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Abstract: The Unit Commitment Problem (UCP) is a well-known combinatorial optimization problem in power systems.
The main goal in the UCP is to schedule a subset of a given group of electrical power generating units and also
to determine their production output in order to meet energy demands at minimum cost. In addition, a set of
technological and operational constraints must be satisfied. A large variety of optimization methods addressing
the UCP is available in the literature. This panoply of methods includes exact methods (such as dynamic
programming, branch-and-bound) and heuristic methods (tabu search, simulated annealing, particle swarm,
genetic algorithms). This paper proposes two non-traditional formulations. First, the UCP is formulated as
a mixed-integer optimal control problem with both binary-valued control variables and real-valued control
variables. Then, the problem is formulated as a switching time dynamic optimization problem involving only
real-valued controls.

1 INTRODUCTION

The unit commitment problem (UCP) is well-studied
and practically relevant in the electrical power in-
dustry. This problem involves both the scheduling
of power units (i.e., the decisions when each unit is
turned on or turned off along a predefined time hori-
zon) and the economic dispatch problem (the prob-
lem of deciding how much should produce each unit).
The scheduling of the units is typically seen as an
integer programming problem and the economic dis-
patch problem is a nonlinear (real-valued) program-
ming problem. The UCP is then a nonlinear, noncon-
vex, and mixed-integer optimization problem (Dang
and Li, 2007). The objective of the UCP is the mini-
mization of the total operating costs over the schedul-
ing horizon while satisfying demand, the spinning re-
serve requirements, and other generation and techno-
logical constraints such as capacity limits, ramp rate
limits, and minimum uptime/downtime. The objec-
tive function is expressed as the sum of the fuel, start-
up, and shutdown costs.

Several methods have been employed to find solu-
tions for the UCP. The available approaches for solv-
ing unit commitment problem can usually be clas-
sified into mathematical programming and heuris-

tic methods (Salam, 2007). In the past, the pro-
posed approaches were essentially based on exact
methods and include dynamic programming (Hobbs
et al., 1988; Patra et al., 2009), Lagrangian relax-
ation (Zhuang et al., 1992), Benders decomposi-
tion (Ma and Shahidehpour, 1998), and mixed inte-
ger programming (Frangioni et al., 2008; Frangioni
et al., 2009). More recently, several metaheuristic ap-
proaches have been used such as particle swarm op-
timization (Zhao et al., 2006), simulated annealing
(Simopoulos et al., 2006; Jenkins and Purushothama,
2003), tabu search (Rajan and Mohan, 2004) and ge-
netic algorithms (Dang and Li, 2007; Roque et al.,
2014; Roque et al., 2011). A bibliographical sur-
vey can be found in (Saravanan et al., 2013). Al-
though the UCP is a highly researched problem with
dynamical and multi-period characteristics, it appears
that it has not been addressed before by optimal con-
trol methods, except in (Fontes et al., 2012; Fontes
et al., 2014; Tuffaha and Gravdahl, 2016). In (Fontes
et al., 2012), the authors have formulated the UCP
as a discrete mixed-integer optimal control problem,
which has then been converted into one with only
real-valued controls through a variable-time transfor-
mation method. A mixed-integer state-space model
to solve both the UC and Economic Dispatch prob-
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lems is reporteded in (Tuffaha and Gravdahl, 2016).
The output power generation, status of the generating
unit, and up and down time counters are considered
state variables.

Here, we discuss two formulations of the UCP as
an Optimal Control (OC) model. Initially, we formu-
late the UCP as a discrete-time mixed-integer optimal
control problem. Then, we propose a new optimal
control switching time approach. The model derived
is a continuous one and involves only real-valued de-
cision variables (controls).

