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Abstract: In order to reach a sustainable planning in a rather complicated transport system, it is of high interest to use 

methods included in Operations Research areas. This study has been conducted to solve the transportation 

network planning problems, in accordance with the optimization problem and multi-objective transport 

network in multi-modal transportation. Firstly, we improve the implementation of the existing literature model 

proposed in (Cai, Zhang, and Shao, 2010; Zhang and Peng, 2009) because after the conducted 

experimentation, we show that there are two previously proposed constraints that make the solution 

unrealizable for the transportation problem solving. Secondly, we develop the proposed multi-objective 

programming model with linear constraints. Computational experiments are conducted to test the 

effectiveness of the proposed model. The mathematical formulation is developed to contribute to success 

solving the optimization problem, taking into account important aspects of the real system which were not 

included in previous proposals in the literature, and review. Thus, it gives ample new research directions for 

future studies. 

1 INTRODUCTION 

The multimodal transportation offers a full range of 

transportation modes and routing options, allowing 

them to coordinate supply, production, storage, 

finance, and distribution functions to achieve the 

most efficient relationships. The goal is to move from 

the starting city to the destination city through other 

intermediate cities, of which there are several routes 

between two cities. In the multi-objective optimiza-

tion problem, the decision maker is charged by an 

efficiency choice of existing routes in order to select 

the best itinerary according to a compromise solution 

between a set of objectives such as the minimization 

of the transport cost and the duration of transport, the 

maximization of service quality, etc.  

The multimodal transportation network studies 

were carried out by several problems such as 

planning networks, shortest path, maritime or airline 

with urban centers, freight transport, transmission 

line, loading-unloading terminals, schedules, etc. The 

focus of most widely research in the literature has 

been based on planning network. 

There are various measures to evaluate a multi-

modal path, for example, the travel cost, in-vehicle 

time, waiting time, length, travel time, transfer time, 

the number of transfers and so on. The optimization 

and the operation research play an important role to 

solve this problem. The main objective of this 

problem is to determine the shortest and efficient way 

of satisfying a set of objectives, and a set of 

operational constraints according to customer 

demands. 

In general, the objective of a multimodal network 

planning problem is to optimize reliable transport 

chains for passenger or freight. The mathematical 

formulation of the transit network design is usually 

intractable by exact approaches. In (Wan and Lo, 

2003) a MILP formulation that minimizes the 

operating cost to a bus capacity constraint is 

proposed. A characteristic of their formulation is that 

it allows generating implicitly the structure of the 

routes. However, this requires that a maximum 

number of routes in the solution should be specified. 

The objective minimizing the operating costs, 

according to constraints within the system 

considering the capacity and bounded exchange 

action frequency. 

The multimodal shortest path problem (M-SPP) is 

concerned with finding a path from a specific origin 
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to a particular destination in a given multimodal 

network while minimizing total costs associated. The 

complexity of finding multi-modal route is obviously 

much higher than single modal one. The multi-criteria 

multi-modal shortest path problem (MM-SPP) with 

transfer delaying and arriving time-window 

belongs to the set of problems, which are known as 

NP-hard. In (Liu, Mu, and Yang, 2014; Liu, Yang, 

Mu, Li, and Wu, 2013) the exact algorithms for 

solving the MM-SPP to minimize the total travel time 

have been suggested, in which the delaying time in 

the transfer parking and the arriving at a time window 

of destination are considered, as well as the total 

travel cost.  

Each case treated is defined by the specific 

parameters at the problem type. Since, each variant 

possesses its own characteristics, it requires a 

different decision depending on the considered 

context. These decisions are based on the 

special characteristics of the transportation mode, and 

on specific constraints of the treated problem. These 

constraints are specified for each customer, vehicle, 

mode, road or means of transport, as well as the type 

of the problem. 

Being based on the existing works of the literature 

research, we have adopted a mathematical model, 

while relying on the existent works with the 

objectives, and constraints set to take into account the 

recommendations made by experts according to the 

hypotheses of our treated problem. This proposed 

formulation will be cited and validated by tests, which 

will be detailed in the rest of this paper. 

