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Abstract: The quality requirement is an important issue for modern companies. Many tools and philosophies have 
been proposed to monitor quality, including the seven basic tools or the experimental design. However, high 
quality requirement may lead companies to work near their technological limit capabilities. In this case, 
classical approaches to monitor quality may be insufficient. That is why on line quality monitoring based on 
the neural network prediction model has been proposed. Within this philosophy, the dataset is used in order 
to determine the optimal setting considering the operating point and the product routing. An inverse model 
approach is proposed here in order to determine directly the optimal setting in order to avoid defects 
production. A comparison between the use of a classical multi-inputs multi-outputs NN model and a 
sequence of different multi-inputs single-output NN models is performed. The proposed approach is tested 
on a real application case. 

1 INTRODUCTION 

Product quality control is became a major issue in 
the mass customization context. Different policies, 
such as Total Quality Management (TQM) or Just in 
Time (JiT), have been developed in order to control 
quality. These two policies are related to the Lean 
Manufacturing (LM) concept (Vollmann et al., 
1984). 

These policies require the use of different tools, 
such as the seven basic quality tools (Ishikawa chart, 
check sheet, control charts, histogram, Pareto chart, 
scatter diagram, stratification) which allow to 
control quality a posteriori. This approach leads to 
reject or to downgrade a large part of the production 
(Thomas et al., 2013).  

A first improvement was given by Taguchi 
(1989) which proposed to set up the parameters 
control in order to avoid the defects production. The 
aim of the Optimal Experimental Design (ODE) 
proposed by Taguchi is to provide a setting of the 
parameters robust to changing conditions. However, 
robust setting is generally non optimal when the 
actual conditions are considered. Well, for high 
quality production, the process works often near the 

limits of its capabilities. In this case, non optimal 
setting are insufficient to limit the defects production 
(Noyel et al., 2013a).  

Noyel et al., (2013b) have proposed to exploit 
the production data, collected and stored with 
traceability goal, in order to perform on-line quality 
monitoring. This approach exploits prediction 
models able to predict the defect occurrence risk as a 
function of the actual operating range and the 
product routing.  

In order to improve this approach, another 
philosophy can be exploited. In the domain of 
automatic control, adaptive inverse control is based 
on inverse processes identification where the output 
of the process becomes the input of the model 
(figure 1) (Widrow and Bilello, 1993). 

The design of the inverse model is often 
performed by using the neural network approach and 
this type of control has been applied with success to 
the control of many non linear process such as, 
synchronous motor (Liu et al., 2013), Maglev 
system (Hajimani et al., 2014) and robotic (Yildirim, 
2004). 

The main idea developed here, is to propose an 
on line quality monitoring approach based on 
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inverse neural model. The goal is to design a model 
able to determine the optimal setting from the 
tunable parameters, considering the operating point, 
the product routing and the defects occurrence risks.  
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Figure 1: Inverse identification (Widrow and Bilello, 
1993). 

The main goal of such approach is to obtain 
directly a setting able to avoid defects. Moreover, if 
a pruning procedure is performed on the neural 
model, some inputs may be removed of the model. If 
one or more of these inputs correspond to defect 
types, this implies that a subsidiary benefit is to 
determine if a tunable parameter has an impact or 
not on some defect types occurrence. 

First we will recall succinctly the quality 
monitoring problem. In a second step, the proposed 
procedure will be describe. Two approaches will be 
discussed: 
 Using of one multi inputs multi outputs (MIMO) 

model; 
 Using of several multi inputs single output 

(MISO) models; 

The structure of the neural network and the tools 
used will be also presented. After, the industrial 
application case and the results obtained will be 
presented before to conclude.  

2 QUALITY MONITORING 

Quality monitoring needs to understand which 
factors have an impact on the defects production. 
Ishikawa (1986) has proposed the 6M method which 
classes these factors into 6 categories: Machine 
(technology), Method (process), Material, Man 
Power, Measurement (inspection), Milieu 
(environment). In the context of on line quality 
monitoring which needs to design a prediction 
model of the defect, it is more useful to classify 
these factors into controllable and non-controllable 
factors (Noyel et al., 2013b). The controllable 
factors group together the setup parameters when the 
non-controllable factors include the operating point 

(environmental factors, process constraints…) and 
the routing product factors.  
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Figure 2: Data collection. 

