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Abstract: This paper presents a distributed control for the formation control of mobile manipulators. We use a mobile 
manipulator model that can be separated in a kinematic and a dynamic component. For the kinematic 
component (formation control), we propose a distributed containment algorithm with a smooth function to 
avoid the chattering phenomenon, which provides control actions applicable in real robots. For the dynamic 
component, a controller based on the compensation of the dynamic forces and torques is applied. The structure 
of the formation is given by: a group of virtual leaders, which are used as references and to delimit the physic 
boundaries, and a group of follower robots. The distribution of the followers is determined by a Laplacian 
matrix, which is built based on the desired positions of the robots inside the convex hull formed by the virtual 
leaders. To validate the designed controllers, a simulation of formation and tracking trajectory of 8 mobile 
manipulators is performed, considering as reference, a sinusoid in each coordinate axis.

1 INTRODUCTION 

The formation control of robots has acquired 
significant importance in the last decades because of 
its civil and military applications including moving 
objects of big dimensions (Eoh et al., 2011), rescue 
activities (Liu et al., 2013), military convoys 
(Maxwell et al., 2013), where it is necessary to use 
multiple robots in a cooperative manner. In many 
situations, it is crucial to use formations with an 
irregular geometry according to the circumstances. 
For instance, the transportation of objects with 
irregular shapes and heterogeneous distribution of 
mass requires the use of multiple mobile manipulators 
in irregular distributions.  

One of the challenges in the control of multiple 
robots formations is the design of decentralized 
control schemes that consider the complexity and 
number of robots (or agents in networks), structure 
and topology of the formation, information flow 
among the agents, and robustness of the control 
scheme. Classically, the coordination of multi robots 
teams (or networks) in a formation uses a centralized 
architecture, which requires all the network’s 
information to compute the desired actions by the 
central control. Meanwhile, in a decentralized 
coordination scheme, every robot computes the 
control actions based only on local information 

(Johnson et al., 2016). In (De La Cruz and Carelli, 
2006; Brandao et al., 2014), diverse centralized 
control systems were developed for the formation 
control of mobile robots. Despite the satisfactory 
results of the centralized control schemes, they are 
vulnerable to failures in the communication network 
and the operation areas are limited. Further, the 
scalability and geometric shapes of the formation are 
other restrictions, which are usually solved by 
rebuilding the control system. 

Distributed control is one of the most relevant 
techniques for the formation control due to its 
robustness and scalability, whose most important 
feature is the distribution of the control capabilities 
through the system. In this type of architectures, 
every robot computes the necessary control actions 
using only the local information provided by its 
neighbors, without knowing the state of all the 
formation. Because the controller uses only local 
information, it is robust to failures in the 
communication network, which could be catastrophic 
in a centralized formation control (Tron et al., 2016). 
Additionally, a distributed formation control allows 
adding agents and generating different formations 
characterized by irregular geometric shapes without 
redesigning the control structure.  

Various distributed control methods for multiple 
mobile robots have been investigated considering 
limited communication capacity (Bock et al., 2016), 
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communication delays (Dai and Liu, 2015; Liu et al., 
2016), and noise (Dang et al., 2016). For instance, in 
(Dai and Liu, 2017) a distributed cooperation control 
considering time delays and obstacles is considered. 
During the last decade, formation control has been 
formulated as containment control problem, where 
robots, considered followers, move into a geometric 
space formed by other robots, considered leaders. 

In (Ren and Cao, 2011) and (Cao et al., 2010), 
several algorithms for the containment control 
problem have been investigated. Specifically, (Cao et 
al., 2010) proposes a distributed containment 
algorithm for double-integrator dynamics, to drive a 
group of followers into the convex hull spanned by 
the leaders without considering a specific location of 
each follower inside the geometric space. The 
algorithm uses a PD-like controller and a sign 
function to generate the control actions. The use of 
this type of function guarantees that the errors of the 
system converge to zero, but generates control actions 
with chattering. This phenomenon behaves like a 
high frequency noise due to the switching action of 
the control law; consequently, the actuator signal is 
not appropriate for real robots. To avoid this problem, 
(Cheng et al., 2016) proposes a containment control 
of multi-agent systems based on a ܲܫ௡ type approach 
considering polynomial trajectories. In (Shtessel et 
al., 2014) and (Ouyang et al., 2014), a smooth 
function that approximates the behavior of the sign 
function is proposed to solve the problem of 
chattering. The use of smooth functions eliminates 
the chattering in the control actions, but generates a 
ball. These controllers cannot guarantee zero error, 
but the error is confined inside the ball. Depending on 
the system conditions and the type of these functions, 
the boundary of the ball could become negligible, 
getting acceptable results with control actions 
applicable in a real system.  

