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Abstract: This work provides tools based on matrix factorization that can be used to predict athlete running race times
based on known race results. This is of interest for athlete preparation, for workout route planning and for race
events organization. This work differentiates from previous ones by jointly considering athletes and routes.
This work shows how race records can be used to infer knowledge on the users and the races. The same tools
can also serve to compare different athlete performances and track athlete level over time. Experiments were
conducted on race records of 648 athletes from casual to elite levels. Experiments show that the methodology
can be applied to real data and gives relevant insights.

1 INTRODUCTION

More and more athletes record their sport activities
using a smartphone or a sport watch. Their records
are stored on remote servers owned by companies
that, usually, provide health or fitness statistics. The
massive amount of tracks that are recorded every day
forms a basis for learning about sport practice, loca-
tions and athletes.

This paper shows how to take benefit from geo-
localized running tracks to build models that can be
used to predict running race times. For this pur-
pose, this paper presents a methodology that allows
the characterization of any route in order to be able
to predict running race times of an athlete for which
a few race records are known. This is of particular
interest for race preparation and for workout route
planning. To our knowledge, previous research on
race time prediction focus on the athletes’ features
(age, morphology, gender, . . . ), the athletes’ training
measurements (Noakes et al., 1990; Vickers and Ver-
tosick, 2016; Rüst et al., 2011) or the routes’ charac-
teristics (Riegel, 1981). The framework that is pro-
posed here allows to capture complex relationships
that account for athletes and routes at the same time.
Moreover, the methodology provides tools that enable
athlete performances comparison that can be used to
compare different athletes or to track individual pro-
gression over time.

In this work, only tracks recorded during race
events are considered because they are more likely to
reflect athletes’ abilities than casual activities taken at
random. The task of comparing races based on race
records is not trivial because races are not attended
by the same set of athletes. Likewise, athletes’ results
cannot be compared directly because athletes do not
always attend the same races. On the other hand, there
exist some points of comparison because certain races
have some athletes in common. Making the most of
these points of comparison is related to a research area
that is called ’collaborative filtering’ which includes
the well-known problem of product recommendation
(Ekstrand et al., 2011).

Experiments were performed on a small set of
races that took place in a restricted geographic area
to favor points of comparison (athletes who share sev-
eral races). Our database contains 648 users of a sport
activities sharing platform. Users recorded 276 races
over a period of two years.

2 METHOD

The methodology is divided in two main processes
that are validated individually.

First, a collection of race results is used to infer a
few underlying variables for each athlete and for each
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race using matrix factorization (as it will be explained
in section 2.1). These athlete and race variables will
be referred to as athlete vectors and race vectors. It
is assumed that they synthesize the information that
is required to predict race times. Athlete vectors aa
and race vectors rr are purely abstract and have no
immediate physical counterpart.

Unlike athlete vectors, race vectors are related to
objective physical quantities that are, for instance,
linked to the topology of the race. The second pro-
cess establishes a relationship between the elements
of race vectors and the actual race route character-
istics xr, like total distance or cumulative elevation
gain. Therefore, a regression model F(.) is built such
that F(xr) models as accurately as possible the rr vec-
tor produced by the first process.

The combination of the two processes allows race
time prediction on routes that were not yet run and for
which only the itinerary is known. Indeed, route char-
acteristics xr can be computed from the itinerary; race
vectors can be obtained using the regression model
rr ≈ F(xr) and race time for athlete a running race r
can be predicted from athlete vector aa and race vec-
tor rr.

2.1 Matrix Factorization

A matrix of race times (ta,r) with columns corre-
sponding to races and rows corresponding to athletes
is filled with known race times. In practice, most
matrix entries are unknown (over 90%) because most
athletes ran only few of the existing races. The ma-
trix factorization will allow to make predictions for
the missing values.

Race times ta,r are normalized with respect to race
distances dr to give the race average paces

pa,r =
ta,r
dr

which have better statistical distribution properties
and intuitively correspond to the notion of race diffi-
culty: the faster they are run, the easier they are. The
normalization also gives the advantage that the error
criterion detailed below will not favor long races.

The matrix factorization depicted in Figure 1 re-
sults in an abstract vector representation of chosen
length N for each race r and for each athlete a, respec-
tively rr and aa. The vectors summarize and smooth
the information contained in the known race results.
It is postulated that the vectors can then serve to gen-
erate predictions for the missing race results.