The structure of our paper is organized as follows: 

In section 2, we’ll present the construction model 

with the proposed formulation in order to solve the 

multi-objective and multimodal transportation 

problem. Section 3 discusses our contribution and 

motivation. Section 4 provides the proposed model by 

some numerical experiments. Thereafter, in section 5 

we will discuss a critical comment on our work by a 

synthesis of the obtained results. Finally, section 6 

concludes our work with a summary and proposes 

some future research directions. 

2 A MULTI-OBJECTIVE 

MATHEMATICAL MODEL 

The main objective of the multimodal network 

problem is to determine a shortest and an optimal path 

between a start point and an end point to according to 

several criteria relating to the transportation mode or 

the itinerary, etc., to satisfy a set of objectives that are 

distinct to the treated case problem. In fact, a 

multimodal problem requires the consideration of 

multiple objectives and linked constraint of a 

sequence of frequently used modes. For an optimal 

choice of a transport mode or an itinerary by a 

transport mode selected, the various criteria must be 

taken into consideration, although these criteria are 

conflicting. 

The multi-objective optimization can be defined 

as the problem that is finding a vector of decision 

variables which satisfies all constraints and optimizes 

a vector of objective functions. These functions from 

a mathematical description of performance criteria 

are usually in conflict with each other. In this paper, 

we have treated a multi-objective optimization 

problem. We consider the problem studied is to find 

viable multimodal and multi-objective transport 

processes, in order to minimize the total 

transportation cost and the total time of the itinerary, 

while respecting the arriving of goods at a customer 

in the corresponding time window. First, we will 

present and discuss the model of (Cai et al., 2010). 

2.1 Model Assumptions and Code 

Description 

2.1.1 The Assumptions 

Let us define the following assumptions as: 

 Only one mode of transport and a path can be 

chosen between two nodes to carry the goods.  

 Transport costs are directly proportional to the 

realization, namely, the choice of the quantity 

and the unit transportation cost. 

 The limited capacity constraint of each mode is 

respected. 

 If a vehicle arrives at the node before the start 

date of his time window, he waits. 

 Transshipment of goods can only happen once 

more at each node. 

2.1.2 The Sets and Settings 

N : The set of all nodes; 

K : The set of transport mode; 

Q : The total quantity of goods; 

P : The maximum transfers duration; 

pi : The delay period at node i if delay occurred; 

 fi : The overhead expenses per hour if delay occurred 

at node i; 
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𝑪𝒊,𝒋
𝒌  : The transport cost of a unit quantity from node i 

to node j, by using kth transport mode; 

𝒄𝒊
𝒌,𝒍 : The fee for transport mode changed from k to l 

at the node i; 

 𝒕𝒊,𝒋
𝒌    : The transport time from node i to node j, with 

kth transport mode selected; 

𝑻𝑾𝒊𝒋 : The largest time windows of cargos arriving 

from node i to node j; 

𝒕𝒘𝒊𝒋 : The shortest time windows of cargos arriving 

from node i to node j; 

 𝐚𝐢
𝐤,𝐥  : The transfer time from transport mode k to the 

transport mode l at the node i; 

𝑭𝒌: The vehicle capacity from the kth transportation 

mode. 

𝑺𝒌: The number of vehicles used by the kth 

transportation mode in order to transport the 

whole quantity of the freights. With, 𝑆𝑘 =

𝑅𝑜𝑢𝑛𝑑𝑠 (
𝑄

𝐹𝑘) upward, that returning the smallest 

integral value that is not less than (
𝑸

𝑭𝒌). 

2.1.3 The Decision Variables 

The decision is related to the optimization process 

which focuses on itinerary scheduling and the 

decision of selecting each transportation mode of 

corresponding transportation means. Thus, we need 

to define the decision variables that explain the 

variables associated with each considered parameter 

of our treated problem. These decision variables are 

used to express the constraints and optimization 

criteria. 