So, in this context, three main types of data must 
be collected and stored: controllable and 
uncontrollable factors upstream of the process, and 
the defects types downstream of the process (figure 
2).  
Two ways may be used to search the “zero defect” 
goal: 
 By optimizing the settings of various factors; 
 By drifts monitoring and prevention; 

The on line quality monitoring philosophy refers to 
the first way. The goal is to determine the best 
setting of the controllable factors, for each product 
or batch (taking into account its routing constraints), 
considering the existing conditions (current 
operating point) (Thomas et al., 2013). 

3 ON LINE QUALITY 
MONITORING 

The proposed approach is based on the design of a 
neural model able to determine the optimal setting of 
controllable factors. The neural network used here is 
a multilayer perceptron which seems to be perfectly 
adapted to our needs because it is an universal 
approximator (Cybenko, 1989, Funahashi, 1989).  

3.1 Multilayers Perceptron 

The classical multilayer perceptron (MLP) is a 
feedforward neural network including only one 
hidden layer using a sigmoidal activation function 
and on output layer using an activation function 
which can be linear for regression problem or 
sigmoidal for classification problem. Its structure is 
given by (for the output k): 
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where, kz  are the 2n  outputs and 0
hx  are the n0 inputs 

of the neural network, 1
ihw  are the weights 

connecting the input layer to the hidden layer, 1
ib  are 

the biases of the hidden neurons, g1(.) is the 
activation function of the hidden neurons (here, the 
hyperbolic tangent), 2

kiw  are the weights connecting 

the hidden neurons to the output k, kb  is the bias of 

the output neuron k, g2(.) is the activation function of 
the output neuron. Because of the problem is to 
obtain the optimal setting of controllable parameters, 
we are faced to a regression problem, so g2(.) being 
chosen linear. 

No normalisation is performed on the dataset. 
This fact implies to use an initialisation algorithm 
able to take into account the different value ranges 
between the inputs (Nguyen and Widrow, 1990). 

The dataset is a real industrial dataset polluted 
with outliers. So the learning algorithm used must be 
robust to these outliers (Thomas et al., 1999). In 
order to evaluate the generalization capabilities of 
the model, the dataset must be divided into learning 
and validation datasets. The learning dataset is used 
in order to adapt the parameters of the MLP when 
the validation one is used to estimate the 
performance of the model.  

The accuracy of the neural model depends on the 
structure (number of hidden neurons, inputs and 
parameters). Too few parameters or hidden neurons, 
and the learning can’t find accurate parameters. Too 
much parameters, and the learning can lead to the 
well-known overfitting problem. To avoid this 
problem, the learning is performed on a largely 
oversized structure with too much hidden neurons 
and a pruning procedure is used to reduce this 
structure (Thomas and Suhner, 2015). This 

procedure presents the advantage to be able to 
discard some spurious inputs.  

3.2 Tuning of Controllable Parameters 

The main idea is to determine the optimal setting of 
the controllable parameters by using MLP model. 
This model is designed by using the dataset 
constituted by the controllable and uncontrollable 
factors collected upstream of the process, and the 
defects types collected downstream of the process. 
This model is designed under the inverse concept 
where the outputs of the model are constituted by 
some inputs of the process, when the inputs of the 
models includes some inputs of the process and its 
outputs (figure 3). 
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Figure 3: Inverse model design. 

To do that, the classical and simplest approach is 
to design a multi-inputs multi-outputs (MIMO) 
neural network. However, in this case, the pruning 
phase don’t allow to determine if a defect type 
(input) is related to a particular setup parameter 
(output).  

To outperform this drawback, another structure 
is used, where different multi-inputs single-output 
(MISO) neural networks are designed sequentially. 
The figure 4 presents an example of such structure, 
where 3 setup parameters are considered. 
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Figure 4: Sequential MISO NN models (case of 3 setup parameters). 



Considering this structure, four advantages can 
be listed: 
 Each NN model includes less parameters (only 

one output, possibly less hidden neurons, 
possibly more inputs pruned). This fact improves 
the learning and using speeds and limits the 
overfitting risk.  

 The learning of each NN model is independent. 
This fact implies that the learning of these 
different model may be performed in parallel.  

 The pruning step allows to pruned inputs in each 
NN model. This fact implies that a causal link 
may be discarded between some defect types 
(pruned inputs) and the considered setup 
parameter.  