2.1.1 Model

As shown in Figure 1, it is assumed that the average
race paces depend linearly on both race vectors rr and

Figure 1: The matrix factorization produces a vector of
length N (here N = 3) for each race and for each athlete.
Dots represent unknown entries for which predictions can
be achieved by dot product.

athlete vectors aa. Average paces pa,r can therefore be
expressed as a sum of N product terms

pa,r =
N−1

∑
i=0

aa,i · rr,i + εa,r (1)

where ε refers to an added noise that reflects the fact
that our relationship is not deterministic and only
holds true on average. Predictions can be expressed
by

p̃a,r =
N−1

∑
i=0

aa,i · rr,i. (2)

2.1.2 Optimization

The problem to be solved is to choose athletes and
races vectors that best reproduce observed average
race paces. Let Ω be the set of observed entries (a,r)
of the matrix pa,r. Using the least square error crite-
rion, athlete and race vectors can be found by solving
the optimization problem

minA,R ∑
(a,r)∈Ω

(pa,r−aa · rᵀr )2. (3)

This is a non-convex problem that can be solved
using heuristics that proved to converge well in prac-
tice. Successful experiments are conducted using
stochastic gradient descent and alternate least square
algorithms. Stochastic gradient descent loops over
Ω slightly modifying A and R in the direction of the
steepest gradient; reducing the error criterion at each



step (Gemulla et al., 2011). Alternate least square al-
ternates between two convex problem: optimization
of the R vectors while holding A vectors constant
and optimization of the A vectors while holding the
R vectors constant (Jain et al., 2013) .

2.1.3 Matrix Requirements and Choice of N

Obviously, the matrix factorization cannot produce
sound vectors if the number of elements to estimate
is larger than the number of known entries. This con-
dition is met only if each race has at least N athlete
results to estimate their N vector elements and if each
athlete has at least N race results. Races and athletes
that do not fulfill this condition are removed from the
database. In practice, as race times account for vari-
ables that do not come into picture here (such as ath-
lete’s fitness of the day or weather conditions), N vec-
tor elements require slightly more than N race results
so that the noise on the data can be averaged out.

Parameter N is related to the complexity of the
model. A small N value corresponds to a simple
model that is more likely to generalize well but that
might not capture the entire information included in
the race results matrix. A larger value of N requires
more data.

Choosing N = 1 would mean that the model as-
sumes that a race time only depends on one parameter
per race (that can be interpreted its difficulty) and one
parameter per athlete (that can be interpreted as the
inverse of his fitness level).

Choosing N > 1 allows a multivariate representa-
tion of what makes races faster or slower and a mul-
tivariate representation of corresponding athlete abili-
ties. For instance, if vector elements can be mapped to
route characteristics, the model could express the race
difficulty and athlete abilities in terms of endurance,
ascent or ground surface type.

2.1.4 Matrix Factorization Validation

To quantify the ability to determine the A and R vec-
tors that approximate the known race results, 10 per-
cent of the known matrix entries are removed from the
initial set (prior to matrix factorization) and then com-
pared to the same entries in the approximated paces
matrix P̃ = A ·Rᵀ. The process is repeated 10 times,
keeping 10 other percent apart. The accuracy is then
taken as the average root mean square error over the
10 repetitions. This process corresponds to a 10-fold
cross validation scheme (James et al., 2013).

2.2 Mapping Race Vector Elements to
Objective Route Features

The aforementioned matrix factorization gives vec-
tors of N athlete variables and vectors of N race vari-
ables. As it would be of practical use to estimate route
vectors on new routes for which race results are not
(yet) known, the known route parameters rr need to
be linked with objective route features.

2.2.1 Route Features

Routes are described as a list of geo-localized coor-
dinates to which corresponding altitudes can be asso-
ciated. Although one can argue that other parameters
can be related to race times (such as weather condi-
tions and ground type), our characteristics are solely
based on the elevation profile (such as the one in Fig-
ure 2) because they can be easily gathered based on
Global Positioning System (GPS) positions present
in track files. As consumer grade GPS-based ele-
vations cannot be trusted (Bauer, 2013), elevations
were obtained using google map APIs queries and
then smoothed with a 200 meters moving average fil-
ter. This process was validated with barometric al-
timeters.

Figure 2: Elevation profile example that serves as input to
generate route features.

Experiments were only conducted with the two
most common route features, namely total distance
and cumulative elevation gain. The later represents
the sum of positive vertical distances taken along the
track.

2.2.2 Regression Model

Let X be the route features matrix in which each row
xr corresponds to the route features of race r. A re-
gression model F(.) is built to map the race vector
elements to the race features:

r̃r = F(xr). (4)

In the present work, the function F(.) is chosen to
be a multiple output linear regression.

2.2.3 Regression Validation

To validate the regression model, a fraction of the
races are removed from the initial matrix. Their



vectors are estimated with the introduced regression
model using (4). Race paces are predicted with (2) dot
products. The matrix factorization and the regression
model are jointly validated by comparing these pre-
diction with actual race records that were kept aside,
exactly as it was performed for the matrix factoriza-
tion validation.

