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Abstract: This paper deals with the modelling of a CPU-GPU chip embedded in an Android phone. The model is used for
the estimation of variables that characterise the operating state of System on Chip (SoC). The proposed model
is built to demonstrate the causal relationships between the variables, through its interconnected structure of
subsystems. This structure allows the extension of other components or the easy exchange of subsystems in
the case of a change in components or operating mode. The model developed here requires no additional
instrumentation—other than the one present on the phone—which facilitates its implementation. It is used for
the estimation of the state of the system and can also be used for monitoring and behaviour prediction. The
model is validated and the results are promising for further implementation.

1 INTRODUCTION

Modelling of Central Processing Units (CPU) and
Graphics Processing Units (GPU) chips is done for a
multitude of purposes. The first and foremost is to en-
sure performance reliability which can be done either
by selecting the algorithms to be implemented and
predicting their performance (M’Sirdi et al., 2016;
Williams et al., 2009; Meng and Skadron, 2011), or
running background programs in parallel that are able
to predict the performance output of some compo-
nents (Ardalani et al., 2015), or even by thoroughly
studying the component itself (Kim et al., 2012a).
However, in this work, we are more interested in the
monitoring of the operating state of the chip. Hence,
we focus our modelling on the physical variables i.e.
frequency, voltage, power consumption, and temper-
atures in the SoC.

Reducing power consumption and improving bat-
tery life in mobile phones is a very active research
area. Thus, several models estimating the power con-
sumption of embedded CPU-GPU chips were devel-
oped. For instance, Zhanget al. propose a model
called ”PowerBooter” to the estimate power con-
sumption of a smartphone through its battery sen-
sors (Zhang et al., 2010). Another study used sys-
tem calls to estimate the power consumptions (Pathak
et al., 2011), while others used polynomial and re-
gression models in a series of works to estimate the
power consumption of smartphone components in-

cluding the CPU and the GPU (Minyong Kim et al.,
2012; Kim et al., 2012b; Kim and Chung, 2013; Kim
et al., 2015). These studies offer simple modelling
techniques and also show a clear dependence between
frequency and power consumption.

Furthermore, several other notable studies focused
on the power consumption of just the GPU. For in-
stance, Lenget al. estimate the power consumption,
in a discrete GPU, as a sum of three components,
the dynamic power (power consumed by the GPU
while running computations), the leakage power (es-
sentially linked to transistor leakage currents in the
architecture of the chip) and idle power (assumed con-
stant) (Leng et al., 2013). Additionally, in their work,
Adhinarayananet al. present a GPU power estima-
tor based on multiple regression techniques, that uses
performance counters and temperature to deliver ac-
curate power estimation at runtime (Adhinarayanan
et al., 2016).

As Temperature is an important variable in the
functioning and life cycle of CPU and GPU, several
models were developed in the literature to study its
profile and behaviour, such as the model developed by
Honget al., which is a switched system with two first
order models, one for the rise in temperature and the
second for cooling. The time constants of these mod-
els were identified experimentally, and static gains are
presented as a function of the maximum temperature
of the system, power consumption, and memory in-
tensity (Hong and Kim, 2010).
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Amongst the works mentioned above, there are
fine grained models of the CPU-GPU chips, like the
model proposed by Kimet al. which models perfor-
mance as a function of of memory warps and models
temperature as a function of memory intensity (Kim
et al., 2012a). Nonetheless, such models use variables
which are neither measurable nor accessible to read,
such as the memory intensity for instance or are spe-
cific to certain GPU brands like the warps.

Moreover, because of the complexity of the sys-
tem and physical phenomena, inputs of the models
constructed by machine learning are not the subject
of a formal proof of the interaction between the inputs
and estimated outputs. The choice of model inputs is
often the result of observations and experimental tests
in various operating conditions. These models are of-
ten built to give developers feedback on on perfor-
mance, and power consumption, which will be used
for program optimisation. The temperature estima-
tion is, generally, used to set temperature thresholds
for thermal throttling to keep the component out of
harm’s way.

