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Abstract: Autonomous exploration of mazes requires finding a “center of gravity” keeping the robot safe from colliding 
with the walls. That is similar to the obstacle avoidance problem as the maze walls are obstacles that the robot 
must avoid. In this report, we describe an approach to controlling robot movements in a maze using an Inverse 
Compensation Vector (ICV) that is not much more computationally demanding than calculating a centroid 
point. The ICV is used to correct the robot velocity vector that determines the direction and the speed, so the 
robot moves in the maze staying securely within the passages between the walls. We have tested the approach 
using a simulator of a physical robot equipped with a planar LIDAR scanner. Our experiments showed that 
using the ICV to compensate robot velocity is an effective motion-correction method. Furthermore, we 
augmented the algorithm with preprocessing steps that alleviate problems caused by noisy raw data coming 
from actual LIDAR scans of a physical maze. 

1 INTRODUCTION 

The ciNeuroBot (Figure 1) has been designed to 
simulate and explore goal-oriented behaviors 
exhibited by rats running in mazes (Bieszczad, 2006). 
The robot’s name is derived from the Neurosolver, a 
neuromorphic high-level planner based on the 
organization of columns in the brain cortex 
(Bieszczad, 1998). 

The ciNeuroBot is based on the DiddyBorg 
platform integrated with a 360-degree LIDAR planar 

scanner placed at the top. The robot has six wheels 
powered by six engines that are controlled in two 
groups: left and right. The hardware controller 
utilizes RaspberryPI single-board-computer running 
Raspbian version of Linux. There is also a high-
resolution video camera in front of the robot, but it is 
not used for navigation. The code is written in Python 
3 taking advantage of generous supply of modules 
and a relatively high computational power of the 
platform. 

 

   

Figure 1: ciNeuroBot and ciNeuroBot in a reconfigurable maze. 
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Figure 2: ciNeuroBot simulator with a LIDAR simulated 
scan of the right t-section cue. 

The ultimate high-level task of the robot is to 
explore mazes like the one shown in Figure 1 
searching for goals; for example, certain colors or 
shapes on the walls (the video camera is used for that 
purpose). Furthermore, the robot is to construct a map 
of the maze and record the location of the goals, so in 
the future it can construct a plan recalling – and 
potentially optimizing – the paths to a specific goal. 
The construction of the map is founded on the ability 
to identify environmental cues; in the case of a maze, 
the cues are perceived shapes such as cross-section, t-
section, right turn, left turn, etc. 

 

 

Figure 3: LIDAR scan of the right t-section cue. The scan 
readings (on the vertical axis) are shown as a function of an 
angle from which the measurement was made. There are 
360 measurements for a full rotation of the scanner. Also, 
the minima on the curve are shown as red dots (the 
rightmost minimum is there due to a cyclic wrap of the 
curve). The scan starts from the back of the robot and 
proceeds counter clockwise. 

To realize the high-level objectives, the robot 
needs low-level capabilities to autonomously explore 
the maze staying clear of walls. 

 

 

Figure 4: LIDAR scan readings of right t-section cue shown 
in polar coordinates. The orientation is different than in 
Figure 2 due to the 90-degree rotation. The robot is always 
in the center of any coordinate system; in this case, polar. 

We developed a simulator of the robot running 
mazes (Figure 2) to ease – and in some cases, make 
feasible – the experimentation and development. The 
simulator is tightly correlated with the physical robot, 
so the ideas implemented and tested in the simulator 
can be used to create prototypes to be transferred to 
the physical robot. As we found out however, the 
physical world poses challenges that need attention 
during the porting such as imperfections in the 
accuracy of scanner readings. 

 

 

Figure 5: Maze contour constructed from the LIDAR 
readings of right t-section cue. The red dot demarcates the 
position of the robot. The dot is also in the center of the 
Cartesian coordinate system. 
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The onboard LIDAR scanner is used for both the 
high- and the low-level functionality. At the high-
level, the mapping and localization components need 
cues that can be identified using the LIDAR readings 
(Figure 3) (Bieszczad, 2015 and the ongoing research 
on improving that capability). 

