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Abstract: Distributed Denial-of-Service (DDoS) attack has been identified among the most serious threat to service
availability on the Internet. It prevents legitimate users from accessing the victim node by flooding and con-
suming network resources. In order to combat such attacks, a distributed defense mechanism is needed that
will thwart the attack traffic in real time. We propose one such mechanism that when deployed is able to filter
out malicious and allow legitimate traffic to the extent possible during the attack period. We characterize the
network traffic and introduce a new history-based profile algorithm that filters potential attack traffic and aims
to maximize the flow of legitimate traffic in the event of an attack. We investigate the features of network
traffic that can be used to do such filtration. We use a Bloom filter based mechanism to efficiently implement
the history-based profile model which serves to reduce the communication and computation costs. We evalu-
ate our scheme using simulations on recent real-world traffic datasets. The experimental results demonstrate
the effectiveness of our scheme. In order to improve communication and computation costs even further, we
propose using three octets of the IP address instead of the whole address. We also demonstrate how using three
octets of IP address impacts the accuracy, efficiency, and memory requirement of the filtering mechanism.

1 INTRODUCTION

Internet services often constitute critical infrastruc-
ture and they must be protected from Denial of Ser-
vice (DoS) attacks. In recent years, DDoS attacks
on networks have been responsible for large num-
ber of network infrastructure and service outages
(Steinberger et al., 2005), (Munivara Prasad et al.,
2014). On February 9, 2000, Yahoo, eBay, Ama-
zon.com, E*trade, ZDnet, buy.com, the FBI and sev-
eral other websites fell victim to DDoS attacks result-
ing in millions of dollars in damages (Gil and Po-
letto, 2001), (Waikato Applied Network Dynamics
Research Group, 2016). Despite significant research
focusing on countermeasures, DDoS attacks still re-
main a major threat (Chen and Park, 2005). Recent
examples include a record 400 Gbit/s DDoS attack
against CloudFlare, a rate about 100 Gbit/s more than
the largest previously seen DDoS attack (Mathew J.
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Schwartz, 2014). The frequencies and the impact of
DDoS attacks have motivated researchers in the Inter-
net security community to provide techniques for pre-
venting, detecting, and surviving such attacks. In fact,
the flooding traffic is large enough to crash the victim
by communication buffer overflow, disk exhaustion,
or connection link saturation (Chen et al., 2007), and
most approaches have failed to provide service avail-
ability in the presence of DDoS attacks.

A plethora of DDoS defense and response mecha-
nisms have been suggested in the past, including pre-
ventive techniques (Yaar et al., 2003), (Wang et al.,
2007), packet filtering (Kim et al., 2004), flood push-
back (Ioannidis and Bellovin, 2002), DDoS detection
mechanism (Gil and Poletto, 2001), (Mirkovic et al.,
2002) and distributed defense mechanism (Mahajan
et al., 2002), (Papadopoulos et al., 2003), (Francois
et al., 2012), (Aghaei Foroushani, 2014). Preventive
techniques aim to solve the problem of IP spoofing
but this is a hard problem because attackers can com-
promise large number of computers to create zom-
bies. Other works, which we discuss in Section 2,
focus on detecting and mitigating the attack. How-
ever, these techniques often penalize legitimate traffic
because it is unable to distinguish between attack and
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legitimate traffic. We propose an alternative solution
to this problem.

In order to continue to provide services under
DDoS attacks, it is essential to distinguish attack traf-
fic from legitimate traffic. The challenge is how to
detect attack traffic without misclassifying legitimate
traffic. An unusually high traffic volume may not
by itself be a good indicator of a DDoS attack, as it
can occur due to flash crowds. Thus, other features
that help distinguish attacks from normal traffic have
to be considered. We look into multiple features of
DDoS attacks and normal traffic to extract character-
istics that give information about the occurrence of
the DDoS attack. These features and their correla-
tions are used to establish high confidence IP address
history that forms a normal traffic profile. Anything
outside the normal traffic profile constitutes an attack.
The IP address history that forms the normal traffic
profile must be propagated to the upstream routers so
that the attack traffic can be blocked early on close
to the source of the attack. However, propagating
this IP address history for normal traffic during an at-
tack introduces communication overhead on already
congested routes. Towards this end, we demonstrate
how a Bloom filter can be used to store the normal
IP address history profile which is propagated to the
routers close to the attack nodes. The use of Bloom
filter reduces the communication cost and also min-
imizes the storage cost at the routers. The effective-
ness of our approach is validated using the real dataset
collected from Colorado State University (CSU) 2015
as well as Center for Applied Internet Data Analysis
(CAIDA) 2007 attack dataset. In order to minimize
the size of the Bloom filter, we use three octets of the
IP address instead of four octets while creating the
normal profile. We demonstrate through experiments
how this impacts the size of the Bloom filter, the pro-
tection it provides, and the amount of legitimate traffic
that is prohibited from reaching the destination.

