
Assessment of Private Cloud Infrastructure Monitoring Tools
A Comparison of Ceilometer and Monasca

Mario A. Gomez-Rodriguez, Victor J. Sosa-Sosa and Jose L. Gonzalez-Compean
CINVESTAV Tamaulipas, Km. 5.5 carretera Cd. Victoria-Soto La Marina, Cd. Victoria, Tamaulipas, Mexico

Keywords: Cloud Computing, Cloud Monitoring, Resource Management, Ceilometer, Monasca.

Abstract: Cloud monitoring tools are a popular solution for both cloud users and administrators of private cloud infras-
tructures. These tools provide information that can be useful for effective and efficient resource consumption
management, supporting the decision-making process in scenarios where administrators must react rapidly to
saturation and failure events. However, the estimation of the impact on host systems in a private cloud is not
a trivial issue for administrators, specially when monitoring measurements are required in reduced periods of
times. This paper presents a performance comparison between two free and well supported cloud monitoring
tools called Ceilometer and Monasca, deployed on a private cloud infrastructure. This comparison is mainly
focused on evaluating these tools ability to obtain monitoring information in short time intervals for early
detection of resource constraints. The impact of resource consumption on the performance of host systems
produced by both tools was analyzed and the evaluation revealed that Monasca produced a better performance
than Ceilometer for evaluated scenarios and that, according to the learned lessons in this comparison, Monasca
represents a suitable option for being integrated into an adaptive cloud resource management system.

1 INTRODUCTION

Cloud computing has been widely adoped by organi-
zations and corporations for delivering services (soft-
ware, platform, infraestructure) over the internet be-
cause of the improvement of energy efficiency, hard-
ware and software resources utilization, elasticity,
performance isolation, flexibility and on-demand ser-
vice schema (Aceto et al., 2013). In cloud model,
applications are executed in virtual machines (VMs)
that shares the resources of the physical machines
(host systems) (Brinkmann et al., 2013); as a re-
sult, the management of cloud data centers manag-
ing large amount of virtual and physical machines
becomes a complex task for administrators. The in-
crement in the volumne of traffic is another impor-
tant issue in the management of cloud data center.
It includes topics such as the identification and res-
olution of conflicts related to availability, reliability
and quality of service. In order to face up this chal-
lenge, precise and fine-grained monitoring activities
are necessary (Aceto et al., 2013). The complexity of
the monitoring activities are commonly managed by a
monitoring system with funtional and non-functional
components. The functional components of a mon-
itoring system capture the state of functionality and
consumption of cloud resources (Smit et al., 2013),

whereas non-funcitonals include components to de-
ploy the monitoring system in a distributed, fault-
tolerant and scalable manner for monitoring a large
amount of resources (Aceto et al., 2013; Fatema et al.,
2014). Such tools help system administrators to ob-
tain information such as load generated by users and
the performance of the cloud computing resources
(Fatema et al., 2014).

Cloud monitoring involves the collection of differ-
ent metrics (e.g. CPU utilization, memory utilization,
etc.), usually from both, the virtual platform (VMs,
hypervisor, virtual networks, etc.) and the physical
infrastructure (hosts, network, hard drives, etc.) and
which are subsequently stored on a database system
in order for IT operators to deal with it and make de-
cisions that are transformed into actions.

Monitoring techniques are indispensable in order
to manage large-scale cloud resources, since with-
out an approprite monitoring some issues such as
usage-based billing and elastic scaling are impossible
(Fatema et al., 2014).

Cloud monitoring systems are key for improv-
ing decision-making processes in scenarios where ad-
ministrators must react rapidly to saturation and fail-
ure events. The extraction of monitoring informa-
tion in reduced periods of time, applying a precise
and fine grained configuration is a non-trivial key

Gomez-Rodriguez, M., Sosa-Sosa, V. and Gonzalez-Compean, J.
Assessment of Private Cloud Infrastructure Monitoring Tools - A Comparison of Ceilometer and Monasca.
DOI: 10.5220/0006484503710381
In Proceedings of the 6th International Conference on Data Science, Technology and Applications (DATA 2017), pages 371-381
ISBN: 978-989-758-255-4
Copyright © 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

371

for early detection of resource constraint that ad-
ministrators should deal with. This paper presents
a performance comparison, carried out in a private
cloud infrastructure, between two free and well sup-
ported cloud monitoring tools called Ceilometer and
Monasca. This comparison is mainly focused on eval-
uating these tools ability to obtain monitoring infor-
mation in short time intervals for early detection of
resource constraints. As main contributions, this com-
parison reveals that Ceilometer is a suitable and easy
to configure tool to manage the virtual layer in a pri-
vate OpenStack cloud infrastructure, but when fine
grained monitoring is required its Collector process
does not have an efficient use of RAM in the host sys-
tem, degrading its performance meaningfully. Unlike
Ceilometer, Monasca is easier to configure for man-
aging the physical layer in an OpenStack cloud in-
frastructure, showing that its Persister process has a
better use of RAM in the host system. Moreover, in a
fine grained monitoring scenario, Monasca was able
to provide timely monitoring information, becoming
a suitable option for being integrated into an adaptive
cloud resource management system.