This work proposes to combine the use of both, 
the convex hull and smooth functions, which provide 
a distributed controller with a smooth control action 
applicable to real manipulators. Here, a distributed 
controller is designed for the kinematic component of 
a mobile manipulator while for the dynamic 
component of each agent another control law is 
designed based on the dynamics’ 
compensation. Further, the formation is defined using 
a graph that represents the interactions among the 
mobile manipulators. The associated graph’s matrices 
(Adjacency, Laplacian matrix among others) and its 
properties play an important role in the development 
of the control laws (Godsil and Royle, 2001), which 
is typical in these types of network dynamics (Xue 
and Roy, 2012; Jadbabaie et al., 2013; Olfati-Saber, 
2006; Cao et al., 2013). Specifically, (Chen and Li, 

2008; Chen and Li, 2006) propose an adaptive neural 
network to control a formation whose geometric 
pattern is determined by a relative matrix and the 
interactions among the agents are modelled trough a 
directed graph.  In (Zavlanos and Pappas, 2007), the 
connectivity of a graph represented by the smallest 
eigenvalue of the Laplacian matrix associated is used 
to control the movements of the agents in order to 
track a leader. 

In this paper, we aim to present a distributed 
control system using a smooth function for a 
formation of mobile manipulators with three degrees 
of freedom (3 DOF), considering a dynamic model. 
The paper is organized as follows. In Section II, we 
formulate the problem of formation control of mobile 
manipulators as distributed control problem on a 
network dynamics. Section III presents the kinematic 
and dynamic model of a mobile manipulator with 3 
DOF used in the simulations. In Section IV, the 
stability of the system including the distributed 
control law is proved. Section V shows the simulation 
results in the formation of eight mobile manipulators.       

2 PROBLEM FORMULATION 

The present work focuses on the problem of trajectory 
tracking of a mobile manipulators formation. The 
formation is given by a convex hull and a graph that 
represents the information interchange among the 
robots.  

A convex hull is the minimum convex set formed 
by a set of points in the Euclidian plane or space. The 
use of this geometric space allows to delimit the 
boundaries of the formation and guarantee the 
location of the robots inside it. The convex hull is 
formed generally by the leaders of the formation, 
whose movements define the trajectory. In many 
cases, the robot teams do not have real leaders, and it 
is necessary to use virtual leaders as a reference for 
the followers. For example, in (Droge, 2015; Yan et 
al., 2016), a single virtual leader is used for a 
formation control, while in (Li et al., 2016), multiple 
leaders are used as references for the flocking of 
multi-agent systems. 

Formally, we consider a formation of ݊ agents 
(mobile manipulators) composed by ݉ mobile 
manipulators and ݊ െ݉ virtual leaders. The 
communication network among the agents, i.e. 
mobile manipulators and virtual leaders, is modeled 
through a directed graph (digraph) ܩ, with undirected 
communication patterns among the followers and 
directed paths from the virtual leaders to the 
followers. The graph ܩ ൌ ሺܸ,  ሻ is formed by a set ofܧ
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vertices ܸ ൌ ሼ1,… , ݊ሽ that represents the 
robots/mobile manipulators of the formation and a set 
of edges ܧ ⊆ ሼሺ݅, ݆ሻ ∈ ܸൈܸ: ݅ ് ݆ሽ representing the 
interactions among the robots. For example, if there 
is a directed interaction between robot ݅ ൌ 1 and 
robot ݆ ൌ 3 there is a directed edge ሺ݅, ݆ሻ ൌ ሺ1,3ሻ in 
the digraph ܩ, as shown in Figure 1. The adjacent 
matrix ܣ ൌ ൣܽ௜௝൧ is defined by ܽ௜௝ ൐ 0 if ሺ݆, ݅ሻ ∈  ܧ
and ܽ௜௝ ൌ 0 otherwise. We define the Laplacian 
matrix as ࣦ ൌ ൣℓ௜௝൧,		 where ℓ௜௝ ൌ ∑ ܽ௜௝