𝒙𝒊,𝒋
𝒌  =  1 if the  𝑘𝑡ℎ   transport mode is selected from  𝑖  to  𝑗,

0  otherwise
 

𝒚𝒊
𝒌,𝒍 =  

1 transport mode changed from  𝑘  to  𝑙 at 𝑖,
 𝑤ℎ𝑒𝑛 𝑘 ≠ 𝑙,
0  otherwise

 

𝒖𝒊 =  
1 if there is a delay at the node i  

0  otherwise
 

 

2.1.4 The Formulation 

The mathematical formulation is a determinant 

step in the resolution step and the optimization step of 

any problem. Indeed, it allows us to define and 

characterize the sets, the parameters, the decision 

variables, the optimization criteria and constraints 

that will satisfy the specific decisions. The paper 

presents an effective solution for determining the 

shortest and efficient way of satisfying a certain set of 

demands under several criteria and also a large set of 

operational constraints. Our proposed formulation is 

presented as follows: 

Minimize 
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The equations that describe this mathematical 

formulation can be summarized as follows. Equation 

(1) represents the first objective that seeks to 

minimize the total cost of the multimodal network, 

including the cost of the itinerary, transshipment cost 

and overhead cost on delay. Equation (2) defines the 

second objective, which seeks to minimize the total 

duration of multimodal transportation, including the 

period of the itinerary, changing period and delay 

duration. Equation (3) expresses the third objective 

that guaranteed the arriving at the destination in the 

time window. Constraint (4) is specific to the 

selection of transportation mode, that only one mode 

of transport and one itinerary can be selected between 

two nodes. If it is zero, it means that the i node is not 

included in the transport. Equation (5) demonstrates 

that in the itinerary the destination node is the start 

node for the next itinerary. Constraint (6) shows that 
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the selection of the route should be ensured by a 

continuous itinerary. Equations (7) and (8) are 

relative to the transshipment constraints. Constraint 

(7) indicates that one change of transport mode can 

happen once at each node. Constraint (8) represents 

the maximum time to be respected by the total 

transshipment time. The decision-making variables 

taking the integer binary value are described by the 

equation (9). 

3 CONTRIBUTION AND 

MOTIVATION 

In this paper, we have proposed a multi-objective 

mathematical program inspired from (Cai et al., 2010) 

and (Zhang and Peng, 2009). The authors have 

addressed the multi-modal transport problem with 

full loads at time limit. The problem is defined by the 

search of a multimodal path in order to reach the 

destination through several cities, knowing that there 

are several transport modes possible between any two 

cities. Each itinerary is characterized by a transport 

duration, a cost, and a transportation capacity 

between two cities. In fact, the authors proposed a 

combination model for multi-modal transport of full 

loads with time window constraint. The considered 

assumptions are: firstly only one mode of transport 

can be selected between two cities and secondly, the 

transport cost is linear with distance. The same model 

defined in (Zhang and Peng, 2009)is presented in (Cai 

et al., 2010).  The distinction parameters between our 

mathematical formulation and the one presented by 

(Cai et al., 2010; Zhang and Peng, 2009) are 

presented as follows: 

𝑙𝑖,𝑗
𝑘  : The transport distance from i to j with the 𝑘𝑡ℎ 

transport mode selected, for j=i+1. 

T: The time limit from start point to the end. 

The distinction constraints that indicates: 

 The cargos to be arriving in limited time. 

∑ ∑ 𝑡𝑖,𝑗
𝑘  𝑥𝑖,𝑗

𝑘 + ∑ ∑ ∑ 𝑎𝑖
𝑘𝑙𝑦𝑖

𝑘𝑙 ≤𝑙∈𝐾𝑘∈𝐾𝑖∈𝑁𝑘∈𝐾𝑖∈𝑁

𝑇 , ∀ 𝑗 = 𝑖 + 1     

 That a number of cargos cannot exceed the 

capacity of conveyance. 

𝑄 ≤ 𝐹𝑖,𝑗
𝑘 , ∀ 𝑖 ∈ 𝑁, 𝑘 ∈ 𝐾, 𝑗 = 𝑖 + 1   

 The time-window between two nodes.  

𝑡𝑤𝑖,𝑗 ≤ 𝑡𝑖,𝑗
𝑘  𝑥𝑖,𝑗

𝑘 + 𝑎𝑖
𝑘𝑙𝑦𝑖

𝑘𝑙 + 𝑢𝑖𝑝𝑖 ≤ 𝑇𝑊𝑖,𝑗 

Although, we describe the main improvements 

made to the literature model. The first objective is to 

minimize the total cost of transport. This cost is 

measured by the sum of three terms. At the 

transportation cost term, we replaced the distance 

parameter by a measured relative to the goods 

transported (the number of used units of transport), 

according to experts of the domain. In our case, we 

will ignore the setting of the distance since there is 

only one path between two nodes made by the same 

transport mode k. We also note that it is useless to 

consider the distance parameter when calculating the 

transportation cost. On the other hand, we show the 

importance of considering the goods quantity and the 

number of transport units used in measuring the 

transportation cost. 

