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Abstract: In this paper we present a quartic version of the Clough-Tocher scheme for Hermite interpolation of functional
data. This variation uses least squares to minimize discontinuities across the macro-patch boundaries, as
well as adjusting one of the macro-boundary control points. The resulting surfaces have significantly better
shape than a cubic version of Clough-Tocher that also used least squares to minimize discontinuities across
patch boundaries. We compare our method to this cubic version of Clough-Tocher using shaded images and
Gaussian curvature plots.

1 INTRODUCTION

Scattered data interpolation problems are studied to
construct surfaces that interpolate locations and first
partial derivatives (normals) at the data sites. Often,
the data sites are triangulated and spline construction
schemes with Bernstein-Bézier triangular patches are
used. The shape of a surface is usually judged by the
degree of smoothness. For simple piecewise polyno-
mial surfaces, the minimal degree required to meet C1

continuity conditions with a single polynomial patch
per data triangle is five, and for C2 continuity the
minimum degree is nine (Ženı́šek, 1970). These de-
grees can be reduced by triangle split schemes. One
of the simplest schemes is the Clough-Tocher inter-
polant (Clough and Tocher, 1965), which splits each
triangle into three smaller ones. This scheme reduces
the degree of C1 continuous surfaces to three, and also
provides an extra degree of freedom for each bound-
ary. Kashyap later gave ways to improve the Clough-
Tocher interpolant’s quality by adjusting the available
degrees of freedom (Kashyap, 1996), and in particu-
lar by reducing the discontinuity in the crossboundary
derivative.

We present a new scheme to improve the Clough-
Tocher interpolant’s quality by increasing the order
of the surface from three to four. A major limita-
tion of the cubic Clough-Tocher interpolants is that
the boundaries of data sites triangles are fixed, which
causes wrinkles and bumps. For the quartic version
of Clough-Tocher, there is an extra control point on
each boundary, which we can set arbitrarily and still
interpolate the given data. The interpolant’s quality

can be improved by adjusting these boundary control
points, as well as by reducing the discontinuity in the
crossboundary derivatives, where the boundary curve
adjustment is based on minimizing the control point
movement in the crossboundary adjustment.

The main result of this paper is that the adjust-
ment to the boundary curve in conjunction with a cou-
pled crossboundary adjustment was key to the shape
improvements that we obtained. Applying the cross-
boundary adjustment alone give little or no shape im-
provements.

We our interested in surface shape, so our primary
evaluation of surface quality is visual. Thus while we
compute the maximum and root mean square error
of the interpolants, we focus on shaded images and
Gaussian curvature plots as illustrations of the surface
shape and quality.

2 BACKGROUND

In this section, we start with a brief introduction
of triangular Bézier patches and continuity between
patches (see any CAGD textbook for proofs and addi-
tional details (Farin, 2002)).

2.1 Triangular Bézier Patches

A degree n triangular Bézier patch has the form
P(t) = ∑

~i

P~iB
n
~i (t)

where
~i = (i0, i1, i2) with i0 + i1 + i2 = n
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Figure 1: Two patches meet with C1 continuity if each
group of four control points on adjacent (shaded) panels are
co-planar.

and Bn
~i
(t) are the multi-variate Bernstein polynomials,

Bn
~i (t) =

(
n
~i

)
t i0
0 t i1

1 t i2
2 ,

(
n
~i

)
=

n!
i1!i1!i2!

and t = (t0, t1, t2) are the barycentric coordinates of
the point of evaluation with respect to the domain tri-
angle.

In this paper, we are interested in functional sur-
faces of the form z = f (x,y). In this setting, we can
embed the domain in 3-space, and the xy-coordinates
of the control points are uniformly distributed over the
domain triangle, while the z-coordinates are free to
take any values. While the control points are points in
3-space, the xy-coordinates of the control points cor-
respond to points in the embedded domain. At times
we will talk about taking the barycentric coordinates
of the control points relative to other control points;
this should be understood as computing the barycen-
tric coordinates relative to the projection of all these
points into the xy-plane.