௡
௝ୀଵ  if ݅ ൌ ݆, 

and ℓ௜௝ ൌ െܽ௜௝ if ݅ ് ݆. The adjacent matrix and the 
Laplacian matrix are related by the expression ࣦ ൌ
ܦ െ ܦ where ,ܣ ൌ diagሼ݀ଵ, … , ݀௡ሽ  and ݀௜ ൌ
∑ ܽ௜௝
௡
௝ୀଵ  (see (Bapat, 2014) for details on graphs 

definitions). 
Notice that the first ݊ െ݉ rows of the Laplacian 

matrix corresponding to the virtual leaders are zeros 
since there are not interactions from the followers to 
the leaders or among the leaders, as observed in 
Figure 1. Due to the fact that the virtual leaders are 
the reference of the formation, there must be a path 
from a virtual leader to every follower of the 
formation. This means the existence of a connected 
directed spanning tree in the graph of the formation.  

 

Figure 1: Graph of a communication network among the 
agents of a formation. 

3 MOBILE MANIPULATOR 

3.1 Kinematic Model 

 

Figure 2: Diagram of a mobile manipulator with 3 DOF 
(Molina and Suárez, 2016). 

A kinematic model of a mobile manipulator with 3 
DOF is shown in Figure 2. The effector position of 
the robot is ݄ሺݐሻ ൌ ሾݔ௘ሺݐሻ ሻݐ௘ሺݕ ,ሻሿ், ݈ଵݐ௘ሺݖ 	݈ଶ 
and ݈ଷ are the values of the articulations 1, 2 and 3 
respectively, ߠଵሺݐሻ,  ሻ are the angles ofݐଷሺߠ ሻ andݐଶሺߠ
the articulations 1, 2 and 3 respectively, 
ሾݔሺݐሻ  ሻሿ் is the centroid of the wheels of theݐሺݕ
manipulator base,	ܽ is the distance from the centroid 
of the wheels of the mobile platform to the 
manipulator base, ݈௠ is the height of the manipulator 
base; ݑ and ߱ are the linear and rotational velocities 
of the platform and ߰ is the orientation of the 
platform. 

The kinematic model of the mobile manipulator is 
given by: 

 

൥
ሶ௘ݔ
ሶ௘ݕ
ሶ௘ݖ
൩ ൌ ௘ܬ

ۏ
ێ
ێ
ێ
ۍ
ݑ
߱
ሶଵߠ
ሶଶߠ
ےሶଷߠ
ۑ
ۑ
ۑ
ې

, (1)

 

where ܬ௘ is the Jacobian matrix of the system defined 
by: 

 

௘ܬ ൌ ൥
ଵଵܬ ଵଶܬ ଵଷܬ ଵସܬ ଵହܬ
ଶଵܬ ଶଶܬ ଶଷܬ ଶସܬ ଶହܬ
ଷଵܬ ଷଶܬ ଷଷܬ ଷସܬ ଷହܬ

൩ (2)

 

ଵଵܬ ൌ  ;టܥ	

ଵଶܬ ൌ െܽ	ܵట െ 	ܵఏభట	ൣ݈ଶ	ܥఏమ ൅ ݈ଷ	ܥఏమఏయ	൧; 
ଵଷܬ ൌ െ	ܵఏభట	ൣ݈ଶ	ܥఏమ ൅ ݈ଷ	ܥఏమఏయ	൧; 
ଵସܬ ൌ െ	ܥఏభట	ൣ݈ଶ		ܵఏమ ൅	 ݈ଷ		ܵఏమఏయ	൧; 
ଵହܬ ൌ െ	݈ଷ	ܥఏభట		ܵఏమఏయ;        
ଶଵܬ ൌ ܵట; 