The rest of this paper is structured as follows. Sec-
tion 2 describes some related work in this area. Sec-
tion 3 describes how we distinguish attack from nor-
mal traffic. Section 4 validates our model using CSU
2015 and CAIDA 2007 dataset. Section 5 concludes
the paper with pointers to future directions.

2 RELATED WORK

Several works appear in detecting and responding to
them. Pushback (Mahajan et al., 2002) is one of the
earlier techniques that mitigates DDoS attacks using
a cooperative mechanism. When a link is heavily
utilized, information is sent to the upstream routers

to curtail some of the downstream traffic. This ap-
proach requires deployment of the mechanism in all
the routers; this may be unacceptable to some routers
because of the high computational and memory over-
heads. It also penalizes legitimate traffic.

Attack source identification and responsive tech-
niques actively try to mitigate DDoS attacks by filter-
ing or limiting the rate of suspicious flow (Gil and Po-
letto, 2001), (Chen and Park, 2005), (Mirkovic et al.,
2002). Such schemes have two components, namely,
attack detection and packet filtering. The character-
istic of attack packets, such as source of IP address
or marked IP header values (Yaar et al., 2003), (Sung
and Xu, 2003), (Yaar et al., 2004), are often used to
detect and identify attack traffic. These characteristics
are used for packet filtering. Note that packet filtering
can be applied either close to the attacking node (Gil
and Poletto, 2001), (Mirkovic et al., 2002) or close to
the victim node (Yaar et al., 2003), (Mirkovic et al.,
2002), (Sung and Xu, 2003), (Yaar et al., 2004); how-
ever, once the attacker knows features that are of inter-
est to the detection mechanism, he can develop strate-
gies to bypass it.

Some researchers use change-point detection the-
ory to detect abnormal Internet traffic caused by
DDoS attacks where the scheme is based on abrupt
change (Chen et al., 2007), (Peng et al., 2004),
(Wang et al., 2004), (Manikopoulos and Papavassil-
iou, 2002), (Noh et al., 2008). In this approach, the
attacker can bypass the detection mechanism by send-
ing out attack flow to change the statistics of the traf-
fic. Moreover, we often do not have accurate statistics
to describe the pre-change and post-change traffic dis-
tribution.

Another type of approach is based on flow dissym-
metry (Gil and Poletto, 2001), (Mirkovic and Reiher,
2005), (Wang et al., 2002) where the attacker may
use the random spoofing source IP address and send
out the same amount of SYN packets, and FIN/RST
packets that can go unnoticed when compared with le-
gitimate traffic flows. Moreover, discriminating flash
crowd traffic from DDoS attack traffic is a major
drawback of the proposed approaches.

An efficient approach (Peng et al., 2003) called
a History-based IP Filtering (HIF) was proposed to
discriminate good traffic from malicious traffic. This
approach is based on monitoring the number of the
new source IP addresses instead of the volume of the
traffic. HIF keeps a history of the legitimate IP ad-
dresses that have appeared before and applies filters
in the edge router based on this history. However,
an adversary can bypass this mechanism by starting
to send packets with its IP address prior to conduct-
ing the attack. Therefore, we need a more robust and
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efficient identification mechanism for discriminating
attack traffic while allowing legitimate traffic to apply
during the attack period.

3 ATTACK IDENTIFICATION
MECHANISM

In general DDoS attacks send large volumes of pack-
ets and consume critical resources in a network that
makes the service unavailable for legitimate use. The
attacker usually uses spoofed IP addresses in order
to make a trace back more difficult, thereby thwart-
ing the discovery of the real source of the attack. We
scope our work on flooding attacks (e.g., spoofed/non
spoofed UDP flood, ICMP flood, TCP SYN flood,
DNS flood, VoIP flood, etc. (Peng et al., 2007), (Ri-
oRey, Inc., 2012) that focus on exhausting bandwidth
of the victim’s network. In this section, we propose
our approach for characterizing and classifying nor-
mal and malicious traffic. In order to successfully
respond to the attack, the approach must accurately
detect the attacks and respond without penalizing le-
gitimate traffic. It should also have low computation,
communication, and storage overheads.