3 USE CASES

Two cases are described here to illustrate how the
methodology exposed in this paper can be used in
practice. In the first case, the aim is to predict the
running time of an athlete for a race that he did not
run (yet). The second case is the problem of athletes’
performance comparison based on running times that
were recorded on different routes.

3.1 Race Time Prediction

In the simplest case, where the athlete and the race
vectors are known from the matrix factorization, race
pace can be predicted using (2). Otherwise, vectors
can be estimated as follows:

• If the race is new, the race vector rr is not known
but it can be computed using (4) starting from its
actual route properties.

• If the athlete was not in the initial race results ma-
trix, his vector aa can be computed using a set
of, at least, N known race paces pΩa by solving a
multiple output linear regression for aa:

RΩa ·aᵀa ≈ pΩa (5)

for which the race vectors [rr,1,rr,2, . . . ,rr,N ] in
RΩa are again either known from the initial ma-
trix factorization or computed using (4).

3.2 Athletes Comparison

Athlete vectors are either known from the matrix fac-
torization or computed by solving (5). If the ath-
lete vector elements thus obtained can be mapped to
some actual athletes’ abilities, athlete’s vectors can be
used directly for athlete comparison. Otherwise, the
race prediction method can be used to simulate per-
formances on chosen races. Athletes can therefore
be compared through their simulated race times on
benchmark race routes.

Table 1: Initial dataset characteristics based on the choice
of minimum number of races per athlete : number of races,
of athletes, of race times and proportion of observed race
times with respect to the matrix size.

Min. race Races Observed
per athlete Races Athletes Times [%]

1 276 648 2990 1.7
10 251 67 1010 6.0
15 199 25 521 10.5
20 145 12 308 17.7
25 76 6 182 39.9
30 65 3 99 50.8

4 RESULTS

Results obtained with an initial database containing
2990 race times of 648 athletes on 276 races are dis-
cussed separately for the matrix factorization (section
4.1) and then for race time prediction on new races
using the regression model (section 4.2).

Figure 3: The matrix reconstruction root mean square error
depends on the number of races per athlete and the model
parameter N.

4.1 Matrix Factorization Results

The ability to predict race times based on matrix fac-
torization depends on the available data and on the
algorithm parameter N (see Figure 3). As shown in
Table 1, the initial database can be pruned based on
the requirement on the minimum number of races per
athlete. The higher this value is, the more athletes are
removed from the database and the easier it is to pre-
dict race times.

The root mean square error on race pace predic-
tion can be as low as 20 seconds per kilometer on av-
erage. It is significantly improved when only very ac-
tive athletes are kept (over 10 races per athlete). Opti-
mal model parameter N is found to be between 1 and 3
depending on the dataset. The uncertainty that might
seem high accounts for the fact that some race times



can highly differ from what was expected because of
an injury or simply because the athlete did not try to
achieve is best potential performance.

4.2 Results for Predictions on New
Races

Race time prediction accuracy is measured for new
athletes on new races. For this purpose, it is necessary
to know at least N race times for each athlete and that
the routes itinerary is known to compute their features
(distance and cumulative elevation gain).

A few race results can be used to generate ath-
letes vectors using (5) and route features can give race
vectors through the regression model given by (4).
Pace can then be predicted on known races, and com-
pared to actual race records. In this case, race vec-
tors are unknown and are estimated from route prop-
erties. Therefore, the root mean square error increases
to about 26 seconds per kilometer. Figure 4 shows
race pace predictions versus actual records.

Figure 4: Predictions versus observed race times scatter plot
with known vectors or with estimated ones.

5 CONCLUSION

This paper provides tools that can be used to predict
race times. This is of interest for athlete preparation,
for workout route planning and for race events organi-
zation. The same tools can also serve to compare dif-
ferent athlete performances and to track athlete level
over time.

Experiments show that the methodology is appli-
cable to real data and gives meaningful results. This
work will be continued in different directions. First,
only the two most commonly used route features were
used (distance and cumulative positive elevation gain)
but any function of the elevation profile could lead to
better predictive performances. Other route parame-
ters such as ground type and weather conditions may
also prove to improve time prediction.

Then, race vector elements were assumed to be
a linear function of the race features. Other nonlin-
ear regression models could improve the accuracy as
well. Two different approaches can be pursued.

First, domain knowledge was not considered in
this work. Most probably, accuracy could bene-
fit from well-established physiological or empirical
models; for instance, the relationship between aver-
age race pace and distance has been modeled in other
works by hyperbolic law, power law or nomogram
(Péronnet and Thibault, 1989; Garcı́a-Manso et al.,
2012; Coquart et al., 2015).

A second path to be taken would be to discover
more complex relationships between route features
and race pace through the data itself using model fit-
ting techniques. This approach will probably require
a larger amount of race data.
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