The model proposed in this paper is built in a
modular structure, and is composed of a set of inter-
connected subsystems, where the control components
(subsystems for frequency and voltage) are clearly
distinguished from the operating ones (power and
temperature), allowing thus the model to adapt to
changes in the system operating modes. The sub-
systems are inspired by those presented in the stud-
ies above and the algorithms given by manufacturers.
The developed model is then used to estimate a set
of variables characterising the operating state of the
CPU-GPU system. Our main goal behind the devel-
opment of this model is to use its generated estimation
to monitor the state of the chip.

This paper is organised as follows. The targeted
system is described is Section 2. In Section 3, we de-
scribe the data aquisition, then the modelling method
and the models of each subsystem are detailed in Sec-
tion 4. In Section 5, the model is validated by compar-
ing the real and estimated outputs, then, the results are
discussed. Finally, a conclusion is given in Section 6.

2 TARGETED SYSTEM
DESCRIPTION

The electronic devices market proposes differ-
ent CPU and GPU architectures. Each fam-
ily of architecture comes with its own advantages
and—naturally—complexities. One of the main goals
of this work is to construct a general dynamic model
for embedded CPU-GPU chips. Thus, for testing and

undertaking experimental validation, the choice of a
System on Chip (SoC) to be studied is firstly based
on the software it runs.

For this study, we settled on an AndroidTM phone.
AndroidTM phones are very popular, and with its pro-
gramming framework, aoolications are effortlessly
transferable to other devices. Moreover, Android is
built on top of the popular open source operating sys-
tem (OS)Linux. The availability of the code for this
OS makes some of the needed parameters accessible
for reading. Furthermore, the system’s terminal, via
Android Debugging Bridge (ADB), gives access to
all system files, some of which are used for variables
reading.

The smartphone we used in this study runs on
AndroidTM Marshmallow 6.0, and is equipped with a
SoC harbouring a quad-core processor with variable
frequencies—through frequency and voltage scal-
ing—ranging between 300 MHz–2.45 GHz. It also
sports an OpenGLTM ES 3.0 capable GPU with fre-
quencies ranging between 200 MHz–578 MHz. The
SoC also contains the systems 2 GB RAM.

3 VARIABLES AND DATA
ACQUISITION

To analyse and model the dynamics of the CPU-GPU
chip, one must initially recover the relevant readings
characterising the operating state of the system. For
our modelling purposes, the needed readings are the
loads of both the CPU and the GPU, the working fre-
quencies, temperatures of the cores and other com-
ponents, the voltage of each core and the power de-
livered by the battery. All of these variables–except
for the temperature–have very fast variations. There-
fore, the quality of the results depends directly on the
chosen sampling period. Hence, we choose the min-
imum period necessary to follow the changes of the
fast changing variable: the frequency. Frequency is
evaluated by by frequency Governor (see paragraph
4.1). Hence, the minimum period for this program
to reevaluate the load and change of the frequency
accordingly was set as sampling period (in this case
study,Ts = 20ms).

Since we do not wish to hinder the normal be-
haviour of the system while reading the variables, we
have written a lightweight application for data acqui-
sition. However, during periods of high loads, the sys-
tem will give priority to the user interface and system
operations over background services (like our app),
which sometimes leads to the scheduling of our ap-
plication excecution being pushed back, and thus the
chosen sampling periodTs being not respected. Fig. 1
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shows the evolution of the sampling periods during a
reading experience where some sampling values are
well beyond the chosen periodTs and even reaching
tens of seconds.

Figure 1: Sampling time variation over time.

The second difficulty in reading the variables is
related to the management of instruction queues by
the OS. Again, during periods of high the CPU loads,
we came to notice that reading time—the time differ-
ence between the start of the reading process and its
end—is sometimes very long, even reaching seconds
(See Fig. 2), leading to the conclusion that the reading
was interrupted. This renders the values taken during
the said reading false (unsynchronized data, measure-
ments delays and missing data).

Figure 2: Reading time evolution and variation over time.

These two problems of data acquisition are taken
into account and the data acquired during long sam-
ple times or interrupted readings will be automatically
deleted from the database used in the next section for
learning and model assessment.

