
Early Prediction of the Winner in StarCraft Matches

Antonio Álvarez-Caballero1, J. J. Merelo1, Pablo Garcı́a Sánchez2 and A. Fernández-Ares1

1Department of Computer Architecture and Computer Technology, University of Granada, Spain
2Department of Computer Science, University of Cádiz, Spain

Keywords: Prediction, Classification, Strategy, Planification.

Abstract: A fast and precise prediction of the outcome of a game is essential for the design of bots that play the game;
it can be used either offline as a fast way to design bot strategies or online for conserving resources and
conceding defeat or speed up victory, as well as evaluating the consequences of actions. The objective of this
paper is predicting the winner of a StarCraft match as soon as possible. This study is done with supervised
learning, because a lot of suitable data is available. The main problem of this approach is the big amount of
generated data, so it has to be selected and organised properly and be treated with proper tools. A set of six
learning algorithms is used, from simpler ones to more complex algorithms. Spark and MLlib are used due to
their capabilities to deal with big amounts of data. With the learned models, time of matches are restricted,
trying to get a time bound for predicting results. With this approach we get that it is not necessary to play a
whole match to predict its winner with high accuracy: with 10 minutes we can predict the outcome with 90%
of accuracy.

1 INTRODUCTION

Real Time Strategy or RTS games are a very suit-
able kind of videogames to use supervised learning
with, because usually they have a very large set of fea-
tures which could be used to analyze the game deeply.
In particular, StarCraft is a RTS game from the 90s.
In this game both players begin with a simple build-
ing and some workers, and the objective is to create
an army that can defeat the opponent’s one. This is
usualy achieved by gathering resources from the map
and building some important structures to get the best
units for your army. However, there are infinite strate-
gies to follow, and all of them are correct ones. What-
ever strategy it is used, this process generates a lot
of data, which can be used to get hidden information
about the match.

Usually videogame developers do not allow ac-
cess matches’ data to users. StarCraft is not an ex-
ception, but their community has created an API to
access data and manipulate the game itself: BWAPI.
With this tool users can create artificial agents which
play the game making competitions. This API is also
commonly used for gathering data. These framework
has been used in previous year to obtain a big num-
ber of game datasets. The conclusions that can be ex-
tracted from this data could be very important for re-

searchers and players, because they could offer extra
information such as the opponent strategy of matches
in real time.

In this paper we prove that with a well designed
set of StarCraft features, the winner of a match can
be predicted accurately, even in an early stage of the
match.

In this work a complete Knowledge Discovery in
Databases (KDD) process is done. The data were col-
lected from (Robertson and Watson, 2014), a set of six
relational databases which contains a very big amount
of data from more than 4500 StarCraft replays. A pre-
processing with SQL was made to organise the data
and extract our set of important features. Finally, the
modelling was made using Spark and MLlib due to
their capability to deal with a big amount of data, al-
lowing us to extract useful information as the winner
in an early stage of the matches and a ranking of use-
ful features.

The main conclusion obtained is that the winner
can be predicted without playing the whole match.
With 10 minutes approximately, it is enough to get
predictions with an accuracy ratio of 90%. Keeping
in mind that the average duration of a match is 48
minutes approximately, the time reduction is consid-
erable. It could be useful combined with metaheuris-
tics to optimize agents for this videogame faster, by

ÃĄlvarez-Caballero A., Merelo J., GarcÃ a SÃąnchez P. and FernÃąndez-Ares A.
Early Prediction of the Winner in StarCraft Matches.
DOI: 10.5220/0006587304010406
In Proceedings of the 9th International Joint Conference on Computational Intelligence (IJCCI 2017), pages 401-406
ISBN: 978-989-758-274-5
Copyright c© 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



using a surrogate-based model. Furthermore, an agent
with the possibility of predicting accurately the win-
ner could adapt its strategy to change the outcome of
the match.

This could not be achieved without a good set of
features. Training a classifier is easy, but it does not
help if data have no quality. This set of data and fea-
tures could be used in other works based on StarCraft
data to try to improve their results.

2 STATE OF THE ART

In the StarCraft research a lot of approaches have
been presented. The most used approach is develop-
ing probabilistic graphical models to predict the win-
ner of a match. Some examples are in (Synnaeve and
Bessière, 2011) and (Stanescu et al., 2013), where im-
portant events in the match are used to predict the
outcome: when a very important building appears, an
important event succession for a race, the birth of the
best unit of a race, etc.