The rest of the paper is organized as follows:
Section 2 shows the research on cloud monitoring,
covering general purpose monitoring tools adapted
to cloud environments and cloud specific monitor-
ing tools. The characteristics of the cloud monitor-
ing tools evaluated in this paper are presented in Sec-
tion 3 whereas Section 4 shows a qualitative analysis
of Ceilometer and Monasca cloud monitoring tools,
highlighting their main features. Section 5 describes
the methodology used to conduct the performance as-
sessment of the previously described monitoring tools
as well as the analysis of the results. Finally the paper
ends giving the conclusions in Section 6.

2 RELATED WORK

The tools for monitoring of resources have been de-
veloped ad hoc for different computing models (e.g.
servers, clusters, grid and cloud). For instance, Na-
gios (Nagios Enterprises, 2017; Barth, 2008) is an
open-source monitoring tool for distributed systems
and networks which has been adapted to cloud en-
vironments. It uses a plug-in-based model to ex-
tract information about different performance met-
rics (Perez-Espinoza et al., 2015b) from resources of
physical and virtual machines. Nagios follows a cen-
tralized approach that produces a single point of fail-
ure and a bottleneck on the server storing the metrics,
which could affect the reliability and response time in
which the administrators of data centers receive moni-

toring information. Although Nagios can be extended
using DNX in order to be distributed and to sup-
port large deployments of infrastructures (Calero and
Aguado, 2015), DNX suffers from high-availability
problems as "if the master server goes down, every-
thing is down" (Nagios Enterprises, 2015). Other
monitoring systems commonly used in cluster envi-
ronments, where the changes in the infrastructure are
not as dynamic as they are in cloud scenarios (Aceto
et al., 2013) are Ganglia (Massie et al., 2004) and Col-
lectd (Cowie, 2012).

PCMONS (Chaves et al., 2011) was designed
specifically for monitoring the resources of private
cloud infrastructures. The main drawback of PC-
MONS is its centralized architecture since the moni-
tored data are stored and processed by a unique server,
impacting directly to the scalability and fault toler-
ance of the system and representing a single point of
failure (Perez-Espinoza et al., 2015a). Another pro-
posal is FlexACMS (de Carvalho et al., 2013), a mod-
ular monitoring solution designed for private clouds
based on general purpose monitoring solutions such
as Nagios and MRTG (Oetiker, 2017). This type of
tool supports the creation of monitoring slices, which
are composed of a set of monitoring metrics and as-
sociated configurations used to monitor cloud slices
on cloud platforms; however, fault tolerance and
scalability issues are not addressed in their proposal
(Perez-Espinoza et al., 2015b). Konig et al. (König
et al., 2012) implemented a P2P monitoring frame-
work to provide reliable and elastic monitoring ser-
vices for gathering information across all cloud lay-
ers. Povedano-Molina et al. (Povedano-Molina et al.,
2013) proposed a distributed cloud monitoring archi-
tecture called DARGOS which provides measures of
the physical and virtual resources using push/pull ap-
proaches. It is composed of two main components,
the Node Monitoring Agent (NMA), for collecting the
resources statistics, and the Node Supervisor Agent
(NSA), as a subscriber to monitoring information be-
ing published by NMA. DARGOS mainly copes with
extensibility, adaptability, and intrusiveness (Aceto
et al., 2013). MonPaaS (Calero and Aguado, 2015)
is another cloud monitoring tool which uses Open-
Stack as cloud stack and the Nagios tool to monitor
the cloud. It can be used by cloud providers and con-
sumers. Also, it was relesead as open-source under
a GPL license. The problem with MonPaaS is that
its last version was implemented in a very old Open-
Stack version (Folsom) and it is not well documented.
Its deployment requires that users has a great under-
standing of both, the source code of the monitoring
tool and the OpenStack architecture and their APIs.

