.01 99 162
47 7000 98.34 166 141
47 6000 97.79 221 120
47 5000 97.12 288 99
47 4000 95.18 482 79
47 3000 92.91 709 58
47 2000 89.43 1,057 38
47 1000 80.60 1,940 19

Since PDG is capable of consistently correcting
all errors even at high error rates, it can be used to
quickly distill a secret key between Alice and Bob. As
the sample table indicates, the performance at a 47%
BER is roughly linear with a 1k bit packet returning
an average of 19 bits per case (1.9% of the bits make

SECRYPT 2017 - 14th International Conference on Security and Cryptography

442



it through the distillation) and a 10k bit packet returns
an average of 204 bits per case (2.0% of the bits make
it through the distillation).

Comparing PDG to Winnow at rates below 10%
further illustrates the efficiency gain realized by PDG.
Table 5 shows the average fraction of bits remaining
at bit error rates ranging from 1% to 10% when Win-
now is used with the PDG parameters specified in Ta-
ble 2. These results reflect only the error-detection
and -correction portion of the respective codes with-
out PA; assuming that the same PA would be applied
to both codes, the final results including PA would be
multiplied by the same scalar.

Table 5: Fraction of bits remaining at various error rates.

BER Winnow remaining PDG remaining
10 0.1640 0.3866
9 0.2081 0.4307
8 0.2152 0.4943
7 0.2642 0.5450
6 0.3353 0.5097
5 0.3412 0.5463
4 0.4331 0.5864
3 0.4563 0.7361
2 0.5211 0.8041
1 0.6121 0.8426

4 CONCLUSIONS

PDG codes are capable of outperforming the most
popular BB84 coding schemes by utilizing extra in-
formation available from Hamming codes. This en-
ables PDG to leave more bits than the B92 protocol
more than 80% of the time while not leaking any in-
formation bits to Eve. Additionally, PDG can outper-
form the Winnow protocol by being able to reliably
detect and correct errors all the way up to 47% BER
on the quantum channel, thus allowing Alice and Bob
to create longer fiber links between them to take ad-
vantage of the enhanced throughput. Even when the
BER is less than Winnow’s maximum, PDG leaves
more bits to create a longer key than Winnow can dis-
till.

REFERENCES

Bennett, C. H., Bessette, F., Brassard, G., Salvail, L., and
Smolin, J. (1992). Experimental quantum cryptogra-
phy. Journal of Cryptology, 5(1):3–28.

Bennett, C. H. and Brassard, G. (1984). Quantum Cryp-
tography: Public Key Distribution and Coin Tossing.
In Proceedings of the IEEE International Conference
on Computers, Systems and Signal Processing, pages
175–179, New York. IEEE Press.

Buttler, W. T., Lamoreaux, S. K., Torgerson, J. R., Nickel,
G. H., Donahue, C. H., and Peterson, C. G. (2003).
Fast, efficient error reconciliation for quantum cryp-
tography. Phys. Rev. A, 67:052303.

Dodis, Y., Reyzin, L., and Smith, A. (2004). Fuzzy Ex-
tractors: How to Generate Strong Keys from Biomet-
rics and Other Noisy Data, pages 523–540. Springer
Berlin Heidelberg, Berlin, Heidelberg.

IEEE (1991). Functional requirements IEEE 802.
http://www.ieee802.org/802˙archive/fureq6-8.html.
Accessed: 2017-05-21.

MacWilliams, F. and Sloane, N. (1978). The Theory of
Error-Correcting Codes. North-Holland Publishing
Company, 2nd edition.

Prestridge, S. (2017). Applying Classical Information The-
ory to Quantum Key Distribution. PhD thesis, South-
ern Methodist University. unpublished thesis.

Improving Throughput in BB84 Quantum Key Distribution

443