ଶଶܬ ൌ టܥ	ܽ ൅ ఏమܥ	ൣ݈ଶ	ఏభటܥ ൅ ݈ଷ	ܥఏమఏయ	൧; 
ଶଷܬ ൌ ఏమܥ	ൣ݈ଶ	ఏభటܥ ൅ ݈ଷ	ܥఏమఏయ	൧; 
ଶସܬ ൌ െܵఏభట	ൣ݈ଶ		ܵఏమ ൅	 ݈ଷ	ܵఏమఏయ	൧; 
ଶହܬ ൌ െ	݈ଷ	ܵఏభట		ܵఏమఏయ; 
ଷଵܬ ൌ ଷଶܬ ൌ ܬଷଷ ൌ 0; 
ଷସܬ ൌ ݈ଶ	ܥఏమ ൅	 ݈ଷ	ܥఏమఏయ;     
ଷହܬ ൌ ݈ଷ	ܥఏమఏయ 
 

where ܥట ൌ టܵ ;߰ݏ݋ܿ ൌ ఏభటܵ ;߰݊݅ݏ ൌ sin	ሺߠଵ ൅
߰ሻ;	ܥఏమ ൌ ఏమఏయܥ ;ଶߠݏ݋ܿ ൌ cosሺߠଶ ൅ ఏభటܥ ;ଷሻߠ ൌ
cos	ሺߠଵ ൅ ߰ሻ; ܵఏమ ൌ ଶ; ܵఏమఏయߠ݊݅ݏ ൌ sin	ሺߠଶ ൅  .ଷሻߠ

3.2 Dynamic Model 

For the dynamic model, we have considered only the 
dynamic component of the mobile platform because 
in most of the mobile manipulators, the weight of the 
manipulator arm is negligible compared to the 
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platform and hence the dynamic forces of the arm are 
also negligible. Also, the rotational velocities of the 
arm are not considerable compared to other dynamics 
effects. The dynamic model of the mobile platform is 
given by: 
 

ሶݒ ൌ ܧ ൅ ௥௘௙, (3)ݒܨ
 

where 
 

ܧ ൌ

ۏ
ێ
ێ
ۍ
߶ଷ
߶ଵ

߱ଶ െ
߶ସ
߶ଵ

ݑ

െ
߶ହ
߶ଶ

߱ݑ െ
߶଺
߶ଶ

߱
ے
ۑ
ۑ
ې
, ܨ ൌ

ۏ
ێ
ێ
ۍ
1
߶ଵ

0

0
1
߶ଶے
ۑ
ۑ
ې
, 

 

ݒ ൌ ቂ
ݑ
߱ቃ , ௥௘௙ݒ	 ൌ ቂ

௥௘௙ݑ
߱௥௘௙

ቃ, 
 

߶ଵ, ߶ଶ, ߶ଷ, ߶ସ, ߶ହ , ߶଺ are the model parameters, and 
 ௥௘௙ is the input vector to the model. The values ofݒ
these parameters have been chosen for a unicycle 
robot, according to (De la Cruz, 2006).   

Combining the kinematic and dynamic model, the 
complete model of the mobile manipulator can be 
expressed as: 

 

ۏ
ێ
ێ
ێ
ێ
ۍ
ሶ௘ݔ
ሶ௘ݕ
ሶ௘ݖ
ሶ߰
ሶݑ
ሶ߱ ے
ۑ
ۑ
ۑ
ۑ
ې

ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ

ݑଵଵܬ ൅ ଵଶ߱ܬ
ݑଶଵܬ ൅ ଶଶ߱ܬ
ݑଷଵܬ ൅ ଷଶ߱ܬ

߱
߶ଷ
߶ଵ

߱ଶ െ
߶ସ
߶ଵ

ݑ

െ
߶ହ
߶ଶ

߱ݑ െ
߶଺
߶ଶ

߱
ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

												൅

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
0 0 ଵଷܬ ଵସܬ ଵହܬ
0 0 ଶଷܬ ଶସܬ ଶହܬ
0 0 ଷଷܬ ଷସܬ ଷହܬ
0 0 0 0 0
1
߶ଵ

0 0 0 0

0
1
߶ଶ

0 0 0
ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

ۏ
ێ
ێ
ێ
ێ
ۍ
௥௘௙ݑ
߱௥௘௙

ሶଵߠ
ሶଶߠ
ሶଷߠ ے

ۑ
ۑ
ۑ
ۑ
ې

 

(4)

4 CONTROL SYSTEM 

4.1 Distributed Containment Control 

We have chosen a distributed containment control for 
a double-integrator dynamics: 
 

ሻݐሶ௜ሺݔ ൌ ,ሻݐ௜ሺݒ ሻݐሶ௜ሺݒ ൌ  ,ሻݐ௜ሺݑ

݅ ൌ 1,… , ݊, 
(5)

 

where ݔ௜, ݒ௜, and ݑ௜ represent position, velocity, and 
acceleration respectively. 