In order to continue to provide services under
DDoS attacks, we need to distinguish attack traffic
from legitimate traffic. An unusually high traffic vol-
ume may not be a good indicator of a DDoS attack.
We need to consider other features that help distin-
guish DDoS attacks from normal traffic. Since many
of the previous approaches depend on monitoring the
volume of the traffic, detecting distributed flooding at-
tacks is hard. During bandwidth attacks, most source
IP addresses are new to the victim, whereas most IP
addresses in a flash crowd have appeared at the vic-
tim before. Jung et al. (Jung et al., 2002) mentions
that around 82.9% of all IP addresses involved in flash
crowd events have sent prior requests. Peng et al.
(Peng et al., 2003) advocate the use of network con-
nection history to distinguish good packets from mali-
cious ones. Many enterprises, such as universities and
banks have a group of users that access their services
on a regular basis and they have persistent characteris-
tics. Although the user base fluctuates with new addi-
tions, deletions, etc., in general such a base changes at
a much slower time scale compared to attacks and dis-
ruptions. These observations often form the basis of
mechanisms that filter out the attack traffic at the vic-
tim. Examples include approaches that use the IP ad-
dress history that have appeared at the victim node to
distinguish between bad and good packet. However,
the adversary can bypass this mechanism by starting
to request and communicate with a victim node prior

to conducting the attack. We address this problem
by using multiple features that help distinguish nor-
mal from malicious traffic to generate accurate nor-
mal traffic signatures. Using this high confidence IP
address history, we can defend against DDoS attacks
that maximally preserve the service availability and
minimize the attack impact.

3.1 Identification Features

In this section, we enumerate the features that we
use to help distinguish attack and normal traffic. We
use the parameters mentioned by Lee et al. (Lee
et al., 2007) for detecting DDoS attacks. These in-
clude source/destination IP address, port number, and
packet type (ICMP, TCP, UDP). In addition to these
parameters we also use packet size as one feature. Re-
call that Jung et al (Jung et al., 2002) mentioned that
most source IP addresses are new to the victim during
bandwidth attacks but in flash crowd traffic previously
viewed source IP addresses are most common. Thus,
we also use the frequency of an IP address as a fea-
ture that may help distinguish an attack from normal
traffic. Since we create a history based on legitimate
and valid IP addresses, we consider only those IP ad-
dresses with a successful TCP handshake. Note that,
a spoofed IP address will not have a complete three-
way handshake (Peng et al., 2003). The attackers are
therefore forced to use legitimate IPs and establish a
three-way handshake. This limits the number of IP
addresses that an attacker can use and the attack can
be identified by monitoring for abrupt change in the
traffic volume during the attack time. Our method
uses a much more comprehensive set of features com-
pared to existing identification approaches and we use
them in an integrated manner to create filters as de-
scribed in the next section.

3.2 Metrics

Our parameter set, denoted by P , for establishing the
model for historical IP addresses consists of the fol-
lowing features.

P1: Source IP address

P2: Port number

P3: Size of packet

The number of features is denoted by K. In our
model, K = 3. In addition, we also consider the packet
type, namely, ICMP, UDP, and TCP. Thus, if the
packet type is TCP, we require a three-way handshake
to demonstrate legitimate traffic. For each parame-
ter Pi, where 1 ≤ i≤ K, we maintain its frequency of
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occurrence in a given time window and its cumula-
tive distribution function (CDF). Let the parameter Pi
taken on M different values. The frequency and CDF
within a given time window is defined as follows.

Frequency Let fi j be the number of packets for
which the parameter Pi takes on the value of j in a
given time window. Let N be the total number of
packets. Thus,

N = ∑
j

fi j

Consider the case of the source IP address which
corresponds to i = 1, there are 1000 different IP
addresses within the time window making M =
1000. If there are a total of 5000 packets and a
particular IP address j occur 30 times, then f1 j =
30 and N = 5000.