The main contributions of the proposed modelling
approach are twofold. Firstly, since it allows deci-
sions to be taken at any time moment, and not only at
specific points in time (usually, hourly), it may ren-
der better solutions. It should be noticed that the pro-
posed approach allows for decisions on unit commit-
ment/decommitment and power production variation
at any moment in time. Secondly, it no longer forces
utilities to treat demand variations as instantaneous,
i.e., time steps. In addition, if one chooses to use
the approximated hourly data, as usual in the litera-
ture, the solution strategies (both regarding unit com-
mitment/decommitment and power production) of the
proposed model will approximate the discrete-time
solutions since actions are only required to be taken
hourly.

The remaining of this paper is organized as fol-
lows. The mixed-integer optimal control formulation
is given in section 2. Section 3 introduces a formula-
tion of the UCP as a switching time optimal control
problem including only real-valued controls, which is
proposed here for the first time. Finally, in section 4
some conclusions are drawn.

2 UCP AS A DISCRETE-TIME
MIXED-INTEGER OPTIMAL
CONTROL MODEL

In this section a mixed–integer optimal control model
(OCM) is proposed to the UCP problem. The mixed–
integer optimal control model has two types of de-
cision/control variables: on the one hand, it consid-
ers the binary control variables β j(t) and γ j(t), which
are the start-up and shut down indicators at time pe-
riod t+1, respectively. β j(t)(γ j(t)) are either set to 1,
meaning that unit j is turned on-line (off-line) at time
period t + 1, or otherwise set to zero. On the other
hand, it also considers real-valued variables ∆ j(t),
which enable to control the production, by increasing
or decreasing the power produced by unit j at time t.

The binary variables satisfy

β j(t−1) = (1−u j(t−1))u j(t)

or

β j(t−1) = u j(t)−u j(t−1)+ γ j(t−1)

and
γ j(t−1) = (1−u j(t))u j(t−1)

or

γ j(t−1) = u j(t−1)−u j(t)+β j(t−1).

There are three types of state variables:

1. real variables y j(t), which represent the power
generated by unit j at time t; and ys

j(t), which
indicate the contribution for spinning reserve by
unit j at time t;

2. integer variables T on/o f f
j (t), which represent the

number of time periods for which unit j has been
continuously online/off-line until time t; and

3. binary variables u j(t), which are either set to 1,
meaning that unit j is committed at time t, or oth-
erwise set to zero.

The parameters used in the equations are defined
as follows:
T: Number of time periods (hours) of the scheduling
time horizon
N: Number of generation units
R(t): System spinning reserve requirements at time
t, in [MW ]
D(t): Load demand at time t, in [MW ]
Yminj: Minimum generation limit of unit j, in [MW ]
Ymaxj: Maximum generation limit of unit j, in
[MW ]
Tc,j: Cold start time of unit j, in [hours]

Ton/off
min,j : Minimum uptime/downtime of unit j, in

[hours]
Ton

0,j: Initial state of unit j at time 0, time since the
last status switch off/on, in [hours]
Toff

0,j : Initial state of unit j at time 0, time since the
last status switch on/off, in [hours]
∆dn/up

j : Maximum allowed output level de-
crease/increase in consecutive periods for unit j,
in [MW ].
For convenience, let us also define the index sets:
T := {1, . . . ,T} and J := {1,2, . . . ,N}.
The UC problem can now be formulated as a mixed-
integer optimal control model.

Objective Function. The objective function has three
cost components: generation costs, start-up costs, and
shutdown costs. The generation costs, also known as
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the fuel costs, are conventionally given by the follow-
ing quadratic cost function:

Fj(y j(t)) = a j · (y j(t))2 +b j · y j(t)+ c j, (1)

where a j,b j,c j are the cost coefficients of unit j. The
start-up costs, that depend on the number of time pe-
riods during which the unit has been off, are repre-
sented by S j(t). The shutdown costs Sd j for each
unit, whenever considered in the literature, are con-
stant. Therefore, the cost incurred with an optimal
scheduling is given by the minimization of the total
costs for the whole planning period.