Another approach based on supervised learning is
presented in (Sánchez-Ruiz, 2015), but the environ-
ment is homogeneus and controlled. It is possible that
it doesn’t show the diversity in StarCraft matches.
A better dataset is presented in (Robertson and Wat-
son, 2014), which is very heterogeneus, complete and
granulated.

Further works look for plans and strategies based
on predictions of the outcome of matches, as we can
see in (Oen, 2012) and in (Alburg et al., 2014).

Another approach is developing strategies using
Genetic Programming, creating plans automatically
which can win. These kind of algorithms are very
time consuming, so whatever saved time would be ap-
preciated. This approach gives good results, as we
can see in (Fernández-Ares et al., 2016) and (Garcı́a-
Sánchez et al., 2015).

3 METHODOLOGY

In this paper we do a complete KDD process using
SQL and some Apache tools: Spark with its Scala
interface and MLlib. We did this election because
Apache echosystem is suitable for dealing with very
large datasets, offering a framework which produces
similar projects in centralized and distributed environ-
ments.

Its Scala interface was chosen because it is the
most complete one for Spark and MLlib. The only
thing it is missed is an implementation of KNN,
so saurfang:spark-knn from spark-packages is

taken. Furthermore, Scala is a modern, functional
and object-oriented language which is used widely
in some companies as LinkedIn, Twitter or Siemens.
One of these advantages is that Scala compiles to the
Java Virtual Machine or JVM. As a consequence, mul-
tiplatform code is developed. This code is available at
GitHub, https://git.io/vdmyj.

3.1 Feature Selection

The data we use is taken from (Robertson and Wat-
son, 2014), who with their work offer six relational
databases of one versus one matches, with all the pos-
sible combinations of races that the game offers.

In Figure 1 we can see the entity-relationship dia-
gram of the databases that contain the matches. Un-
derstanding all features was easy because (Robertson
and Watson, 2014) work is totally open, so we could
explore the code associated. Furthermore, a lot of
features have the same name that attributes from the
BWAPI, although a set of features was calculated by
the researchers like the distance to the base in a mo-
ment of the match.

To get a rows and columns dataset, we propose
this structure. Each row of the dataset will be a precise
instant of the match, determined by a Frame. Each in-
stant has the information of resources of each player.
This approach is different to other ones presented in
Section 1. It seems easy but the organisation of the
data was not trivial.

We present here the list of selected features, also
exposed in Figure 1. Some of them are used only to
organise the data, the identifiers of replay, player and
region. Features which are used to model are bold.

• replay: Contains data about each match.

– ReplayID: Match identifier.

• playerreplay: Contains data about a player in a
match.

– PlayerReplayID: Player identifier.
– ReplayID: Match identifier.
– Winner: Winner of the match. This is the target

we want to predict.

• resourcechange: Contains data associated to
changes in player’s resources.

– PlayerReplayID: Player identifier.
– Frame: Frame when the resource changes.
– Minerals: Amount of minerals of a player.
– Gas: Amount of gas of a player.
– Supply: Carrying capacity of a player.
– TotalMinerals: Total amount of minerals of a

player, without costs.



Figure 1: Selected features in databases. Original diagram by (Robertson and Watson, 2014).

– TotalGas: Total amount of gas of a player,
without costs.

– TotalSupply: Total amount of supply of a
player, without costs.

• regionvaluechange: Contains data associated to
changes of a player in a map region. Each value
is the sum of the price of an unit, expressed as
minerals and gas.

– PlayerReplayID: Player identifier.
– RegionID: Region of the map identifier.
– Frame: Frame when the value changes.
– GroundUnitValue: Value of ground units in

this region.
– BuildingValue: Value of buildings in this re-

gion.
– AirUnitValue: Value of air units in this region.
– EnemyGroundUnitValue: Value of enemy

ground units in this region. This value is es-
timated, the player knows the units they see of
the enemy.

– EnemyBuildingValue: Value of enemy build-
ings in this region. This value is estimated, the
player knows the units they see of the enemy.

– EnemyAirUnitValue: Value of enemy air units
in this region. This value is estimated, the
player knows the units they see of the enemy.

– ResourceValue: Value of resources in this re-
gion. This value is estimated, the player knows

the units they see of the map. If the player does
not know a region, they estimate this value as
the maximum available in the region.

The features related to a player are presented
twice, one for each player. Furthermore, a race fea-
ture is used, as the races implied in the match. As a
consequence, we have 28 features used in the mod-
elling stage of the work.

3.2 Data Preprocessing

As we said in Section 3.1, each observation of the data
has 28 features related to the resources and units of
each player. We have to note some little tips about the
data organisation.