We have used the algorithm for multiple leaders 
with nonidentical velocities specified in (Cao et al., 
2010). In this case, we have selected the sigmoid 
function for the slide surface ࣦܺߛ ൅ ࣦ ሶܺ . Thus, we 
propose the following algorithm: 

 

ሷܺ ൌ െࣦܺ െ ࣦߙ ሶܺ െ ࣦܺߛsigm൫ߚ ൅ ࣦ ሶܺ ൯ ൅ ,ߖ (6)
 

where sigmሺܺሻ ൌ ቂ
௫భ

|௫భ|ାఌ
⋯

௫೙
|௫೙|ାఌ

ቃ
்
, ܺ ൌ

ሾݔଵ, … , ߖ ,௡ሿ்ݔ ൌ ሾ߰ଵ,… , ߰௡ሿ் is the vector of 
accelerations with the last  ݉  entries equal to zero and 
 .are positive constants ߝ and ߛ ,ߚ ,ߙ

Considering ෨ܺ ≜ ࣦܺ, the state error for the 
consensus condition, the closed-loop system is given 
by: 

 

෨ܺሷ ൌ െࣦ ෨ܺ െ ࣦߙ ෨ܺሶ െ ߛsigmቀ	ࣦߚ ෨ܺ ൅ ෨ܺሶ ቁ ൅  ߖࣦ
 

If we consider only the last ݉ entries of the system, 
we get: 

 

෨ܺሷி ൌ െܯ ෨ܺி െ ܯߙ ෨ܺሶி 

െܯߚsigmቀߛ ෨ܺி ൅ ෨ܺሶிቁ ൅  ,ிߖ
(7)

 

where ෨ܺி and ߖி are the vectors containing only the 
last ݉ entries and ܯ ൌ ൣ݉௜௝൧ ∈ Թ௠ൈ௠ with ݉௜௝ ൌ
ℓ௜௝, ݅, ݆ ൌ ݊ െ݉ ൅ 1,… , ݊.  

Remark: According to the problem formulation, ܯ is 
a symmetric matrix with real coefficients. Further, 
this matrix is diagonally dominant with positive 
eigenvalues (Gershgorin’s circle theorem) (Godsil 
and Royle, 2001). 

In order to prove the system’s stability, let us 
introduce the following matrices: 

ܲ ൌ ൤
௠ܫ ଵିܯߛ

ଵିܯߛ ଵିܯ ൨ (8)

ܳ ൌ ൦
௠ܫߛ

ߛߙ
2
௠ܫ

ߛߙ
2
௠ܫ ௠ܫߙ െ ଵିܯߛ

൪ (9)

 

According to (Cao et al., 2010), these matrices are 
symmetric positive definite if:  

 

ߛ ൏ min ቄඥߣ୫୧୬ሺܯሻ,
ସఈఒౣ౟౤ሺெሻ

ସାఈమఒౣ౟౤ሺெሻ
ቅ, 

 

where ߣ୫୧୬ሺܯሻ represents the minimum eigenvalue 
of the matrix ܯ. 

We use the Lyapunov function candidate: 
 

ܸ ൌ
1
2
ൣ ෨ܺி

் ෨ܺሶி
்൧ܲ ቈ

෨ܺி
෨ܺሶி
቉ 

ܸ ൌ
1
2
෨ܺி
் ෨ܺி ൅ ߛ ෨ܺி

ଵିܯ் ෨ܺሶி ൅
1
2
෨ܺሶி
ଵିܯ் ෨ܺሶி (10)
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Deriving ሺ10ሻ, we obtain: 
 

ሶܸ ൌ ෨ܺሶி
் ෨ܺி ൅ ߛ ෨ܺሶி

ଵିܯ் ෨ܺሶி ൅ ߛ ෨ܺி
ଵିܯ் ෨ܺሷி 

        ൅ ෨ܺሶி
ଵିܯ் ෨ܺሷி 

ሶܸ ൌ െൣ ෨ܺி
் ෨ܺሶி

்൧ܳ ቈ
෨ܺி
෨ܺሶி
቉ 

						െ ቀߛ ෨ܺி
் ൅ ෨ܺሶி

்ቁ ቀെ ෨ܺி െ ߙ ෨ܺሶி െ ଵିܯ ෨ܺሷிቁ (11)
 

