Mining Hot Research Topics based on Complex Network Analysis A Case Study on Regenerative Medicine

Rong-Qiang Zeng^{1,2}, Hong-Shen Pang³, Xiao-Chu Qin⁴, Yi-Bing Song⁴, Yi Wen¹, Zheng-Yin Hu¹, Nin Yang¹, Hong-Mei Guo⁵ and Qian Li⁵

¹Chengdu Documentation and Information Center, Chinese Academy of Sciences, Chengdu, Sichuan 610041, P. R. China ²School of Mathematics, Southwest Jiaotong University, Chengdu, Sichuan 610031, P. R. China

³Shenzhen University, Shenzhen, Guangdong 518060, P. R. China

⁴Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, P. R. China

⁵National Science Library, Chinese Academy of Sciences, Beijing 100190, P. R. China

Keywords: Hot Research Topics, Modularity Function, Regenerative Medicine, Community Detection, Hypervolume Indicator.

Abstract: In order to mine the hot research topics of a certain field, we propose a hypervolume-based selection algorithm based on the complex network analysis, which employs a hypervolume indicator to select the hot research topics from the network in the considered field. We carry out the experiments in the field of regenerative medicine, and the experimental results indicate that our proposed method can effectively find the hot research topics in this field. The performance analysis sheds lights on the ways to further improvements.

1 INTRODUCTION

The relations among the literatures in a certain field can be usually represented as networks, where the nodes denote the objects and the edges denote the interactions among these objects. Many researchers have tried to use the quantitative methods to study the complex networks, in order to recognize the knowledge structure of the considered field. Based on the complex works, mining the hot research topics is very important for the researchers to analyze the trends of scientific research and provide some directions of research mainstream in the certain field.

In this paper, we propose the hypervolume-based selection algorithm to analyze the bibliometric network, in order to mine the hot research topics of a certain field. Based on the relation between the literatures and the key words, we realize the community detection for the bibliometric network and select the hot research topics according to two objectives: the frequency of the key words and the number of the key words. The experimental results indicate that the proposed method can effectively recognize the hot research topics. The performance analysis explains the behavior of our proposed method and sheds lights on the ways to further improvements.

The remaining part of this paper is organized as follows. In the next section, we briefly review the previous works related to the bibliometric studies based on the complex network analysis. In Section 3, we present the ingredients of hypervolume-based selection algorithm for mining the hot research topics. Section 4 shows the experimental results and analysis in the field of regenerative medicine. The conclusions are provided in the last section.

2 LITERATURE REVIEWS

In this section, we present the literature reviews concentrating on the bibliometrics network analysis.

In (Zhu and Guan, 2013), the authors applied the small world complex network theory to analyze scientific research in the field of service innovation, and discover its research focuses. Their study considered the key words and subject categories of the publications as actors to map keyword co-occurrence network and subject category co-occurrence network, and compare them with their corresponding random

Zeng R., Pang H., Qin X., Song Y., Wen Y., Hu Z., Yang N., Guo H. and Li Q.

Mining Hot Research Topics based on Complex Network Analysis - A Case Study on Regenerative Medicine DOI: 10.5220/0006504802630268

In Proceedings of the 9th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (KDIR 2017), pages 263-268 ISBN: 978-989-758-271-4

Copyright © 2017 by SCITEPRESS - Science and Technology Publications, Lda. All rights reserved

binary networks to judge whether these complex networks have the characteristics of small world network, in order to find the hot issues in the field by the small world network analysis. The experimental results through analyzing 437 papers from Web of Science database over the period 1992 to 2011 show the dynamic development of the research focuses in recent 10 years.

In (Lipizzi et al., 2016), the authors have presented a methodology to assess moviegoers' early reactions to movies' premieres through the extraction of analytics from Twitter conversations that take place in the weekend in which a movie is released. They applied data mining techniques to a sample of 22 movies to identify models able to predict box-office sales in the first weekend. Their findings confirmed that the importance of commonly used buzz-metrics is probably overstated, and the analysis of conversational dynamics can help to understand the interplay between collective generation and diffusion of content in social networks as well as to obtain the insights on whether information diffusion influences off-line behavior.

In (Zhang et al., 2016), the authors focused on the NSF data and constructed a K-Means-based clustering methodology with high accuracy in a local Kvalue interval, where an optimized K value would be determined automatically. Then, they introduced a similarity measure function for topic relationship identification to explore the interaction among TRM components quantitatively and predict possible future trends. The experimental results are carried forward to present the mechanisms that forecast prospective developments using Technology Road mapping, combining qualitative and quantitative methodologies.