• Values of Frame are the instants when any player
has a minerals, gas or supply change. We did
this election because in these games the basic re-
sources are always changing due to necessity of
them to buy units or buildings. This implies some
missing values in the resources of the player who
doesn’t make a change in that frame, so we had
to recover the last value of that resource to keep
consistency.

• Values of value of units and buildings changes do
not occur in the same instant that the resources’
changes. For this reason, as we did with Frame,
we had to recover the last value of the region val-
ues of each player, too.



• Value depends of the region of the map. It’s im-
portant in our approach to get a full value mea-
sure, a value that represents all the player units
or buildings, so we had to sum the value of every
region of the map.

3.3 Modelling

We have chosen six algorithms for the modelling.
Some of them are very simple, because we want to
test if a simple algorithm can model the data.

• Naive Bayes (NB)

• Logistic Regression (LR)

• KNN (KNN)

• Multilayer perceptron (MLP)

• Random Forest (RF)

• Gradient Boosting Tree (GBT)

The final results are obtained using this approach
5 times:

1. Split data using 70% to train and 30% to valida-
tion.

2. Inside the first partition, train a model using 10-
fold Cross Validation.

3. With the final model, validate it in the second par-
tition.

Using this approach, we get 5 accuracy measures
for each model, so we can test the obtained samples
using appropiate statistical tests. We use Friedman
test to get statistical differences among all the classi-
fiers, and a pairwise t-test to get differences between
classifiers.

Accuracy is used because some algorithms as
Gradient Boosting Tree or Multilayer perceptron does
not implement a predict function which returns the
probability of each class: they only return the class.
With this important restriction Area Under Curve can-
not be used. Furthermore, the data is not imbalanced
so accuracy is a suitable measure.

4 RESULTS

In Figure 2 and Table 1 is exposed the median of the
accuracy of each model with their parameters. The
accuracy is evaluated in the validation sets. Standard
deviation of the accuracies are shown as error bars.

Median with standard deviation is shown because
data is not centered around the mean in all the selected
instants.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

RF LR NB GBT MLP KNN

Classifier
A

cc
ur

ac
y

Classifier
RF

LR

NB

GBT

MLP

KNN

Figure 2: Measures obtained with all models.

In general, all classifiers but Naive Bayes predict
pretty well, but there are two clear winners: Gradient
Boosting Tree and KNN. This one offers a great accu-
racy with a very simple approach, but it is not suitable
for doing a lot of predictions in real time, because of
its lazy approach.

In Figure 3 is exposed the accuracy differences
between classifiers over time. KNN can classify

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

45
00

90
00

13
50

0

18
00

0

22
50

0

27
00

0

31
50

0

36
00

0

40
50

0

45
00

0

49
50

0

54
00

0

58
50

0

63
00

0

67
50

0

72
00

0

76
50

0

81
00

0

85
50

0

Frames

A
cc

ur
ac

y

Classifier
●

●

●

●

●

●

RF

LR

NB

GBT

MLP

KNN

Figure 3: Comparing classifiers over time.



Table 1: Trained algorithms with their final parameters.

Classifier Accuracy SD Params
1 GBT 0.859000 0.002563 numTrees = 150, maxDepth = 10
2 KNN 0.975589 0.000091 K = 3
3 LR 0.613878 0.000294 maxIter = 150, regParam = 0.3
4 MLP 0.626332 0.010706 Hidden layers = (10,10)
5 NB 0.507295 0.000550 Smoothing = 1
6 RF 0.680166 0.000474 numTrees = 150, maxDepth = 10

Table 2: Accuracy of classifiers in each validation set.

RF LR NB GBT MLP KNN
1 0.680004 0.613650 0.507551 0.859000 0.605377 0.975575
2 0.680166 0.614189 0.508414 0.854445 0.626332 0.975589
3 0.679876 0.613430 0.507042 0.860723 0.628845 0.975416
4 0.681080 0.613981 0.507155 0.856990 0.611386 0.975620
5 0.680194 0.613878 0.507295 0.860127 0.627228 0.975652

Table 3: p-values from a pairwise t-test.

RF LR NB GBT MLP
LR 0.000000
NB 0.000000 0.000000

GBT 0.000000 0.000000 0.000000
MLP 0.000486 0.277633 0.000058 0.000004
KNN 0.000000 0.000000 0.000000 0.000000 0.000001

with a precision of 0.902± 3.292× 10−4 only with
10 minutes of match. The mean of the duration is
4.397× 104 frames, which are equal to 48.854 min-
utes. It implies that with only a 20.469% of the mean
duration of the match, we can predict accurately the
winner of a match. It is not necessary to play the
whole match to get the winner with high confidence.