Then, by applying (7) in (11), the derivative of the 
Lyapunov candidate is: 

 

ሶܸ ൌ െൣ ෨ܺி
் ෨ܺሶி

்൧ܳ ቈ
෨ܺி
෨ܺሶி
቉ ൅ ቀߛ ෨ܺி ൅ ෨ܺሶிቁ

்
ሺିܯଵߖிሻ 

							െߚ ቀߛ ෨ܺி ൅ ෨ܺሶிቁ
்
sigmቀߛ ෨ܺி ൅ ෨ܺሶிቁ (12)

 

The product ቀߛ ෨ܺி ൅ ෨ܺሶிቁ
்
sigmቀߛ ෨ܺி ൅ ෨ܺሶிቁ is 

equivalent to: 
 

ቀߛ ෨ܺி ൅ ෨ܺሶிቁ
்
sigmቀߛ ෨ܺி ൅ ෨ܺሶிቁ ൌ 

																																																		ቛߛ ෨ܺி ൅ ෨ܺሶிቛ
ଵ
െ  ߝ݉

																																									൅෍
ଶߝ

ቚቀߛ ෨ܺி ൅ ෨ܺሶிቁ
௞
ቚ ൅ ߝ

௠

௞ୀଵ

 

 

If 0 ൏ ܿ ൏ 1, the following inequality is satisfied 

when ቛߛ ෨ܺி ൅ ෨ܺሶிቛ
ଵ
൐  : ܿ/ߝ݉

 

ቀߛ ෨ܺி ൅ ෨ܺሶிቁ
்
sigmቀߛ ෨ܺி ൅ ෨ܺሶிቁ ൐ 

																																																								ሺ1 െ ܿሻቛߛ ෨ܺி ൅ ෨ܺሶிቛ
ଵ
 

 

Thus, (12) can be expressed as: 
 

ሶܸ ൏ െൣ ෨ܺி
் ෨ܺሶி

்൧ܳ ቈ
෨ܺி
෨ܺሶி
቉ ൅ ቀߛ ෨ܺி ൅ ෨ܺሶிቁ

்
ሺିܯଵߖிሻ 

							െߚ ቂሺ1 െ ܿሻቛߛ ෨ܺி ൅ ෨ܺሶிቛ
ଵ
ቃ (13)

 

Using Hölder’s inequality and the property of the 
vector norms ‖ܺ‖ଶ ൑ ‖ܺ‖ଵ we get: 

 

ቀߛ ෨ܺி ൅ ෨ܺሶிቁ
்
ሺିܯଵߖிሻ ൑ ቛߛ ෨ܺி ൅ ෨ܺሶிቛ

ଶ
 ி‖ଶߖଵିܯ‖

൑ ቛߛ ෨ܺி ൅ ෨ܺሶிቛ
ଵ
ி‖ଵ (14)ߖଵିܯ‖

 

Finally, applying (14) in (13), the following 
inequality is obtained: 

 

ሶܸ ൏ െൣ ෨ܺி
் ෨ܺሶி

்൧ܳ ቈ
෨ܺி
෨ܺሶி
቉ 

        െቛߛ ෨ܺி ൅ ෨ܺሶிቛ
ଵ
ሾߚሺ1 െ ܿሻ െ  ி‖ଵሿߖଵିܯ‖

 

To guarantee ሶܸ ൏ 0, the following condition must be 
satisfied: 

 

ߚ ൐
ி‖ଵߖଵିܯ‖
1 െ ܿ

 
 

Consequently, the system is stable and the errors 

ቛߛ ෨ܺி ൅ ෨ܺሶிቛ
ଵ
 are limited to a ball with a boundary 

 The size of the ball depends on the number of .ܿ/ߝ݉
followers ݉, the size of the window of the sigmoid 
function ߝ and a constant ܿ ∈ ሿ0,1ሾ. 