The LIDAR readings (that are simply the 
distances from the objects in the robot surroundings; 
i.e., walls in a maze in this case) can also be used to 
keep the robot away from the walls. The robot moves 
are controlled by a velocity vector generated in 
response to some mobility drive that may be coming 
from a manual robot controller (e.g., our Android or 
iOS apps), or from a higher-level planner like the 
Neurosolver. To keep the robot away from the walls, 
the velocity vector must be modified by analyzing the 
LIDAR readings. The periodic compensation allows 
the robot to stay within the walls while moving along 
the modified velocity vector. 

2 OBSTACLE AVOIDANCE 
PROBLEM 

The problem of avoiding obstacles is one of the most 
critical in Robotics. A very good survey of the 
approaches, especially techniques based on 
commonly used potential fields is presented in 
(Rajvanshi et al., 2015). The methods based on 
potential fields (originally proposed in (Khatib, 
1986)) assume presence of a target destination that 
acts as an attractor force for the robot, while any 
surrounding obstacles act as repellent forces. The 
problem of exploring a maze is somewhat different, 
as the obstacles are the enclosing walls, and there is 
no global target. Rather than being repelled to some 
open space by the obstacles, robot’s objective is to 
stay within the maze walls in a position equidistant 
from any wall while still maintaining the movement. 

The overall problem can be summarized as a task 
of moving as far as possible from each of the 
obstacles at every step in the movement. While 
conceptually the task is simple, it is an optimization 
problem, and as such, it is computationally 
demanding. The problem is especially challenging for 
robots that have limited processing power and limited 
information about the environment; for example, if 
the robot – like ciNeuroBot – is equipped with just a 
simple one-dimensional scanner (also referred to as 
planar or 2D scanner). Simple methods – like 
computing a centroid of certain “important” set of 
points on the obstacles – fail in complex scenarios. 
For example, if the robot is close to several obstacles 

that are also close to each other, it will tend to move 
towards the obstacles if the centroid is used as a 
guidance. In a maze, quite often the centroid is 
completely inaccessible; as exemplified by the point 
marked with blue cross in Figure 5. A centroid of the 
closest points – shown as a green triangle in the same 
figure – might be better, but still fails in numerous 
scenarios. Our experiments with computing a 
centroid of the convex hull spanned by the closest 
points from the robot to the walls also led to only 
marginal improvements. 

It appears that there is no known closed form 
solution to the problem. While iterative solutions do 
exist, they are computationally expensive (Eppstein, 
Erickson, 1999). Most of the solutions that have been 
proposed approximate the “center of view” (the point 
as distant from each of the obstacles as possible; 
sometimes also called the “center of gravity”) by 
iteratively decomposing the map using triangles 
(Shewchuk, 2008), or quad-trees (Agafonkin, 2016; 
based on Finkel, 1974). The medial axis transform 
(MTA) has also been used (Joan-Arinyo et al., 1997 
based on Lee, 1982). Like the potential fields 
methods, the MTA is used usually in context of path 
planning; some researchers advocate separation of 
path planning from the obstacle avoidance problem 
and treating them as two distinct issues. Point 
sampling was also attempted to approximate the 
location that is optimally furthest from all obstacles 
(Garcia-Castellanos, Lombardo, 2007). 

An obstacle avoidance strategy based on direction 
correction based on the distances from obstacles (that 
could be viewed as a density of obstacles) was 
reported in (Peng et al., 2015) as part of path planning 
research. 

3 INVERSE COMPENSATION 
VECTOR (ICV) 

We propose a simple and efficient way to compensate 
the robot movement by computing a correction vector 
that we call the Inverse Compensation Vector, or 
ICV. As stated earlier, the direction and the speed of 
a moving robot can be expressed as a velocity vector 
(or force). It is the velocity vector that is affected by 
applying the Inverse Compensation Vector to correct 
the movement with the intention of staying away 
from the walls. Ultimately, that motion compensation 
operation implements a simple collision avoidance 
algorithm. 

In the following sections, we focus on the 
construction of the ICV; the velocity vector is not 
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included in the figures as it may be arbitrarily 
imposed at any time. 

 

 

Figure 6: LIDAR scan readings for right t-section cue with 
the three smallest minima shown as red dots. 

 

Figure 7: Graphical illustration of constructing the Inverse 
Compensation Vector (ICV) for the right t-section cue. 

 

Figure 8: The ICV for the right t-section cue versus the 
centroid of the contour and the centroid of the supporting 
contour (see the text for explanation). 