4 SYSTEM MODELLING

The CPU-GPU chip is a complex system with vari-
able structure, whose dynamics are nonlinear and not

continuous. Hence, a gradual approach and a modu-
lar structure are adopted for its modelling as shown in
Fig. 3. This modular approach provides for a gradual
analysis and modelling each of the subsystems and
account for the variable structure of the system. It
also allows easy integration of subsystems in case of
any changes. Fig. 3 shows a global vision of the in-
terconnected and gradual modelling approach. In the
following paragraphs, each of the subsystems will be
detailed.
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Figure 3: Diagram of the proposed model of the CPU-GPU
system.

4.1 The Frequency Scaling Governor

Frequency scaling is carried out viaGovernors. On
the studied system, several frequency governors exist.
These governors calculate the frequency according to
usage needs as well as several other factors (speed,
power consumption). The governor we are modelling
in this work is theinteractivegovernor. However,
thanks to the modular structure of the model, any
governor can replace the one considered in this case
study.

The interactivegovernor increases and decreases
the frequency of each core as a function of the load
and specific timers. When the CPU is back from the
idle state, the governor starts a countdown timer with
a predefinedtimer rate value at the end of which, if
the load exceeds a given value (go hispeedload), the
governor calculates a new frequency for which the
load will be equal or closest totarget load value.

The governor also takes into account sudden
heavy loads by directly scaling up the frequency to
hispeedfreq if the current frequency is below it for
better reactiveness and to avoid unexpected CPU bot-
tlenecks and sluggish performance. In addition, if the
frequency of a core is greater or equal tohispeedfreq,
the core must stay on the same frequency at least a pe-
riod of abovehispeeddelay, before scaling up, and a
period ofmin sampletime(or samplingdownfactor
if the current frequency is the maximum frequency)
before scaling down. The last time constant, noted
timer slack, is an additional period of time that the
core has to wait before shutting down if the load is
equal to zero. The governor modelling algorithm is
given in Fig. 4 and Fig. 5. This model is engineered
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from the original source code available in the code de-
posits of the manufacturer of the studied smartphone
(Samsung, 2016).

procedure INTERACTIVE(Load,Time,currentFrequency)

define above hispeed delay, hispeed freq,

go hispeed load, min sample time, target load,

sampling down factor, timer slack, timer rate

if Initialisation= 0 then
currentHiSpeedTimer← 0

currentTimers← 0

currentDownTimers← 0

currentTimersSlack← 0

oldTime← Time;

Initialisation← 1

else
currentHiSpeedTimer← currentHiSpeedTimer+ (Time−

oldTime)

currentTimers← currentTimers+(Time−oldTime)

currentDownTimers← currentDownTimers+ (Time −
oldTime)

currentTimersSlack← currentTimersSlack+ (Time −
oldTime)

end if
if (currentTimers≥ timer rate) then

if (Load≥ go hispeed load) then
if (currentFrequency < hispeed freq ∧

ChooseFreq(Load,currentFrequency)< hispeed freq) then
newFrequency← hispeed freq

else if (ChooseFreq(Load,currentFrequency) >

hispeed freq)∧ (currentHiSpeedTimer≥ above hispeed delay)

then
newFrequency ←

ChooseFreq(Load,currentFrequency)

else if (ChooseFreq(Load,currentFrequency) <

currentFrequency) ∧ (currentDownTimers≥ min sample time)

then
newFrequency ←

ChooseFreq(Load,currentFrequency)

else if (Load = 0) ∧ (currentTimersSlack≥
timer slack) then

newFrequency← 0

end if
currentHiSpeedTimer← 0

currentDownTimers← 0

end if
else

newFrequency← currentFrequency

end if
return newFrequency

end procedure

Figure 4: The Interactive Governor algorithm (I—The gen-
eral algorithm).