4.2 Dynamic Controller 

The following dynamic controller is proposed: 
 

௥௘௙ݒ ൌ ଵ߯ିܨ െ  ܧଵିܨ

߯ ൌ ሶ௖ݒ ൅  ෤ሻݒsigmሺ߂

߂ ൌ ൤
ଵߜ 0
0 ଶߜ

൨, (15)

where ߜଵ and ߜଶ are positive constants. To prove 
stability, the following Lyapunov function candidate 
is used: 

 

ܸ ൌ
1
2
 ,෤ݒ෤்ݒ

 

where ݒ෤ ൌ ௖ݒ െ  ௖ is the reference generatedݒ and ,ݒ
by the kinematic (distributed) controller. Taking 
derivative of ܸ, we obtain: 

 

ሶܸ ൌ ෤ሶݒ෤்ݒ  

෤ሶݒ ൌ െ߂sigmሺݒ෤ሻ 

ሶܸ ൌ െݒ෤்߂sigmሺݒ෤ሻ 

ሶܸ ൌ െሾݑ෤ ෥߱ሿ ൤
ଵߜ 0
0 ଶߜ

൨ ൤
sigmሺݑ෤ሻ
sigmሺ ෥߱ሻ

൨ 

ሶܸ ൌ െߜଵݑ෤	sigmሺݑ෤ሻ െ ଶߜ ෥߱	sigmሺ ෥߱ሻ 
 

Therefore, ሶܸ ൏ 0, and hence the system dynamics is 
stable. 

Applying the distributed containment algorithm 
and the dynamic controller, the complete control 
system of the formation tracking for each follower is 
shown in Figure 3. In this figure, ܨ௜,	for ݅ ൌ 1,… ,  ,݌
represent the neighbors of this follower, i.e. the ones 
that interact with the follower according to the 
Laplacian matrix, and ݔ௘௟௝, ,௘௟௝ݕ ݆ ௘௟௝, forݖ ൌ

1,… , ݊ െ݉, are the states of the virtual leaders. 
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Figure 3: Control system of a follower of the formation. 

5 SIMULATION 

To validate the designed controllers, a simulation has 
been performed, considering a mobile manipulator 
with the following dimensions: ܽ ൌ 0.2,  ݈ଵ ൌ 0.383, 
݈ଶ ൌ 0.233 and ݈ଷ ൌ 0.203.  

The linear and rotational velocities of the mobile 
platform are bounded according to the limits of the 
robot Pioneer 3-DX specified in the datasheet and 
used in (Yan et al., 2015) (െ1.2 ൑ ݑ ൑ 1.2	ሺ݉/ݏሻ	 
and െ5.24 ൑ ߱ ൑ 5.24	ሺݏ/݀ܽݎሻ).  

The formation uses 12 robots: 8 real followers and 
4 virtual leaders. The positions of the virtual leaders 
are given by a square inscribed in a circle with radius 
3	ሺ݉ሻ. Additionally, the states of the virtual leaders 
are determined by the trajectory used as reference. 
The desired positions of the followers are specified in 
Table 1. 

Table 1: Desired positions of the followers. 

Follower x(m) y(m) 

 ଵ 0.0 1.75ܨ

 ଶ -1.5 1.0ܨ

 ଷ -1.0 -1.25ܨ

 ସ 1.0 -1.25ܨ

 ହ 1.5 1.0ܨ

 ଺ -0.5 0.5ܨ

 ଻ 0.5 0.5ܨ

ܨ଼  0.0 -0.5 

 

Figure 4 shows the formation of the mobile 
manipulators, the convex hull spanned by the virtual 
leaders and the distribution of the followers in it. 

Figure 5 shows the graph associated with the 
formation, which determines the references of each 
follower. 

To find the Laplacian matrix associated with the 
formation, specifically the weights of the directed 
edges in the graph, the following system of linear 
equations is solved: 

 

ࣲࣦ ൌ 0
ࣦࣳ ൌ 0		, 

 

where ࣲ and ࣳ are the vectors containing the desired 
positions of the virtual leaders as well as followers in 
the formation. 

 

Figure 4: Geometric distribution of the robot formation. 

The coefficients of the Laplacian matrix are the 
unknowns of the system. This is a homogeneous 
system due to the zeros of the constant terms. For this 
reason, it is necessary to choose an arbitrary value of 
one of the coefficients to obtain a nontrivial solution 
of the system since the robot formation can be formed 
with an infinite combination of values of the 
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coefficients of the graph. In this case, the value ݇ସ is 
set to 1, which provides the solutions specified in 
Table 2. 