Ceilometer (Foundation, 2017c) is a free and well

KDCloudApps 2017 - Special Session on Knowledge Discovery and Cloud Computing Applications

372

supported cloud monitoring tool native of the Open-
Stack ecosystem, which represents the main option
for administrators to deploy private/public cloud in-
fraestrucutre (Foundation, 2017b). Monasca, which
stands for Monitoring-at-Scale (LP, 2017a), is also in-
cluded in the native OpenStack ecosystem but can be
deployed in stand-alone manner. This tool deploys
agents on the monitored cloud to extract monitoring
data from cloud resources and delivers this informa-
tion to Monasca service by using push operations.
This service has gained popularity among OpenStack
users as it offers a multi-tenant management environ-
ments and alarms for events and metrics, which is not
completely offered by tools previously described.

Ceilometer and Monasca are becoming the preva-
lent monitoring tools for OpenStack users and have
been used as support for big data proposals (Zareian
et al., 2016) and network virtualization (Gardikis
et al., 2016). Although Ceilometer and Monasca
are prevalent tools among the OpenStack users and
are useful as monitoring solution supporting resource
management proposals, there are no available assess-
ment comparison studies between these tools for the
decision-making processes of administrations of pri-
vate clouds. This paper presents useful insights and
learned lessons for decision makers to take perfor-
mance considerations of both tools into account when
choosing the most suitable tool for specific monitor-
ing requirements.

3 A COMPARATIVE
PERFORMANCE STUDY OF
CLOUD MONITORING TOOLS

In this section, we describe in more detail the char-
acteristics of the cloud monitoring tools evaluated in
this paper. We also discuss the advantages and draw-
backs of both tools to establish a big picture about
monitoring features of both tools, which is described
as qualitative assessment focused on decision makers
and private cloud administrators in Section 4.

3.1 Ceilometer

OpenStack enables the creation of private and pub-
lic IaaS clouds and consists of several key ser-
vices (Foundation, 2016). These services include
the Telemetry service which contains the Ceilometer
component to provide a data collection service across
all OpenStack core components (Foundation, 2017c).
The data collected by Ceilometer can be used to pro-
vide customer billing and resource tracking. Such

data can be sent to different targets, for example,
to MongoDB (NoSQL) or Gnocchi (time series)
database. It provides four main components (Foun-
dation, 2017c):
1. Polling agent: program to poll OpenStack ser-

vices and build meters.
2. Notification agent: program to listen to notifica-

tions on message queues, convert them into events
and samples and apply pipeline actions.

3. Collector: program to gather and record (e.g. in a
database) event and metering data created by no-
tification and polling agents.

4. API: service to query and view data recorded by
collector.

Ceilometer provides two methods which can be used
together to collect data (Foundation, 2017c):
1. Bus listener agent: takes events generated on the

notification bus and transform them into Ceilome-
ter samples. This method is supported by the
ceilometer-notification agent which monitors the
messages queues for notifications.

2. Polling agents: poll some API or other tool to
collect data at a regular interval. The agents
can be configured to poll the local hypervisor
(compute-agent) or remote (central-agent) APIs
(public REST APIs or host-level SNMP/IPMI
daemons). The last method is less preferred due
to the load it can generate on the API services.

The data collected by agents are manipulated and
published in what they call pipelines. A pipeline is
a set of transformers that modify the data points and
transform them. Ceilometer provides different trans-
formers which can be used to manipulate data (e. g.
combine historical data or use the temporal context)
in the pipeline. Such functionality is carried out by
the notification agent.

The processed event and metering data captured
by notification and polling agents are gathered by a
program called Collector and, after the data validation
(signature check) it writes the samples to the specified
target: database (MongoDB or gnocchi), file or http.

In case the collected data was stored in a database
(e.g. MongoDB), such stored data can be accessed
using a REST API rather than by accessing the under-
lying database directly (until OpenStack Mitaka ver-
sion). If Gnocchi is used, the data must be accessed
using the Gnocchi API.

3.2 Monasca

Monasca is an OpenStack project that provides an
open-source multi-tenant, highly scalable, perfor-
mant, fault-tolerant monitoring-as-a-service solution.

Assessment of Private Cloud Infrastructure Monitoring Tools - A Comparison of Ceilometer and Monasca

373

Table 1: Cloud monitoring level comparison: Ceilometer and Monasca.

Infrastructure
monitoring level

Ceilometer Monasca

Virtual Only configure the meters in the
pipeline configuration file of each

compute node that will be monitored
using the Compute-agent.

Only configure the libvirt.yaml plugin
on each compute node that will be
monitored with the Monasca-agent.

This is a bit tricky plugin since we had
to modify the python source code of
such agent’s plugin to make it work.