2.2 Continuity

Our concern in this paper will be with joining patches
smoothly, meeting with at least C1 continuity, al-
though we will also consider C2 and C3 continu-
ity. Assume we have two triangular Bézier patches
over neighboring triangles, with domains 4CAB and
4DBA. Let (u,v,w) be the barycentric coordinates
of D with respect to 4CAB and let (u′,v′,w′) be the
barycentric coordinates of C with respect to4DBA.

The two patches meet with C0 continuity if they
share the same boundary control points (large black
points in Figure 1). Two triangular Bézier patches
over neighboring triangles meet with C1 continuity if
they meet with C0 continuity and if adjacent panels
are co-planar (Figure 1).

Two triangular Bézier patches meet with C2 conti-
nuity if they meet with C1 continuity and if we get the
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Figure 2: Two patches meet with C2 continuity if each ex-
tensions point (red points) are the same when extending
from either patch.
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Figure 3: Two patches meet with C3 continuity if each
group of four extension points (red points) are co-planar.
The surface interpolates S at C, and the normal to surface at
S is perpendicular to the plane spanned by S, l1, l2.

same points when the second layer of panels on each
side of the boundary are extended using the barycen-
tric coordinates of the corner of one triangle with re-
spect to the other triangle (Lai, 1997). In particular,
in the case of cubics (see Figure 2), we require

e1 = ul1 + vl3 +wl4 = u′r2 + v′r4 +w′r5

e2 = ul2 + vl4 +wl5 = u′r1 + v′r3 +w′r4

Two triangular Bézier patches meet with C3 conti-
nuity if they meet with C2 continuity and if the exten-
sion points of the third layer of panels on each side of
the boundary are co-planar with the extension points
from the second layer (Lai, 1997). In particular, in
the case of cubics (see Figure 3), we require that the
points e1 and e2 be co-planar with the points

uS+ vl1 +wl2, u′S′+ v′r1 +w′r2.

Further note that triangular Bézier patches inter-
polate their corner control points, and that the normal
to the surface at the corner of the patch is perpendic-
ular to the plane spanned by the three corner control
points (Figure 3).
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Figure 4: The Clough-Tocher split, showing cubic mini-
triangles.

3 CLOUGH-TOCHER
INTERPOLANTS

The original Clough-Tocher scheme used cubic
Bézier patches. The layout of the control points are
shown in Figures 4 and 5. Referring to Figure 4,
the original Clough-Tocher scheme had the following
steps, with steps 1 and 2 meeting the data interpola-
tion requirements, and steps 3, 4, and 5 meeting the
co-planar C1 continuity requirements:

1. Set P,Q,R to the positional data at the triangle cor-
ners.

2. Set r3, p2, p1 to lie in the tangent plane given at
vertex P; set p3,q2,q1 to lie in the tangent plane
given at vertex Q; set q3,r2,r1 to lie in the tangent
plane at R.

3. Set p4 to be coplanar with p1, p3 and the equiva-
lent to p4 on the other side of the macro-boundary
(in Figure 5, this refers to points l4, c1, c2 and
r4 being coplanar); q4 and r4 are set in a similar
manner.

4. Set p5 to lie in the plane spanned by p2, p4,r4; q5
and r5 are set in a similar manner.

5. Set S to lie in the plane spanned by p5,q5,r5.

The only degree of freedom in this construction is in
Step 3 in the settings of the central control points p4,
q4, and r4, each of which has a linear degree of free-
dom. Several algorithms were developed to adjust
the central control points to get better shaped inter-
polants. Two variations of the Clough-Tocher scheme
given by Kashyap (Kashyap, 1996) will be reviewed.

3.1 Cubic Precision

One method of improving the quality of the Clough-
Tocher interpolant is to set the central control points
to achieve cubic precision if position and normal
data at a triangle as well as the position data at
the three neighboring triangles comes from a cubic;
see (Kashyap, 1996; Mann, 1999) for details of the
construction.

3.2 Fairing Algorithms

Kashyap used fairing algorithms to improve the shape
of the cubic Clough-Tocher interpolant, using both
exterior fairing across the macro-boundaries and in-
terior fairing across mini-boundaries. Each operation
minimizes or eliminates a specific order of disconti-
nuity while maintaining the conditions of lower or-
der continuity. For the cubic case, we will consider
the variation of Kashyap’s scheme that starts with the
cubic precision Clough-Tocher interpolant, and then
adjust the control points to minimize the C2 disconti-
nuity, while ensuring that the C1 conditions remained
satisfied.