Cumulative Distribution Function (CDF) The CDF
CX (x) measures the probability that the variable
X takes on a value less than or equal to x. Now
consider the parameter i. Let Fi be defined as the
random variable representing fi j for some j, CDF
of Fi is given below.

CFi(x) = P(Fi ≤ x)

For example, CF1(10) demonstrates the probabil-
ity that source IP address frequency is less than or
equal to 10.

We use these metrics and features for generating the
IP address history, which is addressed next.

3.3 History-based Profile Creation

Our goal is to define a good signature to make the
IP address database accurate and robust, and to make
it hard to be bypassed by an attacker. Our approach
overcomes some of the deficiencies of existing ap-
proaches, such as use of only the IP address field as
a feature useful for distinguishing attack and normal
traffic. A key observation that can be used for defense
against DDoS attack is that the DDoS attacks tend to
use randomly spoofed IP addresses (Peng et al., 2007)
and the other packet features, such as, port number
and size of packet, are also selected randomly. More-
over, the interaction of these features also exhibits
some anomaly when compared to that of the normal
traffic. Therefore, we make use of the individual fea-
tures, and also the interactions and correlations, in
defining the signature. The signature is based on the
CDF of each parameter’s frequency during the train-
ing period. This signature assists us in selecting reli-
able IP addresses during the training period and later
filters traffic based on those IP addresses. The signa-
ture for each feature determines which values occur
more frequently during normal traffic conditions.

The next step is assigning scores to IP addresses
in the training period and generating the source IP
address history. The score value for each IP address
depends on the frequencies and the signatures of the
selected features. Frequency threshold αl , which is
a measure of reliability in our model, and the corre-
sponding scores are presented in Table 1. For each se-
lected feature value, if it is more than αl in the related
signature, it is assigned a score bt indicating the con-
fidence level. Here four levels are defined, denoted
by b1, b2, b3, and b4, that assign different reliabilities
to various IP addresses based on how frequently dif-
ferent feature values occur. In our model, αl selected
from 70%, 50%, and 30% indicates how the selected
feature follows the signature of normal traffic condi-
tions. This method allocates highest weight to the top
30% of the IP addresses (i = 1), port numbers (i = 2)
and sizes of packets (i= 3) that occur most frequently.
Note the value of frequency threshold αl can be ad-
justed dynamically for each victim node based on the
frequency and the signatures of selected feature for
that point. Our selection of particular values for αl
is based on experience with different datasets, but it
may be fine-tuned as needed. According to our model,
when the selected feature occurs more frequently in
normal traffic, as indicated by the signature of nor-
mal traffic, we give higher weight for it by assign-
ing score b4. In contrast, when αl has value less than
30%, we assign the lowest confidence level factor b1
to it. Low confidence measure indicates that such a
feature value is not a common occurrence in normal
traffic and thus dropping such packets will have less
of an effect on the normal traffic. Frequent occurrence
of such a value during an attack therefore is also con-
sidered as a potential threat.

For example, consider source IP address 129.1.1.1
with frequency 10000. When CF1(10000) ≥ 70%, it
means according to IP address signature in training
window 70% of IP addresses occur at frequency less
than 10000. Thus, this is based on top 30% of occur-
rence rates of IP addresses and we give a high score
for this feature. To summarize, the above procedure
allocates weight from the set b1, ...,b4 to each IP ad-
dress, each packet size, and each port number. Let the
weight bx, by, bz be allocated for IP address β, port
number j, packet size k respectively. We assign a net
score Sβ for IP address β. The equation below gives
the formula for calculating Sβ.

Sβ = ( f1β ∗bx +Max j,k( f2 j ∗by + f3k ∗bz))/N (1)

Sβ is defined as the score value for each IP ad-
dress β and is determined according to the frequency
fi j and confidence degree b j in Eq. 1. Thus Sβ con-
sists of three components. For the above example, the
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Table 1: The Score Manager.

Case Frequency Conclusion Score
1 ≥ α1(= 70%) High Confidence b4 = 4
2 ≥ α2(= 50%) Medium b3 = 3
3 ≥ α3(= 30%) Low b2 = 2
4 ≺ α4(= 30%) Potential threat b1 = 1

first component of S129.1.1.1 is computed for IP ad-
dress 129.1.1.1 based on f1129.1.1.1 and b4 that is 4.
The second and third components are selected by tak-
ing the maximum value of the sum of corresponding
values for port number and size of packet over dif-
ferent packets with this IP address. The IP addresses
that have an overall score Sβ higher than a threshold
ν are selected as legitimate IP addresses for our his-
tory. As noted, for TCP connections we consider one
additional condition – only IP addresses with a suc-
cessful TCP handshake are classified as valid. There-
fore, for TCP connections, source IP addresses which
have established a three-way handshake and have a
score higher than ν are selected. This helps us create
a signature-based IP address history and this history
can be used through routers to perform filtering for
the victim node.