The problem was related with the
authentication of the Nova and

Neutron clients. This plugin will allow
us to obtain different per-instance

metrics such as cpu.utilization_perc,
io.read_bytes, net.in_packets_sec,

mem.used_mb, etc.
Physical Configure an SNMP server on each

Compute node that will be monitored.
Configure the Central-agent to poll the

remote host-level SNMP daemons
running on compute nodes. Configure
the hardware meters to be polled via
SNMP in the pipeline configuration
file of the node that is running the

Central-agent (typically the
controller). This is the less prefered

method since it can impose more load
on the nodes and, if the Central-agent
goes down, the hardware meters of all

compute nodes get lost.

Only configure the plugins you want to
enable (e.g. cpu.yaml, disk.yaml,

memory.yaml network.yaml) on each
compute node we want to monitor

with the monasca-agent.. Each plugin
can provide different metrics such as
cpu.yaml: cpu.percent, cpu.idle_perc,

etc.

Table 2: Hardware characteristics of cloud hosts.

Host Cores RAM (GB) Disk(s) size Freq. (Ghz)
controller 6 31 465.8G,1.8T 2
compute6 12 62 3.2T 2.5
compute7 6 23 465.8G,931.5G,931.5G 3.07
compute8 16 62 931.5G,931.5G,931.5G,931.5G 2.6
compute9 12 62 930.4G,27.3T 2.2

compute10 24 251 2.7T 2.2
compute11 24 125 2.7T,2.7T 2.2
compute12 24 125 2.7T,2.7T 2.2

Metrics can be published to the Monasca API, stored
and queried. Monasca builds an extensible platform
for advanced monitoring services that can be used by
both operators and tenants to gain operational insight
and visibilty, ensuring availabilty and stability (LP,
2017a).

The members of the Monasca team are primar-
ily composed of companies, organizations and indi-
viduals involved in development and deployment of
OpenStack. Some of the major companies involved
with developing and/or deploying Monasca are (LP,

2017a): Hewlett Packard, Enterprise Time Warner
Cable (TWC), Fujitsu, Cisco, Cray, Rackspace, SAP
NEC.

The Monasca API is the gateway for all interac-
tion with Monasca. In a typical scenario metrics are
collected by the Monasca Agent running on a sys-
tem and sent to the Monasca API. The API then pub-
lishes the metrics to the Kafka queue. From here the
Monasca Persister consumes metrics and writes them
to the Metrics database. The Monasca Threshold En-
gine also consumes the metrics and uses them to eval-

KDCloudApps 2017 - Special Session on Knowledge Discovery and Cloud Computing Applications

374

uate alarms (LP, 2017b). At this point the metrics are
in the system and can be queried using the Monasca
API, either directly or through one of other compo-
nents, such as the Horizon plugin or the Monasca
CLI (LP, 2017b). Also there exists a configuration
database used for storing information such as alarm
definitions and notification methods. This database
can be either MySQL or PostgreSQL (LP, 2017b).

Finally, Monasca is composed of the following
main components (Foundation, 2017a):

• Monitoring Agent (monasca-agent): a Python
based monitoring agent that consists of several
sub-components and supports system metrics,
such as cpu utilization and available memory, Na-
gios plugins, statsd and many built-in checks for
services such as MySQL, RabbitMQ, etc.

• Monitoring API (monasca-api): a RESTful API
for monitoring that is primarily focused on the
following concepts and areas: metrics, statistics,
alarms and notification methods. It has both Java
and Python implementations avaialble.

• Persister (monasca-persister): a program which
consumes metrics and alarm state transitions from
the MessageQ and stores them in the Metrics and
Alarms database. It has both Java and Python im-
plementations available.

• Message Queue: a third-party component that pri-
marily receives published metrics from the Mon-
itoring API and alarm state transition messages
from the Threshold Engine that are consumed by
other components, such as the Persister and No-
tification Engine. Currently, a Kafka based Mes-
sageQ is supported.

• Metrics and Alarms Database: a third-party com-
ponent that primarily stores metrics and the alarm
state history.

• Config Database: a third-party component that
stores a lot of the configuration and other infor-
mation in the system. Currently, MySQL is sup-
ported.

• Monitoring Client (python-monascaclient): a
Python command line client and library that
communicates and controls the Monitoring API.
The Monitoring Client also has a Python library,
"monascaclient" similar to the other OpenStack
clients, that can be used to quickly build addi-
tional capabilities. The Monitoring Client library
is used by the Monitoring UI, Ceilometer pub-
lisher, and other components.

• Monitoring UI: A Horizon dashboard for visualiz-
ing the overall health and status of an OpenStack
cloud.