3 METHODOLOGY

In our work, we propose the hypervolume-based selection procedure to analyze the bibliometric network, in order to detect the key structure and select the hot research topics in a certain field. First, we give an introduction to the basic notations and definitions of the network. Then, we present the method of detecting the community in the network. Afterwards, we describe the main ingredients of hypervolume-based selection algorithm.

3.1 Network Construction

Generally, given a simple undirected graph G = (V, E), where V is the set of vertices and E is the set of undirected edges. Suppose the vertices are divided

into two sets: one is composed of the literatures, and another one is composed of the key words.

Then, these exists the edges between the literature and the key word, if and only if the key word belongs to the considered literature. Actually, there is no edge among the literatures or the key words. That's to say, it is indeed a bipartite graph.

Figure 1: An example of the bibliometric network.

An example is illustrated in Fig. 1, which consists of thousands of vertices and edges. In this figure, a green circle denotes one key word and a blue circle denotes one literature. Usually, one literature consists of hundreds of key words, which makes the whole network very complicated. Therefore, it is very difficult for the experts to recognize the hot research topics from the network.

3.2 Community Detection

In order to clearly recognize the hot research topics from the network, it is essential to detect the community structure, which is one of the most relevant features of the networks. In fact, the community structure plays an important role in understanding the intrinsic properties of networks.

One of the most popular quality functions is the modularity proposed by Newman and Girvan in (Newman and Girvan, 2004), which is based on the idea that a random network is not expected to have a community structure. Now, the modularity is widely accepted by the scientific community. Suppose the vertices are divided into the communities such that vertex v belongs to community C denoted by C_v , the modularity is defined as follows (Newman and Girvan, 2004):

$$Q = \frac{1}{2m} \sum_{vw} [A_{vw} - \frac{k_v k_w}{2m}] \delta(C_v, C_w), \qquad (1)$$

where *A* is the adjacency matrix of graph *G*. $A_{vw} = 1$ if one node *v* is connected to another node *w*, otherwise $A_{vw} = 0$. The δ function $\delta(i, j)$ is equal to 1 if i = j and 0 otherwise. The degree k_v of a vertex *v* is defined to be $k_v = \sum_v A_{wv}$, and the number of edges in the graph is $m = \sum_{wv} A_{wv}/2$.

Furthermore, the modularity function can be represented in a simple way, which is formulated below (Newman and Girvan, 2004):

$$Q = \sum_{i} (e_{ii} - a_i^2),$$
 (2)

where *i* runs over all communities in graph, e_{ij} and a_i^2 are respectively defined as follows (Newman and Girvan, 2004):

$$e_{ij} = \frac{1}{2m} \sum_{vw} A_{vw} \delta(C_v, i) \delta(C_w, j), \qquad (3)$$

which is the fraction of edges that join vertices in community i to vertices in community j, and

$$a_i = \frac{1}{2m} \sum_{\nu} k_{\nu} \delta(C_{\nu}, i), \qquad (4)$$

which is the fraction of the ends of edges that are attached to vertices in community *i*. Actually, the modularity has been proven to be NP-hard in (Brandes et al., 2006).

In order to find the community structure effectively, we employ the local search procedure to achieve the aim, and the main steps are presented in the Algorithm 1. In this algorithm, we divide the whole network into two communities, and each smaller community is further divided into two communities. This process is repeated until the modularity can not be improved as done in (Lü and Huang, 2009).

Algorithm 1: Community Detection Algorithm.				
1: Input : network adjacency matrix A				
2: Output : the best value of the modularity function				
3: $P = \{x^1, \dots, x^p\} \leftarrow \text{Random Initialization } (P)$				
4: repeat				
5: $x^i \leftarrow \text{Local_Search}(x^i)$				
6: until a stop criterion is met				
 Input: network adjacency matrix A Output: the best value of the modularity function P = {x¹,,x^p} ← Random_Initialization (P) repeat xⁱ ← Local_Search (xⁱ) until a stop criterion is met 				

Generally, one community C_k is divided into two communities C_i and C_j , and all the vertices belonging to C_k are randomly assigned to C_i and C_j .