 Each NN model may use, as inputs, the outputs 
(setup parameters) of the upstream NN models in 
the sequential structure. This fact allows to 
improve the global accuracy of the structure.  

The sequence of the different MISO NN models 
selected is the one which optimize the accuracy of 
the complete structure on the validation dataset.  

In the sequel, the performances of the proposed 
structure will be tested and compared with those 
obtained with a single MIMO model on a real 
industrial case.   

4 INDUSTRIAL APPLICATION 

4.1 Presentation of the Process 

The considered problem is a quality monitoring 
problem in a company which produces high quality 
lacquered panels made in MDF (Medium Density 
Fibreboard) for kitchen, bathroom, offices, hotel 
furniture, stands, shops... This study focuses on its 
main process which is a robotic lacquering 
workstation. This workstation is free of human 
factors, but defects rates are important and very 
fluctuant, and could expand from 10% to 45% from 
one day to another. This fact is mainly due to the 
high quality requirements, which implies that this 
workstation works at its limit capabilities. So, 
despite the design of an ODE in order to tune this 
robotic workstation, the company fails to reduce the 
defects rates.  

That’s why an on line quality monitoring 
approach is performed. Expert knowledge has 
allowed to list parameters able to have impact on the 
defects generations. These parameters can be 
classified into: 
 Three environmental factors (temperature, 

humidity, pressure).  
 Five product routing parameters (number of 

passes, time per table, litre per table, number of 
layers, drying time)  

 Three setup parameters (load factor, basis 
weight, number of products).  

These different factors and parameters are able to 
have an impact on thirty different defects types.  

Considering the inverse model structure, the 
dataset is constituted by three outputs (setup 
parameters) and thirty eight inputs (environmental 
factors, product routing parameters, and types of 
defects). The dataset includes 2167 data and is split 
into two datasets for identification (1088 data) and 
validation (1079).  

In order to limit the risk of local optimum 
trapping, the learning of all the NN models is 
performed with twenty initial parameters sets and 
the best one is retained.  

The selection criterion used is the classical Root 
Mean Square Error (RMSE) calculated on the 
learning and validation datasets: 
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where z(n) is the output given by the network for the 
data n and y(n) is the corresponding target.  

The first NN model designed is the MIMO one. 
The initial number of hidden neuron is set to twenty. 
Table 1 presents the RMSE values obtained with the 
best MIMO model for the three different outputs. 
These values highlight the difference between the 
variation ranges and amplitudes of the outputs. This 
fact may have an impact on the learning accuracy. 
During the learning, the criterion to minimize is the 
errors sum squared performed on the three outputs. 
In this case, the risk is that the learning algorithm 
favours one output over the others.  

Table 1: RMSE values for the MIMO NN model. 

learning validation
load factor 0.4057 0.4406

basis weight 191.8222 238.2346
products number 307.3382 381.0269  

 

The results obtained with the MIMO model must 
be compared to those obtained with the sequence of 
MISO models.  

To design the sequence of MISO models, it is 
necessary to determine in which order the setup 
parameters must be considered. The selected order is 
the one which maximize the sequence accuracy. 



Table 2: RMSE values for the different MISO NN models. 

1
st

 MISO model

load factor basis weight products number basis weight load factor load factor
products number products number basis weight

learning 0.3698 0.3509 0.2339 0.2381
validation 0.4336 0.4466 0.2856 0.2805

learning 177.3311 185.1477 182.785 178.9352
validation 230.4716 226.6402 224.0547 228.0947

learning 297.5479 223.1687 365.6229 218.7272
validation 361.2214 264.4579 369.2758 256.713

3
rd

 MISO model

supplementary 
inputs

Load factor

basis weight

products number

2
nd

 MISO model

 
 

Different MISO NN models must be designed 
with different structures. For all these models the 
initial number of hidden nodes is setup to twenty.  

The inputs number depends of the order of the 
sequence. The first MISO model must determine its 
output by using the same thirty eight inputs of the 
MIMO model. The second one shall have one 
additional input (the output of the first MISO 
model). The third one shall have two additional 
inputs (the outputs of the two preceding MISO 
models). 

The table 2 presents the RMSE values obtained 
for the learning and the validation datasets for the 
different MISO NN models designed. The first line 
indicates if the considered model is the first, the 
second or the third of the sequence. The second line 
indicates which the supplementary inputs if 
available are.  