4 A QUALITATIVE
COMPARISON OF
CEILOMETER AND MONASCA

As we described in the previous sections, Ceilometer
and Monasca are two different monitoring tools de-
signed to monitor an OpenStack cloud. We decided
to compare such tools since OpenStack is one of the
most used cloud stack in both literature and open-
source community.

In Table 1 we can see a comparison between the
virtual and physical infrastructure monitoring levels
of both Ceilometer and Monasca. On one hand we
can see that it is easy to configure the virtual infras-
tructure monitoring on Ceilometer, whilst it has some
drawbacks to monitor the physical infrastructure. To
obtain the hardware metrics of the physical nodes it
has to run a centralized server (central-agent) on one
node to poll the SNMP servers running on compute
nodes. Such approach has the drawback that, if the
central-agent goes down, the hardware meters of all
compute nodes get lost, in addition to imposing an
extra load on the physical nodes. On the other hand,
unlike Ceilometer, in Monasca it is easy to monitor
the physical infrastructure. Only it is necessary to
configure the plugins to enable the different metrics
it provides. However, problems arise when we had
to enable the virtual infrastructure monitoring via the
libvirt.yaml plugin. Such plugin allows to obtain dif-
ferent per-instance metrics. We had to modify the
python source code of such agent’s plugin to make
it works. The problem was related with the authenti-
cation of the Nova and Neutron clients.

A summary of the most important components of
Ceilometer and Monasca are depicted in the mind
map shown in Figure 1. It also shows some relevant
properties that can be varied to perform different tests,
for example to vary the number of workers or pro-
cesses in charge of collecting metrics in the Collector
or Persistert agent in Ceilometers or Monasca respec-
tively.

5 PERFORMANCE EVALUATION
AND RESULTS

In this section, we describe the methodology used to
conduct the performance assessment of Ceilomenter
and Monasca tools in a private cloud as well as the
analysis of the results of this evaluation.

Assessment of Private Cloud Infrastructure Monitoring Tools - A Comparison of Ceilometer and Monasca

375

Figure 1: Ceilometer and Monasca mind map.

KDCloudApps 2017 - Special Session on Knowledge Discovery and Cloud Computing Applications

376

Figure 2: Cloud testbed.

5.1 Evaluation Methodology

A set of experiments were executed in a real cloud
computing environment and the cloud deployed for
this evaluation included eight nodes. Seven for Com-
pute and one Controller (see the characteristics of
each node in Table 2). Ceilometer and Monasca were
used to monitor the virtual and physical infrastruc-
ture. Figure 2 shows that Compute6 to Compute12
run the polling agents. In the Compute10 node is
also located the Ceilometer Collector and Monasca
Persister processes, whose main tasks are to obtain
(through message queues) the monitoring informa-
tion extracted by polling agents. This information is
stored in the Gnocchi database (Ceilometer configu-
ration) and the Influx database (Monasca configura-
tion). The message queues used by Ceilometer Col-
lector and Monasca Persister are Rabbit and Kafka
respectively.

Depending on the configuration of the monitoring
system, some times, the most recent measurements
may have not been processed and stored when high
frequency monitoring was activated. In this scenarios,
measures could not be extracted in a timely manner
with the respective API of the tool, implying that the
current stored data were obsolete, providing an incon-
sistent landscape of the cloud state. In order to find
which of the two monitoring tools were able to obtain
the most recent measurements (almost real time), we
measured the delay between the time (UTC) of the
Controller node and the timestamp of the last mea-
surement of one metric (CPU % usage of a virtual
machine) stored in the database of the monitoring sys-

tem. All this using the respective API of each system.
The total number of tests performed with both

monitoring tools were 50 (25 for each monitoring
tool), each one executed during 1 hour, with differ-
ent polling interval and different number of work-
ers/processes of the program in charge of taking the
data from the message queue to send them to the
database. Table 3 shows the different configurations
executed on the cloud. It is worthy to mention that
in this evaluation the monitoring information that
Ceilometer and Monasca were requiring to polling
agents installed in the private cloud has to be with
CPU, RAM, Hard Disk and Network consumption of
every node in the cloud (including VMs metrics from
the hypervisors). In this evaluation, for every request
of monitoring information, Ceilometer extracted a to-
tal of 62 metrics and Monasca 92 metrics from the
different plugins included in their respective polling
agents in our private cloud scenario.

Table 3: Test configurations.