3.4 Bloom Filter Mechanism

Bloom filter is a space efficient probabilistic data
structure for checking whether an element is a mem-
ber of a set or not. A Bloom filter (Wang et al., 2004)
is a data structure that maps a set S = {s1,s2, ...,sn} of
n elements into an an array of m bits, initially all is set
to 0. A Bloom filter uses k independent hash functions
h1, ...,hk which when applied to each member of the
set S returns a value in the range {1, ...,m} (Mitzen-
macher, 2002). For each element s ∈ S, the bits hi(s)
in the array are set to 1 for 1 ≤ i ≤ k. Note that, a
position in the array can be set to 1 multiple times by
the various hash functions, but only the first change
has an effect. To check if x ∈ S, we check whether all
hi(x) are set to 1. If at least one bit is not 1, then x 6∈ S.
If all hi(x) are set to 1, we assume that x∈ S, although
there is a probability of a false positive, where it sug-
gests that an element x is in S even though it is not.
This is acceptable for many applications if the prob-
ability of a false positive is sufficiently small. The
probability of a false positive for an element not in
the set, or, the false positive rate, can be calculated in
a straightforward fashion. After all the elements of S
are hashed into the Bloom filter, the probability p that
a specific bit is still 0 is given below.

p = (1− 1
m
)kn ≈ e−k n

m (2)

We let p = e−k n
m . The probability of a false posi-

tive f is then:

f = (1− (1− 1
m
)kn)k ≈ (1− e−k n

m )k = (1− p)k (3)

Note that there are three fundamental performance
metrics for Bloom filters: the probability of error (cor-
responding to the false positive rate f ), size of the
Bloom filter array (corresponding to the array size m)
and the number of hash functions k. Bloom filters are
highly efficient even if m = cn for a small constant c.
Although Bloom filters introduce false positives, their
use is justified because of the reduction in the net-
work traffic and overhead. In our analysis, we limit
the false positive rate to 0.1. In order to achieve this
false positive rate, we should set c to 5 in our mecha-
nism. In other words, the Bloom filter array is 5 times
the number of IP addresses kept in the history. More-
over, according to Eq. 3, we need 4 hash functions for
the Bloom filter that will store the IP address history.

4 MODEL VALIDATION

Our objective is to evaluate the accuracy and robust-
ness of our filter to protect against DDoS attacks. To
illustrate the effect of history-based profile to dis-
tinguish attack and normal traffic we examined the
CSU 2015 and CAIDA 2007 attack dataset. The CSU
packet trace contains 4 week daily Argus files with
flows on a 1Gb/s link from Feb 1st to Feb 28th 2015
where the total compressed data is about 20GB for
each day (Impact Cyber Trust, 2015). CAIDA 2007
attack dataset contains approximately one hour of
anonymized traffic traces from a DDoS attack on Au-
gust 4, 2007 that contains 359,656,205 attack packets
from 9,066 unique IP addresses (Center for Applied
Internet Data Analysis, 2007).

4.1 Experiment Setup

Our approach consists of two steps as described be-
low.

[Step 1:] Create IP address history from the train-
ing dataset using the generated signatures and the
overall scores.
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[Step 2:] Construct the Bloom filter using the IP ad-
dress history created.