4.2 Voltage Model

Recovered readings show that, like frequency, volt-
age is discrete and varies in a set of well-defined val-
ues. Voltage readings are plotted against the frequen-
cies, in Fig. 6, in order to see the relationship between

procedure CHOOSEFREQ(Load,currentFrequency)

define target load

defineFREQUENCYTABLE

f req= currentFrequency× (Load/target load)

TableSize← 16 ⊲ In our study case

Minimum← f req;

BestIndex← 0;

while (index< TableSize) do
if | f req−FREQUENCYTABLE(index)| ≤Minimumthen

BestIndex← index

Minimum← | f req−FREQUENCYTABLE(index)|
else

index← index+1

end if

end while
return FREQUENCYTABLE(BestIndex)

end procedure

Figure 5: The Interactive Governor algorithm (II—The
Choose frequency procedure).
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Figure 6: Voltage values drawn against frequency value
with the almost linear trend in red.

these two variables. It shows an almost linear trend in
the middle where 98% of the values are concentrated,
hinting that a fixed voltage value is associated with
each frequency value. However, Fig. 6 also shows
that some frequencies are linked to multiple voltage
values, this is due to the fact that the core needs to in-
crease its voltage before scaling up the frequency, and
decrease the frequency before lowering the voltage.

Furthermore, by analyzing the measurements, we
find 15 frequency values (plus a zero frequency for a
turned-off core) against 14 voltage values, leading to
the belief that some frequencies share the same volt-
age value. Thus, to better investigate the relationship
between the frequencies and voltages, a histogram
of voltage values for each frequency is constructed.
Fig. 7 shows the histogram of voltage values forf =
300MHz indicating that the voltage associated with
this frequency value is clearlyV300MHz= 0.775V. All
other voltage values are obtained following the same
fashion.
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Figure 7: Histogram of voltage values forf = 300MHz.

4.3 The Thermal Regulator

Thermal management is a very important task, espe-
cially during boot and system startup periods where
the temperature can become excessively high. The al-
gorithms used during startup are generally fixed and
not accessible to the programmer. However, in the
user space, SoC manufacturers generally implement
programmable algorithms for programmers to use.
In the smartphone we are studying, the SoC manu-
facturer implemented three types of regulators from
which the programmer can choose to manage the tem-
perature of the SoC. The implemented regulators are
Proportional Integral Derivative (PID), Single Step,
and finally, the one used by the manufacturer of the
studied smartphone aMonitor.

This algorithm samples the temperature every
samplingms. If the temperature of the core is higher
than a predefinedthresholds, the core is shutdown.
Once the temperature of the said core drops below
thresholdsclr, it can be turned on again.

4.4 Power Model

In the relevant literature, some works, such as the one
presented by Wanget al., use battery measurements to
estimate the power consumed by applications (Wang
et al., 2013). Others track kernel queries to determine
power consumption (Pathak et al., 2011). Other tech-
niques, like the one presented in (Kim et al., 2012b;
Kim and Chung, 2013; Kim et al., 2015) involve the
construction of polynomial models to estimate the
power consumption as a function of the frequency
and of the load. In this case study, we use battery
readings. However, the obtained value of the current
supplied by the battery is a constant, and the value of
voltage varies in a set of fixed values which results
in staircase-like power output signal, and makes any
convergence of polynomial and auto-regressive mod-

els (ARX, ARMA, ...) impossible. Additionally, in
order to minimise the influence of the other compo-
nents of the smartphone, all communication and sec-
ondary peripherals (WiFi, screen, cameras ...) were
disabled and assumed to consume a static constant
amount of power in that state.

Before starting the modelling process, it is neces-
sary to determine the model inputs. In the case of the
CPU, the power consumption is often given by the re-
lation (Adam Kerin, 2013) :

PCPU = f ×V2×C (1)

where f denotes the frequency,V the voltage andC
the electric charge stored in the CPU, which is rel-
atively constant. Thus, the CPU power becomes a
function of the frequency and voltage. It was shown
in the previous subsection that the voltage is itself a
function of frequency. For the GPU, voltage mea-
surements are not available in this case study, thus its
frequency is used as input of the model (Kim et al.,
2015). The last input is the Memory Occupation Rate
(MOR)—the ratio of the occupied memory to the full
memory—which will help include the memory power
consumption in the model, since it is a part of the SoC.

The model developed to estimate power consump-
tion is a neural network with two layers. A hidden
layer whose activation function is a sigmoid, and con-
taining 8 neurons, and an output layer containing a
single neuron with a linear transfer function.