After the initialization, we introduce a special data structure named *move value* used in (Lü and Huang, 2009) to compute the incremental value of the modularity function for each possible move of the current solution. Let C_i and C_j are two communities, w be a vertex from C_i or C_j . We assume that $w \in C_i$ and the corresponding change by moving vertex w from C_i to C_j can be computed as follows (Lü and Huang, 2009):

$$\Delta Q(w, C_i, C_j) = \frac{k_w^j - k_w^i}{m} + \frac{k_w(a_i - a_j)}{m} - \frac{k_w^2}{2m^2}, \quad (5)$$

where k_w^i and k_w^j are respectively the number of edges connecting vertex w and the other vertices in communities C_i and C_j .

On the other hand, for any vertex v in community C_i , we can also obtain the updated ΔQ value $\Delta Q'(v, C_i, C_j)$ with the formula below (Lü and Huang, 2009):

$$\Delta Q'(v, C_i, C_j) = \Delta Q(v, C_i, C_j) - (\frac{k_w^2}{m^2} - \frac{2A_{wv}}{m}).$$
 (6)

Correspondingly, for any vertex v in community C_j , there are two possible cases for the updated ΔQ value $\Delta Q(v, C_j, C_i)$. When considering the same vertex v $(v = w), \Delta Q(v, C_j, C_i)$ is updated as follows (Lü and Huang, 2009):

$$\Delta Q'(v, C_j, C_i) = -\Delta Q(v, C_i, C_j). \tag{7}$$

When considering two different vertices v and w $(v \neq w)$, $\Delta Q(v, C_j, C_i)$ is updated as follows (Lü and Huang, 2009):

$$\Delta Q'(v, C_j, C_i) = \Delta Q(v, C_j, C_i) + \left(\frac{k_w^2}{m^2} - \frac{2A_{wv}}{m}\right).$$
(8)

According to Eqs. (5), (6), (7) and (8), the local search procedure chooses the best move in the current neighborhood at each step until the modularity does not improve any more. Then, we obtain the communities of the considered network.

3.3 Hypervolume-Based Selection

After finding the communities in the network, we prefer to select a certain number of the potential hot research topics from each community. Since there are a large number of literatures in each community, it is not necessary to select all of them, but to select the most important ones.

Actually, we evaluate the importance of the hot research topics by defining two objectives: the frequency of the key words (f_1) and the number of key words (f_2) , which are computed by the formulas below:

$$f_1 = weight(x_i) \tag{9}$$

$$f_2 = degree(x_i) \tag{10}$$

Specifically, the objective f_1 represents the frequency of one key word emerging in a literature, which corresponds the weight of the edge, and the objective f_2 represents the number of the key words belonging to a literature, which corresponds the degree of a vertex denoting a literature in the network.

According these two objectives, we evaluate the importance of one hot research topic in each community. In order to achieve this goal, we propose a hypervolume-based selection algorithm, which is presented in Algorithm 2 below (Basseur et al., 2012).

Algorithm 2: Hypervolume-Based Selection Algorithm.	
Steps:	
1) calculate two objective function values of x_i	
2) calculate the fitness value of x_i with the <i>HC</i> indica	tc
3) select $n l_i$ based on the fitness values	

In this algorithm, x_i denotes the i^{th} literature in each community. First, we calculate the two objective values of x_i . Then, we calculate the fitness value of x_i with the *HC* indicator, which is defined as follows:

$$HC(x_1) = (f_1(y_1) - f_1(x)) \times (f_2(y_0) - f_2(x)) \quad (11)$$

Figure 2: An example of fitness computation.

As is shown in Fig. 2, the fitness value of x corresponds to the size of the green area, where y_0 and y_1 are the neighbors of x. Thus, we can select a designated number of literatures with high fitness values, which refer to the hot research topics in this community.

4 CASE STUDY

In this section, we present the experimental results of our method in the field of regenerative medicine. All the algorithms are programmed in C++ and compiled using Dev-C++ 5.0 compiler on a PC running Windows 7 with Core 2.50 GHz CPU and 4 GB RAM.

4.1 Data Information

In order to conduct the experiments with our methods, we generate the data from the PubMed Database by inputting the key words "regenerative medicine" from 2000 to 2014. Then, we select the literatures retrieved by the Semantic Medline Database, the type of literature is "Journal Article".¹ The information of literature is given below:

Table 1: The number of literatures.

Year	Number of Literatures
$2000\sim 2004$	950
$2005\sim 2009$	3914
$2010\sim 2014$	11392

On the other hand, we have to select the key words from the literature by setting the frequency T_f . If is smaller than, we delete these key words. Besides, the general words are also deleted from the literature, such "cell", "disease", etc. The information of key words is given in Table 2 below.