Minimize
T

∑
t=1

N

∑
j=1

(Fj(y j(t))u j(t)+

S j(t) ·β j(t−1)+Sd j · γ j(t−1)). (2)

The State Dynamics. The production of each unit,
at time t, depends on the amount produced in the pre-
vious time period and is limited by the maximum al-
lowed decrease and increase of the output that can oc-
cur during one time period:

y j(t) = y j(t−1)+∆ j(t−1) · (u j(t)−β j(t−1))

+∆SU
j ·β j(t−1)−∆SD

j · γ j(t−1),

for all t ∈ T and j ∈ J .
Also

u j(t)−β j(t−1) = u j(t−1)− γ j(t−1).

Thus,

y j(t) =y j(t−1)+∆ j(t−1) · (u j(t−1)− γ j(t−1))

+∆SU
j ·β j(t−1)−∆SD

j · γ j(t−1), (3)

for all t ∈ T and j ∈ J .
The term T on

j (t − 1) · γ j(t − 1) can be used to drive
the state variable T on

j (t) to zero whenever the unit j is
turned off-line at time period t. Then, the number of
time periods for which unit j has been continuously
online until time t is given by

T on
j (t) = T on

j (t−1)+u j(t−1)+β j(t−1)− γ j(t−1)

−T on
j (t−1) · γ j(t−1), (4)

for t ∈ T and j ∈ J .

The number of time periods for which unit j has
been continuously off-line until time t is given by

T o f f
j (t) = T o f f

j (t−1)+1−u j(t−1)−β j(t−1)

+ γ j(t−1)−T o f f
j (t−1) ·β j(t−1), (5)

for all t ∈ T and j ∈ J , where the term T o f f
j (t− 1) ·

β j(t − 1) is used to drive the state variable T o f f
j (t)

to zero whenever the unit j is turned on-line at time
period t.

The dynamics concerning the unit status (binary)
indicator u j(t) is given by

u j(t) = u j(t−1)+β j(t−1)− γ j(t−1), (6)
for t ∈ T and j ∈ J .

Pathwise Constraints. The pathwise constraints are
given by inequalities (7) to ( 27) and the ramp rate
constraints are handled by the equations (3) and con-
trol constraints.

∆ j(t) ∈
[
−∆dn

j ,∆up
j

]
, for t ∈ T and j ∈ J . (7)

In addition the control binary variables β j and γ j are
forced to take the 0 or 1 values using the inequations
(8-11).

0≤ β j(t−1)≤ 1 for t ∈ T , j ∈ J . (8)
β j(t−1) · (1−β j(t−1))≤ 0 for t ∈ T , j ∈ J . (9)
0≤ γ j(t−1)≤ 1 for t ∈ T , j ∈ J . (10)
γ j(t−1) · (1− γ j(t−1))≤ 0 for t ∈ T , j ∈ J . (11)

In a similar way the auxiliary binary variables u j are
forced to take either the value 0 or the value 1.

0≤ u j(t−1)≤ 1 for t ∈ T , j ∈ J , (12)
u j(t−1) · (1−u j(t−1))≤ 0 for t ∈ T , j ∈ J . (13)

The unit output range limits are expressed by

y j(t)−Y min j ·u j(t)≥ 0, ∀t ∈ T ,∀ j ∈ J (14)

y j(t)−Y max j ·u j(t)≤ 0, ∀t ∈ T ,∀ j ∈ J (15)

The limits for the number of time periods continu-
ously on-line are given by

T on
j (t)≥ 0, (16)

T on
j (t)−K ·T ·u j(t)≤ 0, (17)

T on
j (t−1)−T on

min, j · γ j(t−1)≥ 0, (18)

for all t ∈ T and j ∈ J .
The limits for the number of time periods continu-
ously off-line are expressed by

T o f f
j (t−1)≥ 0, (19)

T o f f
j (t−1)−K ·T · (1−u j(t−1))≤ 0, (20)

T o f f
j (t−1)−T o f f

min, j ·β j(t−1)≥ 0, (21)

for all t ∈ T and j ∈ J .
The load requirements are modelled by

N

∑
j=1

y j(t) ·u j(t)−D(t)≥ 0, ∀t ∈ T . (22)
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The spinning reserve requirements are given by
N