Monit.
tool

Workers Polling
intervals

#
Configs.

Ceilometer 1, 2, 4, 8,
16

10, 30, 60,
90, 120

25

Monasca 1, 2, 4, 8,
16

10, 30, 60,
90, 120

25

Total 50

5.1.1 Metrics

In order to conduct our evaluation, we collected two
basic performance metrics:

Assessment of Private Cloud Infrastructure Monitoring Tools - A Comparison of Ceilometer and Monasca

377

• % RAM: This metric allows us to determine the
RAM consumption impact when Ceilometer Col-
lector and Monasca Persister processes use differ-
ent configurations and vary the time interval for
extracting monitoring information.

• Delay: This metric represents the delay produced
by Ceilometer and Monasca in the extraction of
monitoring data.

5.2 Analysis of Results

During the execution of the previously described
tests, we analyzed the physical resource consump-
tion of both monitoring systems and we found that
Ceilometer has memory problems with the agent
(Collector) in charge of sending the monitored data
to the database, whilst Monasca didn’t present prob-
lems with its analogue agent (Persister). However,
Monasca presented some limitations when the time
interval configured in polling agents was less than 10
seconds, its polling agents suddenly crashes. This be-
havior was caused by delays in the execution of plug-
ins used by the polling agents, since some plugins are
still in execution measuring metrics when the agents
tries to poll again according to their interval rate. For
this reason, we use in this evaluation time intervals of
10 or more seconds.

We started our evaluation running Ceilometer as
our monitoring tool. As we can see in Figure 3 (be-
ing the horizontal axis the time and the vertical axis
the RAM %), using a fine-grained polling interval of
10 seconds and 1 Collector worker causes that the
RAM usage increases very fast (Figure 3a), whilst us-
ing longer polling intervals (Figures 3b-d) the usage
of RAM decreases. We can note that using the 10
polling frequency provokes that the RAM usage in-
creases 1 percent every 0.28 hours wich means the
monitoring system is consuming more than 2.5 GB of
RAM per hour, running the host system out of mem-
ory in almost 28 hrs. This situation implied that for
a test scenario as described in Figure 2, it was neces-
sary to start again the monitoring process every day,
limiting the continuous monitoring activity to 1 day
periods. On the other hand, the RAM consumption
of Monasca was negligible (almost 0) when using a
similar number of processes (number of workers in
Ceilometer) in its Persister agent, reason why these
graphs were not included in the paper. The intuition
behind this behavior is that Monasca Persister is free-
ing the memory used after completing every request
for monitoring information and Ceilometer Collector
is keeping this information in memory.

Figure 4 shows the timestamp delay comparison
of the following 10 configurations of both monitoring

tools: Collector workers or Persister processes: 1;
polling intervals: 10, 30, 60, 90 and 120 seconds.
Polling intervals define the time interval that will be
used by polling agents to get monitoring informa-
tion from a specific resource, e.g. CPU, RAM, HD
or Network. The delay was calculated as the differ-
ence between the current timestamp of the controller
node and the timestamp of the last measurement of
one metric (e.g., CPU % usage in a VM) stored in the
database of the monitoring system. We can see in Fig-
ure 4a that Ceilometer’s delay has a linear growth and
the smaller the polling interval (fine-grained monitor-
ing) the greater the timestamp delay, e.g., in this case
the 10s configuration obtained the greater delay along
the time series whilst the 120s configuration obtained
the smaller delay. Monasca on the other hand pre-
sented a stabilized behavior. In Figure 4b it can be
seen that the delay is almost the same along the time
series, generating only an approximate increase of 5
seconds over the polling interval, e.g., the 10s config-
uration obtained a delay of about 15 seconds along the
time series whilst the 120s configuration obtained a
delay of about 125 seconds, confirming what was pre-
viously said. It is worthy to mention that every time
Controller requests for a specific metric (e.g., CPU %
usage), Ceilometer or Monasca responses with a time
series of that metric (list of all measures with its corre-
sponding timestamps taken since the monitoring pro-
cess started). This means that the time series is short
at the the initial phase of monitoring activity and is
getting larger with time.

Delay of the rest of executed configurations of
both monitoring tools is shown in Figure 5. In the
case of Ceilometer (Figures 4a and 5a) we can see that
the worst configurations were those with the smaller
polling interval (10s), whereas the bests configuratons
were those with the greater polling interval (120s);
and the two better configurations were those with four
and sixteen workers and 120s polling interval (de-
picted in Figure 5a as 4_w-p_120s and 16_w-p_120s
respectively) with delay of about 500s along the time
series. This means that with the best Ceilometer’s
configuration we obtained an approx. delay of 8 min-
utes during 1 hour. Monasca on the other hand ob-
tained a better performance (see Figure 5b), following
the same behavior of the first 5 configurations previ-
ously analyzed (Figure 4b) in which the delay only
increased 5 seconds approximately on the polling in-
terval along the time series during 1 hour. This shows
that Monasca can provide a more precise landscape of
the cloud since it had a better performance (smaller
delay) in all the executed tests.