Table 2: The number of key words.

Year	Number of Key Words	T_f Values
$2000 \sim 2004$	589	5
$2005 \sim 2009$	759	10
$2010\sim 2014$	941	20

4.2 Experimental Results

In this subsection, we present the experimental results in the field of regenerative medicine based on three periods, which are the first period from 2000 to 2004, the second period from 2005 to 2009 and the third period from 2010 to 2014. The computational results are summarized in Table 3.

In Table 3, the numbers represent the literatures of the hot research topics in the field of regenerative medicine. From this table, we can observe that there are three hot research topics during the periods from 2000 to 2014. In each community, there are five literatures of the hot research topics based on the complex networks.

¹More information about the PubMed database can be found on this website: https://www.ncbi.nlm.nih.gov/ pubmed.

Year	Community	Hot Research Topics
$2000\sim 2004$	Community 1	11970903, 14648870, 11584365, 15083202, 15277237
	Community 2	15086545, 15028134, 11850444, 11340065, 11077425
	Community 3	11641084, 12963221, 15271696, 14745326, 14992357
$2005\sim 2009$	Community 1	16596286, 18047416, 19755676, 15808690, 17273778
	Community 2	17635045, 18804048, 19198070, 19507174, 20042793
	Community 3	20058201, 17882886, 17473528, 17510916, 19101095
$2010\sim 2014$	Community 1	20137136, 20507271, 23209652, 24799420, 24573178
	Community 2	22008910, 24200501, 23554141, 22876135, 23916701
	Community 3	21873605, 24895283, 24551049, 21464334, 23659910

Table 3: The hot research topics during periods from 2000 to 2014.

Figure 3: An example of the hot research topics.

An example of the hot research topics is illustrated in Fig. 3, In this figure, the blue circles with the number denote the literatures, and the green circles with words denote the key words. The size of the green circles represent the frequency of the key words.

5 CONCLUSIONS

In this paper, we have presented the community detection algorithm based on local search procedure and the hypervolume-based selection algorithm for recognizing and selecting the hot research topics. For this purpose, we have carried out the experiments in the field of regenerative medicine. The experimental results indicate that our proposed method can effectively find the hot research topics in the complex networks.

ACKNOWLEDGEMENTS

The work in this paper was supported by the Guangdong Science and Technology Program "Integrated Information Service for Regenerative Medicine and Tissue Engineering" (Grant No. 2016A040403098), supported by the West Light Foundation of Chinese Academy of Science (Grant No. Y4C0011001), supported by the Fundamental Research Funds for the Central Universities (Grant No. A0920502051722-53) and supported by the ISTIC-EBSCO Joint Laboratory Foundation Program of Literature Big Data Discovery Service "Research on Text Subject Recognition Method Based on Clique Subgroup Clustering".

REFERENCES

- Basseur, M., Zeng, R.-Q., and Hao, J.-K. (2012). Hypervolume-based multi-objective local search. *Neural Computing and Applications*, 21(8):1917– 1929.
- Brandes, U., Delling, D., Gaertler, M., Görke, R., Hoefer, M., Nikoloski, Z., and Wagner, D. (2006). Maximizing modularity is hard. *arXiv:physics*, page 0608255.
- Lipizzi, C., Iandoli, L., Emmanuel, J., and Marquez, R. (2016). Combining structure, content and meaning in online social networks: The analysis of public's early reaction in social media to newly

launched movies. *Technological Forecasting and Social Change*, 109:35–49.

- Lü, Z. P. and Huang, W. Q. (2009). Iterated tabu search for identifying community structure in complex networks. *Physical Review E*, 80:026130.
- Newman, M. E. J. and Girvan, M. (2004). Finding and evaluating community structure in networks. *Physical Review E*, 69(2):026113.
- Zhang, Y., Zhang, G., Chen, H., Porter, A. L., Zhu, D., and Lua, J. (2016). Topic analysis and forecasting for science, technology and innovation: Methodology with a case study focusing on big data research. *Technological Forecasting and Social Change*, 105:179–191.
- Zhu, W. and Guan, J. (2013). A bbibliometric study of service innovation research: Based on complex network analysis. *Scientometrics*, 94:1195–1216.

SCIENCE AND TECHNOLOGY PUBLICATIONS