First, it can be noticed that the use of one or two 
supplementary inputs improve the accuracy for the 
three outputs. As example, the RMSE value for the 
validation dataset for load factor is reduced with a 
reduction from 0.4336 to 0.2856 (34% 
improvement) when product number is used as 
supplementary input. The same observation may be 
performed for the two other outputs. 

So it is necessary to determine the optimal 
sequence of MISO models. To do that, the decrease 
in terms of percent of RMSE (compared with the 
results obtained with the MIMO model) is studied 
and the sequence which minimizes the sum of the 
three “RMSE decreased in terms of percent” values 
for the three outputs (on the validation dataset) is 
selected. With this criterion, two sequences gives 
very similar results: 
 First: products number (5%); second: basis 

weight (6%); third: load factor (36%).   
 First: products number (5%); second: load factor 

(35%); third: basis weight (4%).   

For the sequel, we choose arbitrarily the first 
sequence and the results obtained for the three 
MISO models of the sequence are highlighted in 
table 2. This is these results which must be 
compared to those obtained with the MIMO models 

presented table 1. These results show a slight 
improvement for two outputs (5% for products 
number and 6% for basis weight) which is not very 
significant. However, the improvement obtained for 
the third output (load factor) is relevant and reaches 
36%.  

It can be noticed that the choice of the sequence 
is important to obtain the best results, but all 
sequences allows to improve substantially the results 
compared to those obtained with the MIMO model. 
In our case, the worst sequence is: 
 First: load factor (2%);  
 Second: products number (4%);  
 Third: basis weight (31%).   

The choice of the sequence may also be performed 
by using expert knowledge.  

The three selected MISO models have been 
pruned in order to find the optimal structure of the 
model and to limit the overfitting risk. A second 
advantage is, that it allows to determine if a causal 
link occurs between the considered setup parameter 
(output) and the defects types (some of the inputs).  

For the setup parameter “products number” the 
pruning algorithm has preserved only one defect 
type: “grain on face”. This fact implies that the 
optimal tuning of this parameter has no impact on 
the twenty nine other defects types.  

For the second setup parameter: “basis weight”, 
only three defects types are discarded: “grain on 
back”, “scratch” and “sanding defect”. So, the 
optimal setting of this parameter may have an 
impact on the twenty seven other defects types.  

For the third setup parameter: “load factor”, 
seven defects types are discarded: “grain on back”, 
“stain under the paint”; “scratch”, “paint refusal”; 
“priming defect”, “sanding defect”, “silicone mark”. 

It can be noticed that some types of defects are 
impacted by none of the setup parameters: “grain on 
back”, “scratch” and “sanding defect”. This is due to 
the fact that these types of defects don’t find their 
origin in the considered workstation. Scratch defects 
are mainly caused by handling problem. Sanding 
defect are certainly produced during the preceding 
sanding step. Grain on back are performed during a 



 

preceding step of lacquering. 
It can be noticed that some defects types which 

probably don’t find their origin in the considered 
workstation are not pruned in the second MISO 
model: “priming defect” or “silicone mark”. This 
fact is probably due to the pruning algorithm 
accuracy. 

5 CONCLUSIONS 

An on line quality monitoring approach based on 
neural network models is proposed here. The main 
goal of this proposed approach is to determine 
quickly and simply the optimal tuning of setup 
parameters considering the actual operating point 
and the product routing. This quality monitoring is 
based on inverse approach NN models which try to 
determine the tuning of setup parameters by using 
both, non controllable parameters collected upstream 
of the workstation, and quality defects occurrence 
collected downstream of the workstation. 

Two approaches may be used to perform the 
design of the inverse model. The simplest is to use a 
multi-inputs multi-outputs model able to set up all 
the controllable parameters simultaneously. The 
second one is to use a sequence of different multi-
inputs single-output models able each to set up only 
one parameter. These two approaches are tested and 
compared. The results have shown that the second 
approach allows to improve the accuracy of the 
complete system.  

Moreover, the using of a pruning algorithm next 
the learning allows to determine if a causal link 
occurs between some defects types and the 
considered setup parameter.  

In some extreme environmental conditions, it is 
possible that none setup is able to avoid defects 
production for certain product routing. In this case, 
one drawback of the proposed approach is that our 
system will give a setup, possibly the best one, but 
which will be insufficient. Our future works will 
focus on the detection of these particular conditions 
in order to be able to propose to the operator to delay 
the machining of the considered products. 
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