∑
j=1

ys
j(t) ·u j(t)−R(t)≥ 0, ∀t ∈ T , (23)

and

y j(t)+ ys
j(t)−Y min j ·u j(t)≥ 0, (24)

y j(t)+ ys
j(t)−Y max j ·u j(t)≤ 0, (25)

ys
j(t)≥ 0, (26)

ys
j(t)−∆up

j · (u j(t)−β j(t−1))≤ 0, (27)

for all t ∈ T and j ∈ J .
The Initial State Constraints. At the initial time t =
0 we have:

T on
j (0) = T on

0, j (given), (28)

T o f f
j (0) = T o f f

0, j (given), (29)

u j(0) =
{

0 if T on
0, j = 0

1 if T on
0, j > 0, (30)

y j(0) =
{

0 if T on
0, j = 0

y0, j ∈ [Y min j,Y max j] if T on
0, j > 0,

(31)

3 UCP AS SWITCHING TIME
OPTIMIZATION PROBLEM

This section presents a continuous–time optimal con-
trol formulation, based on the concept of the Switch-
ing Time Optimization Problem, see e.g. (Sager,
2005; Kaya and Noakes, 2003). This model uses only
real-valued decision variables.

3.1 The Switching Time Optimization
Problem

Let us consider the set of time points Ψ when
the change of the unit status occurs. Ψ is ei-
ther Ψnsw = {τ̄1, τ̄2, ..., τ̄nsw} a finite set of possible
switching times. It should be noted for each k ∈
{1,2, ...,nsw} τ̄k ∈ ]τ̄k−1,T ] and τ̄0 = 0. Then, we
consider nsw binary control functions

wk : [τ̄k−1, τ̄k] 7−→ {0,1}
defined by

wk(t) ={
0, if(w0(0) = 0∧ k odd)or(w0(0) = 1∧ k even)

1, if(w0(0) = 0∧ k even)or(w0(0) = 1∧ k odd)
,

t ∈ [τ̄k−1, τ̄k] (32)

Figure 1: Possible realisation.

with k = 1,2, ...,nsw and 0 = τ̄0 ≤ τ̄1 ≤ τ̄2 ≤ ... ≤
τ̄nsw = T . If we assume a finite number of switches
nSW , then the problem can be written in a multistage
formulation

minxk,zk,wk,uk,h

nsw

∑
k=1

Φk [xk,zk,wk,uk, p] , (33)

where the h is the vector of stage lengths hk = τ̄k −
τ̄k−1, subject to the dynamic model stages control
(k = 1,2, ...,nSW ):

ẋk(t) = fk (xk(t),zk(t),wk(t),uk(t), p) (34)

for t ∈ [τ̄k−1, τ̄k] , and path constraints:

0≤ gk (xk(t),zk(t),wk(t),uk(t), p) , (35)

for t ∈ [τ̄k−1, τ̄k] .
The maximum number of switching times is 2 ×
b T

T o f f
min +T on

min
c where bXc represents the nearest integer

less than or equal to X . In Figure 1, an example of
one possible realisation with nsw = 5 is given. For ex-
ample, we have the contraints concerning to the limits
for the time continuously on-line expressed by

τ̄k− τ̄k−1 ≥ T on
min, if (τ̄k < T )∧

[(w0(0) = 0∧ k even) or (w0(0) = 1∧ k odd)] ,

and the limits for the time continuously off-line are
given by

τ̄k− τ̄k−1 ≥ T o f f
min , if (τ̄k < T )∧

[(w0(0) = 0∧ k odd) or (w0(0) = 1∧ k even)] .