Currently the entire time series is retrieved to get
the last measurement of the metric. Since the moni-

KDCloudApps 2017 - Special Session on Knowledge Discovery and Cloud Computing Applications

378

Figure 3: One collector worker in Ceilometer execution. Polling intervals: a) 10s, b) 30s, c) 60s and d) 90s.

Table 4: Experiments summary.

Cloud stack Monitor Feature
measured

Resource
measured

Agent
name

Memory
consumption

Delay’s
growth

OpenStack Ceilometer Timestamp
delay RAM Collector High Linear

Monasca Persister Low Stable

toring time of the experiments only extends to 1 hour,
such a behaviour is not a problem when we get the
time series. However, if we decided to run more ex-
periments with a longer monitoring time it would be
necessary to get only a subset of the last measure-
ments. Taking into account the previous observa-
tion, a more extended set of experiments increasing
the running time of the monitoring tools can be per-
formed to confirm our findings.

Finally, Table 4 shows a summary of the previ-
ously described experiments and results. As we can
see, an OpenStack cloud was constructed to run the
set of experiments, measuring the RAM consump-
tion of the collectors programs of the monitoring tools
(Ceilometer Collector and Monasca Persister) and the
timestamp delay of the last monitored measurement;
the former allows us to detect possible bottlenecks

during the data collection stage and the latter to iden-
tify which monitor enables a timely resource monitor-
ing.

6 CONCLUSIONS

This paper provides a relevant information about
results obtained from a qualitative and quantitative
evaluation of two monitoring tools (Ceilometer and
Monasca), which are popular among the administra-
tors of cloud deployed by using OpenStack. The qual-
itative comparison of both tools shows a big picture
of the main functionality characteristics, whereas the
quantitative evaluation provides useful insights about
how the collector agents impact resource consump-
tion in host systems in a private OpenStack cloud en-

Assessment of Private Cloud Infrastructure Monitoring Tools - A Comparison of Ceilometer and Monasca

379

Figure 4: Delay in extraction of monitoring data. Collector workers/persister processes: 1. Polling intervals: 10s, 30s, 60s,
90s, 120s. a) Ceilometer and b) Monasca.

Figure 5: Delay in extraction of monitoring data. Collector workers/persister processes: 2, 4, 8, 16; polling intervals: 10s,
30s, 60s, 90s, 120s. a) Ceilometer and b) Monasca.

vironment when high frequency sensing of node re-
sources is required. As expected, the consumption of
resources (especially memory) in the host server/node
meaningfully increases when sensing is carried out in
short periods of time. The obtained results of this
evaluation make Monasca as an easier to use and suit-
able tool for monitoring private cloud infrastructure
than Ceilometer when high frequency sensing is re-
quired. Ceilometer exhibits memory problems caus-
ing delays when obtaining monitoring data; as a re-
sult, the metrics stored on Ceilometer database were
out-of-date. This is a relevant finding for decision
makers to take into account when choosing a moni-
toring tool for a private cloud infrastructure. This is
also relevant for an ongoing work in which an adap-
tive cloud resource management system is being de-
veloped and that will include Monasca as data mon-
itoring provider based on learnt lessons in this study.
The adaptive system will apply data analysis and pre-
diction algorithms that allow the cloud manager plat-
form to assign and reallocate resources in a dynami-

cally way, without user intervention.

ACKNOWLEDGEMENTS

This work was partially supported by the sectoral fund
of research, technological development and innova-
tion in space activities of the Mexican National Coun-
cil of Science and Technology (CONACYT) and the
Mexican Space Agency (AEM), project No.262891.

REFERENCES

Aceto, G., Botta, A., De Donato, W., and Pescapè, A.
(2013). Cloud monitoring: A survey. Computer Net-
works, 57(9):2093–2115.

Barth, W. (2008). Nagios: System and network monitoring.
No Starch Press.

Brinkmann, A., Fiehe, C., Litvina, A., LÃijck, I., Nagel,
L., Narayanan, K., Ostermair, F., and Thronicke,

KDCloudApps 2017 - Special Session on Knowledge Discovery and Cloud Computing Applications

380

W. (2013). Scalable monitoring system for clouds.
In 2013 IEEE/ACM 6th International Conference on
Utility and Cloud Computing, pages 351–356.

Calero, J. M. A. and Aguado, J. G. (2015). Monpaas:
An adaptive monitoring platformas a service for cloud
computing infrastructures and services. IEEE Trans-
actions on Services Computing, 8(1):65–78.