4.5 Temperature Model

Heat transfer and temperature modelling have been
studied quite extensively in the relevant literature.
However, in this work, we will not focus on the me-
chanics of heat generation and transfer since its aim is
to estimate temperature for monitoring and diagnosis
purposes. Thus we focused our attention on finding
variables affecting it i.e. correlations.

Temperature dynamics are different from those of
the other studied variables; for one it does not range
in a specific set of values. Furthermore, it does not de-
pend only on the inputs, but also on its own previous
values. It is directly correlated with the frequency of
the CPU and the GPU. However, as shown in (Hong
and Kim, 2010), we note that the correlation in the
measurements between the recorded temperature and
power consumption is imperceptible, which was con-
firmed by our own results. Therefore, the considered
inputs of the model of the SoC temperature are the
frequencies and the MOR.

The temperature readings (Fig. 11) show two main
trends for which we should account. The first is
the rise (warming) and fall (cooling) of temperature
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occurring over relatively long periods of time, and
the second is the high-frequency small temperature
changes. To better represent these dynamics, we
chose to use an autoregressive–moving-average (AR-
MAX) model. ARMAX models use the regression of
inputs and previous outputs, along with the moving
average to simulate or predict the current output:

y(k) = P1y(k−1)+ ...+Pny(k−n)

+Q1u(k−1)+ ...+Qmu(k−m)

+e(k)+H1e(k−1)+ ...+Hre(k− r) (2)

Equation (2) is the linear difference equation of
an ARMAX (n,m, r) (orders of the model), withy(k)
being the output to compute,u the exogenous (X)
variable or system input, ande is the moving av-
erage (MA) variable ((Fung et al., 2003)). In the
case of this work, temperatureTSoC is the output
y(k) to be estimated, and the system input isu(k) =
[ f1, ..., f4, fGPU,MOR]. The parametersP, Q, andH
are constants evaluated by iterative search algorithms.

5 EXPERIMENTAL AND MODEL
VALIDATION

The experimental results presented in this section are
obtained through the application then compared with
estimations made by the model. The evolutions of the
measured frequencies of one core, and the frequencies
estimated by the model are given in Fig. 8. The plots
are nearly identical, with a slight delay at the instants
of frequency changes. The maximum delay recorded
τ f = 0.2s. This result validates the frequency model.
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Figure 8: Frequency model estimations vs system readings.

Fig. 9 shows the evolution of the measured volt-
age of one core, compared to the estimated one. As
for frequencies, the plots are again nearly identical,
with a slight delay at the instants of voltage changes.
The maximum delay recordedτV = 0.22s. Thus, the
voltage model is, also, validated.
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Figure 9: Voltage model estimations vs system readings.

The measured power delivered by the battery
compared to the estimated power by the neural net-
work model are given in Fig. 10. This result shows
the good accuracy of the model during the slow vari-
ations and static phase. However, there is also notice-
able noise during the phase of rapid changes, espe-
cially betweent = 50s andt = 60s. The Mean Abso-
lute Error (MAE) recorded is 0.0083W over 2×105

samples, with a maximum error of 6.60%, while the
Mean Squared Error (MSE) is 2.3896×10−4. Thus,
the power model is validated.
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Figure 10: Power model estimations vs system readings.

Fig. 11 shows the evolution of the estimated
temperature compared with the measured tempera-
ture. The model accurately follows the dynamics of
the measured temperature during temperature change
(heating and cooling), and also during phases with
weak temperature changes. Fig. 11 also shows that
the model takes into account the initial conditions of
temperature. It has an MAE of 0.9947◦C, with a
one time maximum of 8.14%, and an MSE of 1.8584.
Hence, the temperature model is also validated.
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Figure 11: Temperature model estimations vs system read-
ings.

6 CONCLUSION

A data acquisition and estimation systems have been
developed for a CPU-GPU embedded chip. Measure-
ments are acquired on the fly for operational state es-
timation.

The estimation model developed is validated ex-
perimentally. The parameter and variable estimation
is structured as an interconnected system with vari-
able structure. The modularity of the estimation sys-
tem is easily adaptable to changes in the system struc-
ture and its operation modes.

In future works, the next step after developing the
model is to use it to monitor the operating state and
drifts in characteristics of the chip.
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