3.2 The Unit Commitment Problem
formulated as Switching Time
Optimization Problem

Let us consider τ̄1, j, τ̄2, j, ..., τ̄nsw, j , j the possible
switching times for unit j. Then, we consider nsw, j
binary control functions

wk, j : [τ̄k−1, j, τ̄k, j] 7−→ {0,1}
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defined as in equation (32). The objective function to
be minimized is

miny j ,∆ j ,wk, j ,hk, j

N

∑
j=1

nsw, j

∑
k=1

∫ τ̄k, j

τ̄k−1, j

Fj(y j(t))·wk, j(t)·dt+

∫ τ̄k, j

τ̄k−1, j

S j(t) ·wk, j(t) ·dt +
∫ τ̄k, j

τ̄k−1, j

Sd j ·
(
1−wk, j(t)

)
·dt

−S j(t)w0, j(0)−Sd j(1−w0, j(0)). (36)

The unit output range limits are expressed by

y j(t)−Y min j ·wk, j(t)≥ 0, (37)
y j(t)−Y max j ·wk, j(t)≤ 0, (38)

for all j ∈ J and t ∈ [τ̄k−1, j, τ̄k, j]. It should be noted
that the controls are all real-valued and satisfy

δ j(t) ∈
[
−∆dn

j ,∆up
j

]
.

In addition, the power production and, for conve-
nience, the unit status must also be defined for each
time instant.

y j(t) =

{
0, if wk, j(t) = 0
y j(τ̄k−1, j)+

∫ t
τ̄k−1, j

δ j(s)ds, if wk, j(t) = 1
,

for j ∈ J and t ∈
[
τ̄k−1, j, τ̄k, j

]
. The limits for the time

continuously on-line of each unit j given by inequa-
tions (18) are now expressed by

τ̄k, j− τ̄k−1, j ≥ T on
min, j,if(τ̄k, j < T )∧

[(w0, j(0) = 0∧ k even)or(w0, j(0) = 1∧ k odd)] ,

while the limits for the time continuously off-line of
each unit j given in inequations (21), are now defined
by

τ̄k, j− τ̄k−1, j ≥ T o f f
min, j, if (τ̄k, j < T )∧

[(w0, j(0) = 0∧ k odd) or (w0, j(0) = 1∧ k even)] .

The load requirements are given by
N

∑
j=1

y j(t) ·wk, j(t)−D(t)≥ 0, t ∈ [τ̄k−1, j, τ̄k, j]. (39)

The spinning reserve requirements are expressed by
N

∑
j=1

ys
j(t) ·wk, j(t)−R(t)≥ 0, t ∈ [τ̄k−1, j, τ̄k, j], (40)

and

y j(t)+ ys
j(t)−Y min j ·wk, j(t)≥ 0, (41)

y j(t)+ ys
j(t)−Y max j ·wk, j(t)≤ 0, (42)

ys
j(t)≥ 0, (43)

for all j ∈ J , t ∈ [τ̄k−1, j, τ̄k, j].

4 CONCLUSIONS

The UCP, an intensively researched problem in the lit-
erature, is addressed in this paper. The problem is
usually formulated using a mixed-integer nonlinear
programming model. Here, the formulation of this
problem using optimal control models is explored.
Previous works on an optimal control approach to the
UC problem, as far as we are aware of, are limited to
the works in (Fontes et al., 2012; Fontes et al., 2014;
Tuffaha and Gravdahl, 2016) that use a discrete-time
optimal control model.

We propose here two formulations of the UCP as
an Optimal Control model. First, we formulate it as a
discrete time mixed-integer optimal control problem.
Then, we propose a new optimal control switching
time approach using a continuous-time optimal con-
trol model. An interesting feature of the continuous-
time formulation is the fact that, contrary to the usual
mixed-integer programming models in the literature,
all decision variables are real-valued, which enables
the use of more efficient optimization methods for its
solution.

Additional advantages of the continuous-time op-
timal control formulation are the possibility of dealing
more accurately with data provided with an irregular
or fast-sampled time intervals, or even continuous-
time varying (for instance, continuous-time varying
demand data). The schedule can be changed and
adapted according to the predictions and the fluctu-
ations inherent to the renewable power supply. The
reduction in unbalance implies, simultaneously, a re-
duction on expensive spinning reserve. This can not
only account for significant cost savings, but also al-
lows for better environmental characteristics.

Computational results will be reported in a future
work.
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