Chaves, S. A. D., Uriarte, R. B., and Westphall, C. B.
(2011). Toward an architecture for monitoring
private clouds. IEEE Communications Magazine,
49(12):130–137.

Cowie, B. (2012). Building a better network monitoring
system. Bachelor Report Degree, Computing and
Mathematical Sciences, University of Waikato, Hamil-
ton, New Zealand.

de Carvalho, M. B., Esteves, R. P., da Cunha Rodrigues,
G., Granville, L. Z., and Tarouco, L. M. R. (2013). A
cloud monitoring framework for self-configured mon-
itoring slices based on multiple tools. In Proceedings
of the 9th International Conference on Network and
Service Management (CNSM 2013), pages 180–184.

Fatema, K., Emeakaroha, V. C., Healy, P. D., Morrison, J. P.,
and Lynn, T. (2014). A survey of cloud monitoring
tools: Taxonomy, capabilities and objectives. Journal
of Parallel and Distributed Computing, 74(10):2918 –
2933.

Foundation, O. (2016). Openstack installation
guide for red hat enterprise linux and centos,
http://docs.openstack.org/mitaka/install-guide-rdo/.

Foundation, O. (2017a). Monasca,
https://wiki.openstack.org/wiki/monasca.

Foundation, O. (2017b). Openstack open source cloud com-
puting software, https://www.openstack.org/.

Foundation, O. (2017c). Welcome to the
ceilometer developer documentation!,
http://docs.openstack.org/developer/ceilometer/.

Gardikis, G., Koutras, I., Mavroudis, G., Costicoglou, S.,
Xilouris, G., Sakkas, C., and Kourtis, A. (2016). An
integrating framework for efficient nfv monitoring. In
2016 IEEE NetSoft Conference and Workshops (Net-
Soft), pages 1–5.

König, B., Calero, J. A., and Kirschnick, J. (2012). Elastic
monitoring framework for cloud infrastructures. IET
Communications, 6(10):1306–1315.

LP, H.-P. E. D. (2017a). Monasca: about,
http://monasca.io/root/about/.

LP, H.-P. E. D. (2017b). Monasca: architecture,
http://monasca.io/root/architecture/.

Massie, M. L., Chun, B. N., and Culler, D. E. (2004). The
ganglia distributed monitoring system: design, im-
plementation, and experience. Parallel Computing,
30(7):817–840.

Nagios Enterprises, L. (2015). Nagios
xi - using dnx for load-balancing,
https://assets.nagios.com/downloads/nagiosxi/docs/using-
dnx-for-load-balancing-with-nagios-xi.pdf.

Nagios Enterprises, L. (2017). Nagios,
http://www.nagios.org/.

Oetiker, T. (2017). Mrtg: Multi router traffic grapher.,
http://oss.oetiker.ch/mrtg/.

Perez-Espinoza, J. A., Sosa-Sosa, V. J., and Gonzalez, J. L.
(2015a). Distribution and load balancing strategies
in private cloud monitoring. In 2015 12th Interna-
tional Conference on Electrical Engineering, Com-
puting Science and Automatic Control (CCE), pages
1–6.

Perez-Espinoza, J. A., Sosa-Sosa, V. J., Gonzalez, J. L., and
Tello-Leal, E. (2015b). A distributed architecture for
monitoring private clouds. In 2015 26th International
Workshop on Database and Expert Systems Applica-
tions (DEXA), pages 186–190.

Povedano-Molina, J., Lopez-Vega, J. M., Lopez-Soler,
J. M., Corradi, A., and Foschini, L. (2013). Dargos: A
highly adaptable and scalable monitoring architecture
for multi-tenant clouds. Future Generation Computer
Systems, 29(8):2041 – 2056. Including Special sec-
tions: Advanced Cloud Monitoring Systems & The
fourth {IEEE} International Conference on e-Science
2011 - e-Science Applications and Tools & Cluster,
Grid, and Cloud Computing.

Smit, M., Simmons, B., and Litoiu, M. (2013). Distributed,
application-level monitoring for heterogeneous clouds
using stream processing. Future Generation Com-
puter Systems, 29(8):2103–2114.

Zareian, S., Fokaefs, M., Khazaei, H., Litoiu, M., and
Zhang, X. (2016). A big data framework for cloud
monitoring. In Proceedings of the 2Nd Interna-
tional Workshop on BIG Data Software Engineering,
BIGDSE ’16, pages 58–64, New York, NY, USA.
ACM.

Assessment of Private Cloud Infrastructure Monitoring Tools - A Comparison of Ceilometer and Monasca

381