In the first step, the signatures for port number,
the size of the packet, and IP address are created sep-
arately. For TCP traffic, IP addresses with successful
TCP handshake are considered as valid IP address.
For UDP traffic, we ignore those incoming packets
that just send a single packet during the day. This
helps us to create a more reliable signature-based IP
address history. In this part of the experiment we set
the length of the window to be one week. For each day
we create a signature-based IP address history based
on all IP addresses that come to CSU during this one
week period. We build the IP address history using
data trace from Feb 1st to Feb 21st and compare it
to the trace taken from Feb 8th to Feb 28th. We will
discuss about the effectiveness of history accuracy for
different window size in Section 3.3. Figure 1 shows
the signature of IP address’s frequency for the first
week of CSU traffic. According to this figure, IP ad-
dress with an occurrence rate above 500 can achieve
the highest score as CF1(500) ≥ 70% and IP address
with an occurrence rate below 20 get the lowest score.
From Figure 1 we also see that around 10% of IP ad-
dresses have a frequency above 2000 and maximum
frequency was around 12000 for a few IP addresses.
Similar analysis exist for port number and packet size
signature. The IP address history is created based on
the overall score and value of threshold ν. In our ex-
periment, ν is determined to be 0.36. In other words,
the signature of at least two selected features should
have αl more than 50% and one should have it more
than 30% in training time as per Table 1 and Eq. 1.
However, this value can be fine-tuned as necessary.
Determining the value of ν is a trade-off between his-
tory size, history accuracy, and how much protection
we have against attack traffic. When we increase the
threshold of ν, we are better able to filter attack traffic
and the size of history decreases. However, increasing
ν also blocks legitimate traffic and so the accuracy of
the history for allowing legitimate traffic decreases.

4.2 Results

History-based profile algorithm is evaluated on the
basis of these four parameters: (i) history accuracy,
(ii) attack traffic detection rate, (iii) normal traffic de-
tection rate, and (iv) size of Bloom filter. We per-
formed a number of experiments to see the efficacy
of our techniques. We experimented with using the
entire IP address and the first three octets of the IP
address to create the profile. We also investigated the
impact of the window size. These results are reported
in the following subsections.

4.2.1 Using First Three Octets of IP Address

In this section, we demonstrate how using first three
octets of IP address instead of the entire IP address
impacts the size of the Bloom filter and the history
accuracy. The IP address history is created based on
method described in Section 2.3. Our experiment was
conducted based on the entire 4-octet IP address and
also with the first three octets of IP addressed.

As shown in Table 2, the number of unique IP
addresses that were retained in the history is around
3,000,000 for each day. By accepting 10% false pos-
itive rate the size of Bloom filter would be between
1.4MB to 2.2MB for each day as shown in Table 2
and Figure 2. Note that, as per equation of the Bloom
filter, it is possible to set lower false positive rates but
at the cost of increasing the size of the Bloom filter.
We accept the false positive rate as 0.1 and 5n for the
length of Bloom filter as reasonable values for error
rate and Bloom filter size, where n is the number of
inserted elements in Bloom filter, which are the num-
ber of IP addresses kept in the history.

Our objective is to provide a smaller Bloom filter
while preserving the accuracy of the history. By creat-
ing the history with the first three octets of IP address
we achieve significant reduction for the number of
unique IP address to be kept in the history and conse-
quently it decreases the size of Bloom filter as shown
in Table 2 and Figure 2. The number of unique ad-
dresses in history drop down to around 1,500,000 by
using the first three octets of IP address and it shows
about a 50% reduction of total IP addresses needed to
keep in the history. As a result, the size of the Bloom
filter reduces to around 0.9 MB for each day as shown
in Figure 2. Furthermore, the result shows that at the
same time the accuracy of IP address history increases
due to this change.

The next step is to evaluate the accuracy of the
history, that is, the percentage of traffic for each day
that have already appeared in the history. As shown
in Figure 3, the history accuracy is about 60% to 80%
for each day and this confirms that most of the IP ad-
dresses that appear in the CSU network under normal
conditions have previously visited and follow the sig-
nature of each day’s network traffic. The highest his-
tory accuracy is for Feb 21st with 80% and the lowest
one is for Feb 12th with 60%. Table 3 shows the num-
ber of unique IP addresses of packets visiting CSU
and the number of IP addresses that match with his-
tory for each corresponding day. For instance, on Feb
8th the total number of unique IP addresses on packets
coming to CSU is 2,709,558 and 1,790,443 of those
IP addresses match with the history. We also show
the effectiveness of using the first three octets of IP
address in Figure 3. In this case, the accuracy of IP
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Figure 1: Frequency of Occurrence of IP Addresses.

Table 2: Number of IP Addresses in History.