The third objective is provided by the 

transformation of the time window constraint  𝑡𝑤𝑖𝑗 ≤

(  𝑡𝑖,𝑗
𝑘  . 𝑥𝑖,𝑗

𝑘 + 𝑎𝑖
𝑘,𝑙  . 𝑦𝑖

𝑘,𝑙 + 𝑢𝑖 . 𝑝𝑖) ≤ 𝑇𝑊𝑖𝑗, to an 

objective, which assured to the goods arrive at a well-

determined interval of time. The main reason for this 

transformation is on the one hand, in order to give 

more chance to find a compromise solution, which 

can be eliminated when it is a constraint. In fact, the 

given solution of a problem must satisfy all the 

constraints while minimizing (or maximizing) one or 

more objectives. On the other hand, when it is an 

objective we can easily play on their weight or 

priority relative to the other objective. Moreover, that 

we can find a solution that is preferred according to a 

customer that will be eliminated by this constraint. 

Indeed, the requirements of customers are different. 

In some cases, the customer prefers that the arrival of 

their goods, regardless of the time of this 

merchandise’s arrival. 

Pointing out the limitation of the previous 

formulation is indicated as follows. Taking into 

account the constraints (4) and (5) on the model of 

(Cai et al., 2010), the model resolution remains non-

feasible. With regard to the definition of constraint (4) 

that express that cargos will be arriving in limited 

time, we consider that it is useless to introduce the 

first part of the expression proposed by the authors. 

So, we limit the constraint to its second part. 

The constraint (5) makes it a non-feasible problem, 

because if we consider the example of a product 

fertilizer with a quantity Q = 122 tons, we can't 

transport all this quantity in a single vehicle. One 

railroad car can carry 61 tons of fertilizers. Therefore, 

two railroad cars are needed if railway transport is 

selected. Each car can carry 35 tons per vehicle, if the 

road transport is chosen, the total of 3.5 cars, 

therefore, four cars are needed to transport all the 

quantity. Each boat can carry 10 tons, if water 

transport is selected, a total of 12.2 vessels, is taken 
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as 13 boats. So, the equation (5) with these data are 

expressed as the following: 𝑄 ≤ 61 by railroad 

mode, 𝑄 ≤ 35 by road transport mode and 𝑄 ≤
10 by maritime transport mode, which is an 

impossible inequality. Consequently, this constraint 

is missing a whole other decision variable. A new 

parameter must be added a such as 𝑛𝑘 that is the 

number of vehicle used by the transport mode k. 

Therefore, this constraint becomes, 𝑄 ≤ 𝑛𝑘𝐹𝑖,𝑖+1
𝑘 ∀𝑖 ∈

𝑁, 𝑘 ∈ 𝐾. We consider the example test that is 

provided by one compound fertilizer company 

located in Linyi City.  

The element of the first objective 

∑ ∑ 𝑢𝑖𝑞𝑖𝑝𝑖𝑘∈𝐾𝑖∈𝑁  depends only on to the parameter i, 

so it must be replaced by ∑ 𝑢𝑖𝑞𝑖𝑝𝑖𝑖∈𝑁 . In regards to 

the element of the second objective 
∑ ∑ 𝑢𝑖𝑝𝑖𝑘∈𝐾𝑖∈𝑁  depends only on to the parameter i, so 

it must be replaced by ∑ 𝑢𝑖𝑝𝑖𝑖∈𝑁 . Therefore, the delay 

in a city is compared to the desired arrival time. 

When the index of the parameters are considered 

according to i, j for j= i+ 1, then the passage is forced 

by all the nodes according to an increasing order. 

Therefore, the parameters should be defined by the 

index i, j in order to guarantee that the choice of the 

nodes and the order are provided by the model. 

Based on the discussion of features, the 

organization of multi-modal transportation modes, 

and time-windows introduced, we defined a more 

efficient model for multi-modal transport of full loads 

with time-windows. 