 

 

Figure 5: Graph of the formation. 

Consequently, the Laplacian matrix of the system 
is given by: 

 

ࣦ ൌ 

ۉ

ۈ
ۈ
ۈ
ۈ
ۈ
ۈ
ۈ
ۈ
ۇ

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

െ0.57 0 0 െ0.57 1.33 0 0 0 0 0 0 െ0.19
െ0.59 0 0 0 0 1.07 െ0.24 0 0 െ0.25 0 0
0 െ1 0 0 0 െ0.24 2.05 െ0.46 0 െ0.07 0 െ0.28
0 0 െ1 0 0 0 െ0.46 2.05 െ0.24 0 െ0.07 െ0.28
0 0 0 െ0.59 0 0 0 െ0.24 1.07 0 െ0.25 0
0 0 0 0 0 െ0.25 െ0.07 0 0 0.6 െ0.28 0
0 0 0 0 0 0 0 െ0.07 െ0.25 െ0.28 0.6 0
0 0 0 0 െ0.19 0 െ0.28 െ0.28 0 0 0 0.75 ی

ۋ
ۋ
ۋ
ۋ
ۋ
ۋ
ۋ
ۋ
ۊ

 

 

Table 2: Values of the coefficients of the Laplacian matrix. 

Edge Value Edge Value Edge Value 

݇ଵ 0.57 ݇଻ 0.24 ݇ଵଷ 0.28 

݇ଶ 0.59 ଼݇ 0.59 ݇ଵସ 0.07 

݇ଷ 0.24 ݇ଽ 0.57 ݇ଵହ 0.25 

݇ସ 1 ݇ଵ଴ 0.25 ݇ଵ଺ 0.19 

݇ହ 0.46 ݇ଵଵ 0.07 ݇ଵ଻ 0.28 

݇଺ 1 ݇ଵଶ 0.28   

 

For the experiment a circular trajectory has been 
chosen for the ݕݔ plane, while a sinusoid is applied as 
reference for the vertical movement of the effector in 
the ݖ-axis. The equations of the trajectories are: 

 

௥ݔ ൌ 4cos	ሺ0.08ݐሻ 
 

௥ݕ ൌ 4sin	ሺ0.08ݐሻ 
 

௥ݖ ൌ 0.3 ൅ 0.1sin	ሺ0.15ݐሻ 

 

Figure 6: Trajectory of the formation. 

The robots start from random positions and 
achieve the desired positions of the formation 
quickly. Figure 6 shows the results of the tracking 
trajectory of the formation in the ݕݔ plane. The 
movement of the effectors in the ݖ-axis can be found 
in Figure 7. 

The position errors of the followers’ effectors are 
presented in the Figure 8, Figure 9 and Figure 10. 
Figure 11 shows the centroid error of the formation. 
Finally the control actions of the mobile platform are 
exposed in the Figure 12 and Figure 13. The control 
actions are smooth and do not present the chattering 
effect. 

 

 

Figure 7: Movement of the effectors in the z-axis. 

 

Figure 8: ݔ error of the followers. 
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Figure 9: ݕ error of the followers. 

 

Figure 10: ݖ error of the followers. 

 

Figure 11: Centroid error of the formation. 

 

Figure 12: Linear velocity of the followers. 

A video of the simulation showing the movements 
of the robots in the coordinate axes can be found at 
https://www.youtube.com/watch?v=bc_S9HWAM0
g 

 

Figure 13: Rotational velocity of the followers. 

6 CONCLUSIONS 

In this paper, we proposed a distributed control for the 
formation control of mobile manipulators. A 
distributed containment control was proposed for the 
kinematic component. A controller based in the 
compensation of the dynamic forces and torques was 
proposed for the dynamic component. The two 
controllers designed were applied using a cascade 
control architecture. The structure of the formation 
was given only by the Laplacian matrix, whose 
coefficients were found solving a system of linear 
equations obtained by considering the desired 
positions of the followers inside the convex hull 
spanned by the virtual leaders. 

The virtual leaders were used as references and 
determined only by the desired trajectory. The control 
actions obtained did not show the chattering 
phenomenon and were limited to the values of 
velocities of a real robot.  
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