Date Unique IP ad-
dresses

Bloom
filter
size
(MB)

Unique
first three-
octets of IP
addresses

Bloom
filter
size
(MB)

8-Feb 3567433 2.22 1549329 0.96
9-Feb 2898726 1.81 1540879 0.96
10-Feb 2993910 1.87 1533835 0.95
11-Feb 3251485 2.03 1573583 0.98
12-Feb 3253085 2.03 1542783 0.96
13-Feb 3214944 2.00 1543112 0.96
14-Feb 3367433 2.10 1506123 0.94
15-Feb 3130830 1.95 1478050 0.92
16-Feb 2986955 1.86 1488892 0.93
17-Feb 3077742 1.92 1465505 0.91
18-Feb 3181456 1.98 1493287 0.93
19-Feb 3086945 1.92 1461922 0.91
20-Feb 3131923 1.95 1486039 0.92
21-Feb 3077169 1.92 1484376 0.92
22-Feb 2957518 1.84 1450000 0.90
23-Feb 3181719 1.98 1522926 0.95
24-Feb 3095821 1.93 1562730 0.97
25-Feb 3095821 1.93 1510018 0.94
26-Feb 2940737 1.83 1541806 0.96
27-Feb 2915739 1.82 1547367 0.96
28-Feb 2303440 1.43 1440457 0.90

address history improves to around 75% for most of
the days while the size of Bloom filter reduces to 50%
as shown in Figure 2.

The other important parameter to evaluate is how
much of the traffic volumes can pass through the
Bloom filter and reach the end nodes. As shown in
Figure 4, the normal traffic detection rate varies from
68% to 82% using the entire IP address. This demon-
strates that the performance of signature-based IP ad-
dress history is highly reliable for identifying normal
traffic and withholding insignificant amount of legit-
imate traffic. Normal traffic detection rate increases

from 80% to 90% if the first three octets of IP ad-
dresses is used to generate IP address history. In this
part we investigate the effectiveness of history accu-
racy and measure how many of packet traffic can pass
through the Bloom filter. The results are shown in
Figure 6.

The x-axis is the traffic volume based on number
of packets. From this figure we observe the total num-
ber of traffic received is varying from 160 million to
220 million packets in each day. We denote the exter-
nal traffic also increase suddenly on Feb 10th and Feb
16th where the portion of normal traffic that can pass
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Figure 2: Size of the Bloom Filter.

Figure 3: History Accuracy.

Figure 4: Normal Traffic Detection Rate.

the history does not change too much. It means for
those days part of the incoming traffic to CSU does
not appear before and it was not included in the his-

tory. For almost all the other days the normal traffic
that can pass the history has similar behavior. Further-
more, the result shows the signature-based IP address

SECRYPT 2017 - 14th International Conference on Security and Cryptography

182



Table 3: Number of Unique IP Addresses of Packets Arriving to CSU and Their Match with History.

Date IP match Total IP in history
8-Feb 1790443 2709558
9-Feb 1627396 2309466

10-Feb 1898679 3009246
11-Feb 1981443 3129533
12-Feb 1957757 3316582
13-Feb 1984888 3201160
14-Feb 1995127 3191604
15-Feb 1750964 2440758
16-Feb 1775144 2598016
17-Feb 1998038 3206285
18-Feb 1989359 3309144
19-Feb 1808770 2864580
20-Feb 3131923 2900503
21-Feb 1684604 2370058
22-Feb 1335560 1767686
23-Feb 1362394 1698466
24-Feb 1424731 1957384
25-Feb 1654167 2459654
26-Feb 1412483 2115752
27-Feb 1652258 2197652
28-Feb 1395530 1922479

history with the first three octets can perform better
than the history with entire IP address as expected.
We can therefore deduce that by using the first three
octets of IP address history, the normal traffic detec-
tion rate increases. However, there is a tradeoff be-
tween the protection rate and the normal traffic detec-
tion rate. When we are using the first three octets of IP
address there is some possibility that malicious traffic
also share the first three octets of IP addresses that
exist in the history and the signature-based IP address
history could not filter them. Therefore the protec-
tion rate reduces by using three octets of IP address.
On the other hand by using first three octets of IP ad-
dress the size of Bloom filter reduces and normal traf-
fic detection rate increases. Therefore, selecting an
appropriate approach is based on the size of Bloom
filter, history accuracy and protection rate. In gen-
eral, using the first three octets of IP address gives
better history accuracy, normal detection rate, and it
reduces the size of Bloom filter which results in de-
crease of protection rate. The other important result
of this experiment is the attack detection rate shown
in Fig. 5. CAIDA attack 2007 dataset is used to eval-
uate this step. The result shows the Bloom filter with
first three octets can perform approximately as well as
the Bloom filter with the entire IP addresses. Accord-
ing to Fig. 5, we observe almost 95% success with
attack detection rate. In fact our experiment shows
that 70% of legitimate traffic can be preserved while
filtering out 95% of attack traffic.