4 EXPERIMENTATION RESULTS 

In this section, we present the obtained results that 

show the capability of the proposed model for solving 

a complex problem with multiple objectives (linear 

and non-linear) simultaneously that proves their 

efficiency in decision-making. This section is devoted 

to presenting the computational experiments carried 

out for assessing the performance of our 

mathematical model. In fact, we implemented an 

integer program for solving the multi-objective and 

multimodal transportation networks planning models, 

by using Concert Technology of CPLEX 12.4 

Optimizers, with Microsoft Visual Studio 2010. 

Computational experiments are conducted to test the 

effectiveness of the proposed model. 

For a visual representation of the experimental 

results, the reader is referred to Figure 1 as illustrated 

below. The optimal solutions are represented by the 

curve of the set of Pareto solution. The feasible 

optimistic of the first objective vary between maxZ = 

2475.200 Yuan and minZ = 804.96 Yuan. The 

optimistic solutions of the second objective vary 

between maxZ = 81H and minZ = 14 H. The optimistic 

solutions of the third objective vary between maxZ = 

81H and minZ = 34 H. These solutions are obtained 

by a set of tests sample generation. 

 

Figure 1: Illustration of the Pareto optimality of a two 

objectives minimization problem. 

We observed that the third objective and the 

second objective were synchronized objectives. But, 

the two objectives are showing that they are clearly 

contradictory with the first objective. 

The overall measurement results are summarized 

in Table 1 and 2 that are presented in the Appendix 

section. The best solution that minimizes the first 

objective gives a bad value for the second objective, 

and vice versa. In this case, we must seek the solution 

that satisfies the best compromise between these 

objectives. This solution is presented in Figure 1 with 

a red point, which is the closest value of the origin. 

The Multiple Pareto optimal solutions based on five 

distinct solutions found by the experimentations tests, 

are represented by a blue curve in Figure 1. Hence, a 

solution is called a Pareto optimal, if no feasible 

vector exists which can decrease some criterion 

without causing a simultaneous increase in at least 

one criterion. In figure 1, a continuous line is used to 

mark this boundary for a bi-objective minimization 

problem in which, there is no single perfect solution 

that minimizes both f1 and f2. The aim is of 

minimizing the compromise between the total cost 

and the total duration for an itinerary of the 

multimodal transportation network.  

The set of all Pareto optimal solutions, called non-

dominated set or Pareto front, is located on the 

boundary of the objective vector space (feasible 

solution space) showing the tradeoff information 

between the conflicting objectives. Instead, there are 

compromises between optimal solutions such as the 

solution presented by red. We can say that the 

 

Compromise 

solution 
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solutions presented in the Pareto front are more 

optimistic than the dominated solutions. 

The various solutions which belong to the front of 

Pareto are optimistic solutions. However, the 

decision-maker is provided by the search of the best 

compromise solution between the goals, which is 

included on the Pareto Front. The CPLEX tool uses 

the dynamic mixed-integer programming (MIP) as a 

search method, the balance optimality, and feasibility 

MIP emphasis. Indeed, the relaxation solution 

obtained by a Branch and Cut algorithm through a 

deterministic parallel mode, uses up to 4 threads.  

The definition of Pareto optimality is similar to 

that of efficiency, and a Pareto optimal point in the 

criterion space is often considered the same as a non-

dominated point. Therefore, a solution is considered 

as Pareto optimal, in a multi-objective minimization 

problem, if there exists no other feasible solution 

which would decrease some criteria without causing 

a simultaneous increase in at least one criterion. This 

set also called Pareto front helps the decision maker 

to identify the best compromise solution by an 

elimination of inferior ones. Then, the retained 

solution as elite is the one which has the best 

compromise between all the objectives. 

5 DISCUSSION AND COMMENTS  

According to the tests achieved for our work, giving 

the priority to the first objective by minimizing the 

total cost is much better than giving the executing 

priority of the total duration which perfectly complies 

with the third objective that respects the arriving at a 

time window. Therefore, we note that the first 

objective significantly improves the results as shown 

in the Appendix. 

For real case problems, the mathematical 

formulation is not always reliable for a user, since we 

cannot consider fixed rules for all possible 

alternatives and treated cases associated with each 

customer. According to the experts of a transit 

company, the choice of transportation mode is 

depends on the several factors, such as customer 

requirements, the nature, and characteristics of the 

goods, that can be a major condition for the selection 

of the mode's problem. There are several features of 

the goods, such as the expensive, bulky or perishable 

goods, also the goods category or type such as 

dangerous, fragile, light, stackable or non-stackable 

goods, etc. 