To complete the study, we present a Friedman test
to see significative differences over the classifiers. All
frames of the matches are used. We can see in Table 2
the accuracy of each classifier.

With a p-value of 1.889× 10−4, we can confirm
that statistical signification exists. We can see in Ta-
ble 3 a pairwise test, with Bonferroni adjust method
of the p-value.

As we can see, we can confirm that with the usual
signification level, 0.05, there are statistical differ-
ences among all classifiers but Logistic Regression
and Multilayer Perceptron. They are not the best clas-
sifiers so this is not important. The important fact is
that there are statistical differences between KNN and
Gradient Boosting Tree.

5 CONCLUSIONS

With this study we can extract some conclusions. The
first one is that the set of features is well formed: the
winner can be predicted from the selected features

with high confidence, as we exposed in Section 4.
The second and main conclusion is that predic-

tions with this data are very accurate in an early stage,
in particular using a KNN classifier. It can predict
with 90% of accuracy using 10 minutes of match only.
This is very important because it proves that it is not
necessary to play a whole match to predict the winner
accurately.

As future work there are some research opportuni-
ties using this study. With a KNN classifier, a compet-
itive bot could be developed with an important skill:
the winner’s prediction. It could be used to improve
the adaptability of the agent, giving advantage to its
opponents.

Another work could be the improvement of bot
optimization using the early winner knowledge. We
could use this knowledge to improve the evaluation
step of the algorithms, giving the opportunity to use
more exhaustive setups on the algorithms.

ACKNOWLEDGEMENTS

This work has been supported in part by: de
Ministerio español de Economı́a y Competitivi-
dad under project TIN2014-56494-C4-3-P (UGR-
EPHEMECH) and by CONACYT PEI Project No.
220590.



REFERENCES

Alburg, H., Brynfors, F., Minges, F., Mattsson, B. P., and
Svensson, J. (2014). Making and acting on predictions
in starcraft: Brood war. Master’s thesis, University of
Gothenburg.

Fernández-Ares, A., Garcı́a-Sánchez, P., Mora, A. M.,
Castillo, P. A., and Merelo, J. J. (2016). There can
be only one: Evolving RTS bots via joust selection. In
Squillero, G. and Burelli, P., editors, Applications of
Evolutionary Computation - 19th European Confer-
ence, EvoApplications 2016, Porto, Portugal, March
30 - April 1, 2016, Proceedings, Part I, volume 9597
of Lecture Notes in Computer Science, pages 541–
557. Springer.

Garcı́a-Sánchez, P., Tonda, A. P., Mora, A. M., Squillero,
G., and Guervós, J. J. M. (2015). Towards automatic
starcraft strategy generation using genetic program-
ming. In 2015 IEEE Conference on Computational
Intelligence and Games, CIG 2015, Tainan, Taiwan,
August 31 - September 2, 2015, pages 284–291. IEEE.

Oen, R. E. (2012). Aspire adaptive strategy prediction
in a rts environment. Master’s thesis, University of
Bergen.

Robertson, G. and Watson, I. D. (2014). An improved
dataset and extraction process for starcraft AI. In
Eberle, W. and Boonthum-Denecke, C., editors, Pro-
ceedings of the Twenty-Seventh International Florida
Artificial Intelligence Research Society Conference,
FLAIRS 2014, Pensacola Beach, Florida, May 21-23,
2014. AAAI Press.

Sánchez-Ruiz, A. A. (2015). Predicting the winner in two
player starcraft games. In Camacho, D., Gómez-
Martı́n, M. A., and González-Calero, P. A., editors,
Proceedings 2st Congreso de la Sociedad Española
para las Ciencias del Videojuego, Barcelona, Spain,
June 24, 2015., volume 1394 of CEUR Workshop Pro-
ceedings, pages 24–35. CEUR-WS.org.

Stanescu, M., Hernandez, S. P., Erickson, G., Greiner, R.,
and Buro, M. (2013). Predicting army combat out-
comes in starcraft. In Sukthankar, G. and Horswill,
I., editors, Proceedings of the Ninth AAAI Conference
on Artificial Intelligence and Interactive Digital En-
tertainment, AIIDE-13, Boston, Massachusetts, USA,
October 14-18, 2013. AAAI.

Synnaeve, G. and Bessière, P. (2011). A bayesian model for
opening prediction in RTS games with application to
starcraft. In Cho, S., Lucas, S. M., and Hingston, P.,
editors, 2011 IEEE Conference on Computational In-
telligence and Games, CIG 2011, Seoul, South Korea,
August 31 - September 3, 2011, pages 281–288. IEEE.