The ICV is constructed on the basis that the robot 
should be kept away from each of the points in a 

contour of the maze as far as possible. In contrast to 
the potential fields approach, obstacles are seen as 
attractors rather than repellents. Rather than pushing 
the robot away, they pull it to a position in which all 
forces are balanced. As stated earlier, finding such a 
center of gravity is an optimization problem that is 
computationally hard. However, the following 
approach yields reasonable computational results in 
simulations. 

The algorithm assumes that the robot position is 
always in the center of the coordinate system. We 
compute a set of minima in the LIDAR scan reading 
shown as red dots in Figure 3. Next, we select three 
closest points in the contour (i.e., the smallest 
minima). Figure 6 shows the same scan as in Figure 
3, but with only three smallest minima. We already 
discussed constructing a contour of the maze from the 
LIDAR readings; an example is shown Figure 5. 
Using the minima, we can select the closest contour 
points for any set of minima; we call the set a 
supporting contour. The points in two-dimensional 
space correspond to vectors (with the center of the 
coordinate system as the other end), so we call the 
closest three contour points support vectors. Support 
vectors are the basis for computing the ICV. To do 
that, a mean distance to all points in the supporting 
contour is computed. Then we calculate inverse ratios 
of the mean to the support vectors; the smaller the 
vector, the larger the ratio. The adjective inverse 
refers to the fact that instead of normalizing the 
vectors using their mean, inverses of these 
normalizations are computed. The ratios are then used 
to compute inverse vectors that attract the robot 
towards the gaps between the robot and each of the 
points in the supporting contour. The idea follows the 
logic that the robot should move into empty spaces 
between itself and the obstacles with the speed 
inversely related to its distance to a given obstacle. 
The further the obstacle (i.e., the larger the gap) the 
more attractive it is to move towards the that obstacle 
(relatively to the other obstacles). Hence, using the 
metaphor from the potential field methods, the 
obstacles attract the robot with a force relative to the 
inversely normalized distance from the robot. We 
refer to the operation as inverse compensation. 

A Python 3 snippet to compute the ICV is shown 
in Code Snippet 1. In the code, the support vectors are 
passed as a parameter vs. In addition to the ICV, the 
function also returns the compensation vectors as well 
as their mean. The additional return values could be 
used for scaling the ICV in some circumstances; for 
example, in relation to the width of the maze 
passages. 
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Code Snippet 1: Python 3 code to compute the Inverse Compensation Vector icv of three vectors given as a Numpy array vs. 

 
 
Figure 7 illustrates the process using a scan of the 

right t-section cue as an example. The robot position 
is in the center of the coordinate system (the base of 
all shown vectors). The crosses demarcate the closest 
obstacles with broken lines reflecting the distances. 
The red vectors are the individual inverse 
compensation vectors, and the green arrow is the total 
inverse compensation vector (i.e., the mean of the 
individual inverse vectors). That is the vector that 
would be used to compensate the motion drive vector 
of the robot. 

The result of the computation in the context of the 
contour, the centroid of all contour points, as well as 
the centroid of the supporting contour is shown in 
Figure 8. The difference with the centroid of all points 
is dramatic, but not so much with the centroid of the 
supporting contour. As shown in the following 
experiments the difference may be much more 
significant in other cases. 

4 RESULTS 

Currently, we have defined six cues in the maze: right 
turn, left turn, t-section, cross-section, right t-section, 
and left t-section. Figure 9 shows calculations of the 
ICVs for arbitrary robot positions in approaching 
each of the cues. 

It is evident from the illustrations that ICVs 
(shown as green arrows) provide much improved 

correction to robot movement over using a centroid 
of the supporting contour (shown as a green triangle). 
While the centroid point often lays even closer to the 
obstacles than the current robot position, the ICVs 
direct the robot to much safer locations. It is worth 
noting that using potential fields methods would 
direct the robot away from all points on the 
supporting contour and as such would not be suitable 
for this application. 

To gain some insight into the movement 
compensation calculations for different robot 
positions near a single cue, we conducted a series of 
experiments in which we calculated ICVs for 
different robot locations when near a selected cue. 
Figure 10 illustrates how the ICV evolves with the 
change of the robot position when approaching the t- 
section cue (that we used earlier in this document to 
demonstrate the process of constructing the ICV). We 
can see that every correction to the position is very 
reasonable and balances the overall distance from all 
the obstacles. Experiments with other cues and other 
locations also support that thesis. 