4.2.2 Window Size

We studied the impact of window size by creating
history for four different window sizes and measur-
ing the history accuracy. We set the window size to
14, 7, 10 and 3 days respectively to create the his-
tory and then calculated history accuracy during the
period from Feb 15th to Feb 28th as shown in Figure
7. The number of unique IP addresses that appeared
in the history is shown in Table 4. Figure 7 shows
that the history accuracy improves as long as we in-
crease the length of window size from 3 to 14 days;
however, the interesting observation is that history ac-
curacy does not change significantly after 10 days. In
other words, most of the legitimate IP addresses have
appeared in the history in the past 10 days and very
few other IP addresses have visited CSU only prior to
10 days. The other observation in Figure 7 is that the
largest gap is between window size 3 and 7 days. The
history accuracy is around 50% for 3 days window
size while this value improves to 65% for 7 days. In
fact this demonstrates that 3 days window size is too
short a period to create a history with high accuracy.

The other important parameter that impacts his-
tory accuracy is size of the Bloom filter. As shown in
Table 4 and Figure 8, enlarging the window size in-
creases the size of history and also improves the his-
tory accuracy. According to Figure 8, size of history
increases about 0.7MB in average when we change
the window size from 10 days to 14 days but as shown
in Figure 7 history accuracy is almost similar. Con-
sequently, in choosing between 10 days and 14 days
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Figure 5: Attack Traffic Detection Rate.

Figure 6: Traffic Volume and Number of Packets that Can Pass History.

Figure 7: History Accuracy for Different Window Sizes.

window size, 10 days window size would be a more
appropriate selection. Furthermore, from Figure 8 we
also see that size of Bloom filter reduces by 1MB in

average when the window size changes from 10 days
to 7 days but the history accuracy decreases by less
than 5% because of this reduction. Thus, the 7 days
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Figure 8: Size of Bloom Filter for Different Window Sizes.

Table 4: Number of Unique IP Addresses in History with Different Window Sizes.

Window size 14 days 10 days 7 days 3 days
15-Feb 6930826 4889103 3130830 2189643
16-Feb 6019868 4858096 2986955 2047126
17-Feb 6080193 4803532 3077742 1987207
18-Feb 6206424 4853005 3181456 2141480
19-Feb 6198630 4910655 3086945 2289896
20-Feb 6224286 4911569 3131923 2308403
21-Feb 6244686 4887286 3077169 2259784
22-Feb 6178677 4832357 2957518 2118029
23-Feb 6166982 4735330 3181719 2239626
24-Feb 6192012 4714798 3095821 1874455
25-Feb 6091122 4717731 3095821 1865488
26-Feb 6069075 4785940 2940737 1944892
27-Feb 6007085 4775288 2915739 1911688
28-Feb 5969252 4628090 2303440 1917622

window size is the best choice where we can get good
history accuracy with a reasonable size Bloom filter.

5 CONCLUSION

We provide a solution for defending against DDoS
attacks that looks at the history and uses a rich set
of header fields for discriminating attack from nor-
mal traffic. We demonstrated how such a differenti-
ation can be done using a Bloom filter. The use of
Bloom filter improves efficiency and reduces mem-
ory requirement in upstream routers during the attack
time. The efficacy of our approach is validated us-
ing a recent dataset from CSU 2015. Our experiment
indicates that our filtering model can protect the vic-
tim node from 95% of attack traffic while allowing
70% of normal legitimate traffic with a 2MB Bloom
filter. In addition, we show that the size of the Bloom
filter can be reduced significantly by creating an IP
address history based on the first three octets of IP

address where we present high history accuracy and
attack detection rate. In short, we show very good re-
sults in successfully characterizing the network traffic
and preserving good traffic with appropriate filtering
size. The experiment results verify that our signature-
based mechanism can be deployed in real networks.
Our future work includes extending our scheme for
IPv6. In contrast to IPv4, IPv6 has a vastly enlarged
address space that makes it more difficult to address
the specific characteristics related to identifying and
filtering the attack traffic.
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