On the basis of the promising findings presented in 

this paper, further research will be needed to solve 

more optimization constraints. Artificial intelligence 

approaches to the issue are still required. (Bouamama, 

2010) proposed a multi-agent approach based on a 

dynamic, distributed Practical Swarm Optimization 

algorithm, which is proven to be useful for hard 

optimization problems. (Mathlouthi and Bouamama, 

2015) proposed two new approaches, a centralized 

and distributed honey-bee optimization, enhanced by 

a new parameter called local optimum detector. These 

two approaches are applied to solve the maximal 

constraint satisfaction problems. 

6 CONCLUSIONS AND FUTURE 

WORKS 

This paper presents a new mathematical model in 

order to solve multi-modal transport problems that 

satisfy multiple objectives according to several 

criteria. The proposed multi-objective model is 

defined by three objectives, the minimization of the 

total cost, and the total duration of an itinerary while 

respecting the arriving of goods to a customer at the 

time window.  

In fact, the following conclusions can be drawn 

as: Firstly, an improvement over the literature model 

was achieved in order to find feasible solutions. 

Secondly, a validation of our proposed model by 

implementation. Thirdly, we summarized our work 

by computation's test and experimentation results in 

order to prove the efficiency of our model.  

This paper presents a decision method based on a 

mathematical model which plays a significant role in 

resolving the transportation problem. Although there 

has been a fruitful development of models and 

solution techniques to solve this problem by a 

relevant decision in transport networks, many future 

pieces of research prospects are still missing, such as 

the following: 

 There are still opportunities for integrating 

problems that can be solved separately, by using a 

multi-criteria analysis approach. 

 The development of robust, or dynamic 

approaches used to solve a planning problem. 

 The consideration of several types of 

products, around on the corresponding product’s 

cluster with the same characteristics, since the 

choice of the transport mode depends on the 

product volume and the value associated with 

each product. 

 The activation or cancellation of a goal according 

to customer wishes by adding weights to each 

objective, according to the client's need. 
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APPENDIX 

Table 1: The experimentations tests in order of priority: objective 2 then objective 1. 

  Objective IInf Best integer Cuts/Best Bound ItCnt Gap Solutions 

S1 Z2*   25  1 -- 2 

integral 0 14 14 1 0.00% 

Z1 if Z2* 2475.2       

  
S2 Z1 if Z2<=29   2003.40  2 -- 2 

integral 0 1701.57 1701.57 2 0.00% 

S4 Z1 if Z2<=64   2725.69  8 --- 3 

904.3059 6 2725.69 904.3059 8 66.82% 

  1244.74 904.3059 8 27.35% 

1158.2820 2 1244.74 Cuts:7 11 6.95% 

  1169.49 1158.2820 11 0.96% 

Cutoff  1169.49  11 0.00% 

S5 Z1 if Z2<=75   1455.72  8 -- 4 

827.544 2 1455.72 827.544 8 43.15% 

  1168.19 827.544 8 29.16% 

878.02 1 1168.19 Cuts:4 9 24.84% 

  884.62 878.02 9 0.75% 

  883.62 878.02 9 0.63% 

Cutoff  883.62 883.62 9 0.00% 

Table 2. The experimentations tests in order of priority: objective 1 then objective 2. 

  Objective IInf Best integer Cuts/Best Bound ItCnt Gap Solutions 

S1 Z1*   1153.89  2 -- 2 

integral 0 804.96 804.96 2 0.00% 

Z2 if Z1* 81       

  
S2 Z2? if 

Z1<=1170 

  75.0  5 -- 3 

51.6294 6 75.0 51.6294 5 31.16% 

  66.0 51.6294 5 21.77% 

  64.0 51.6294 5 19.33% 

cutoff  64.0  5 0.00% 

S3 Z2? if 

Z1<=1500 

  75.0  7 --- 3 

37.4761 3 75.0 37.4761 7 50.03% 

  49.0 37.4761 7 23.52% 

  46.0 37.4761 7 18.53% 

39.2491 9 46.0 Cuts:5 13 14.68% 

Cutoff  46.0 46.0 13 0.00% 
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