 

import numpy as np 
def compute_icv(vs): 
    # compute vector lengths 
    vs_len = np.sqrt((vs*vs).sum(axis=1)) 
    # get a mean length 
    vs_mean_norm = np.mean(vs_len) 
    # compute inverse proportions 
    inv_factor = vs_mean_norm/vs_len 
    # calculate correction vectors by applying inverse  
    # proportions to the vectors 
    vs_inv_norm = vs - np.array([k * v for k,v in zip(inv_factor, vs)]) 
    # compute the final correction vector as the mean  
    # of correction vectors 
    icv = vs_inv_norm.mean(axis=0) 
    return icv, vs_inv_norm, vs_mean_norm 
 
# Example 
vs = np.array([[ 23, -18], 
       [ -7, -24], 
       [ 19,  23], 
       [-14,   2], 
       [-24,  -3]]) 
 
compute_icv(vs) 
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Figure 9: The ICVs (green arrows) for (from top to bottom): 
right turn, left turn, left t-section, t-section, and cross-
section. The ICV for right t-section is shown in Figure 5. 

5 HEURISTICS 

5.1 Noisy Data 

The LIDAR data collected in the simulator are perfect 
as they are computed using Mathematically sound 
formulas. However, the data that are collected from a 
LIDAR residing on a physical robot placed in an 
actual maze contain noise that constitutes a challenge 
for a reliable identification of minima. Very often the 
measured distances that are angularly close to each 
other differ by small amounts due to the imperfect 
accuracy of the LIDAR. That yields distance curves 
that are rugged, and as such prone to containing 
numerous local minima as shown in the upper plot of 
Figure 11 as tightly located red dots (they look almost 
as thick red lines). 

To deal with that problem, we applied a 
smoothing function that removes the excess of local 
minima as shown in the lower plot in Figure 11. 

5.2 Tight Support Contours 

If the distance minima are close to each other both by 
angle and by magnitude, the ICV may not have the 
magnitude sufficient to repel the robot from the walls. 
There are two ways of dealing with the problem. First 
is to ensure that the minima are well distributed in the 
span of the scan. Therefore, the LIDAR full 360 
degrees range is divided in several equal zones, and 
then minima are calculated for each of the zones. The 
three smallest are then used in computing the ICV. 
The minima shown in the lower plot of Figure 11 
were obtained in the described way. 

Another method that we tried was to use an 
inverse of the variance in the distances to the 
obstacles to modulate the magnitude of inverse 
vectors. That method helped only in some cases; for 
example, when the robot was close to three obstacles 
located closely one to another. Applying zoning to 
finding minima make such scenarios impossible, so 
this approach was abandoned. 

6 CONCLUSIONS 

Our simulations show that correcting the robot 
velocity vector by the Inverse Compensation Vector 
(ICV) is a very simple yet effective approach to 
keeping the robot away from the maze walls. The ICV 
that corrects both the direction and the speed is 
computed and applied periodically after each of the 
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Figure 10: The ICVs computed for four different location of the robot near a t-section cue. 

LIDAR scans (or as often as the processing power of 
the robot controller allows). 

The method does not yield an optimal solution to 
the obstacle avoidance problem, but is much more 
efficient than the iterative approaches to finding the 
center of gravity discussed in the introduction. 
Therefore, it can be applied in robots that employ 
relatively slow processor boards. 

7 FUTURE WORK 

We are transferring the algorithms to the physical 
robot. The simulator does not take into account the 
volume of the robot, so some adjustments are 
necessary to the use of the ICV. 

We are also looking at the scaling of the speed 
correction, since certain scenarios may yield ICVs 
that, for example, just cancel out the motion drive 
vector leading to halting the robot altogether. This is 
not a problem with a remote controller as just more 
forward movement might be applied. However, an 
autonomous robot must have a logic to deal with such 
issues. We theorize that a detection of a stop can be 
used to modify the velocity vector. A stop detector is 
easy to implement by comparing subsequent LIDAR 
scans. 

 

 

 

Figure 11: Cleaning up the noise data using smoothing and 
ensuring distribution using zones. The upper plot shows 
raw data, and the bottom shows the distance curve after it 
was smoothened and divided in three sectors. 
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The further-reaching agenda includes the goal-
oriented behavior that we described in the 
introduction. We are making progress using the 
simulator, but to transfer the ideas to the physical 
robot we must tackle other low-level tasks similar to 
the ones described in this report. 
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