3.2.1 Exterior Fairing

In this section, we give Kashyap’s method to update
the values of the central control points l4 and r4 by
minimizing the C2 discontinuity across the macro-
boundaries while maintaining C1 continuity across
the boundary. Figure 5 shows the control points
around an exterior boundary. Let (u,v,w) be the
barycentric coordinates of S′ with respect to4SP1P2,
and let (u′,v′,w′) be the barycentric coordinates of S
with respect to4S′P2P1. The values of l4 and r4 need
to satisfy the C1 conditions

ul4 + vc1 +wc2 = r4, (1)

and the C2 discontinuity across the macro-boundary
is represented in least squares form as

(ul1 + vl3 +wl4−u′r2− v′r4−w′r5)
2

+(ul2 + vl4 +wl5−u′r1− v′r3−w′r4)
2.

(2)

Using least squares to minimize the value of (2)
while maintaining condition (1) gives the optimal val-
ues of l4 and r4 as

e1 = u′r1 + v′r3−ul2−wl5
e2 = u′r2 +w′r5−ul1− vl3
e3 = 2v2 +2w2

e4 = vc1 +wc2
l4 = (ve1 +we2)/e3− e4/2u
r4 = (uve1 +uwe2)/e3 + e4/2.

(3)
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Figure 5: An exterior boundary across cubic macro-
triangles.

3.2.2 Interior Fairing

In this section, the surface is smoothed across the
mini-triangle boundaries. The method used for min-
imizing the C2 discontinuity across exterior bound-
aries cannot be applied here. Instead, Kashyap forced
the control points to satisfy the C2 continuity condi-
tions, while minimizing the movement of the varying
control points from their present location.

Figure 4 shows the control points inside a macro-
triangle. To achieve C2 continuity, the conditions

E ′ = 3p4− p1− p3
= 3q4−q1−q3
= 3r4− r1− r3,

(4)

where E ′ is an extension point, must be satisfied. The
value of point E ′ that meets the C2 condition is not
unique, but a unique value can be calculated by mini-
mizing the movement of p4, q4, and r4:

(p4− p̄4)
2 +(q4− q̄4)

2 +(r4− r̄4)
2, (5)

where p̄ is the original value of point p. Then the
values of p4, q4, and r4 that minimize the movement
of p4, q4, and r4 in a least squares sense are

E ′ = p̄4 + q̄4 + r̄4
−(p1 + p3 +q1 +q3 + r1 + r3)/3

p4 = (S′+ p1 + p3)/3
q4 = (S′+q1 +q3)/3
r4 = (S′+ r1 + r3)/3.

(6)

3.3 Kashyap’s Cubic Scheme

Kashyap’s scheme begins by computing the cubic
precision Clough-Tocher interpolant. The exterior
fairing and interior fairing are then applied repeat-
edly for a specific amount of times, and finally a C1

smoothing step is done at the end.

Figure 6: Quartic split triangle.

4 QUARTIC CLOUGH-TOCHER
INTERPOLANT

In this section, we extend Kashyap’s idea for fair-
ing along the macro-boundaries to a quartic Clough-
Tocher method. Further, we use the extra freedom of
the quartic boundary to adjust the boundary curve to
get further shape improvements. Figure 6 shows the
control points of the three quartic Bézier patches fit to
the three mini-triangles. As a starting point, we again
begin with the cubic precision Clough-Tocher inter-
polant, which we degree raise to get initial positions
for the quartic control points. Our fairing methods
will adjust the position of these quartic control points.

Although our final algorithm will first adjust the
boundary curve and then minimize the crossboundary
derivative discontinuity, we present the discontinuity
minimization process first, since the boundary curve
adjustment is derived from the crossboundary mini-
mization.

4.1 Exterior Fairing

In this section, we perform fairing across the macro-
boundaries as a two step process. In the first step, we
update the values of the central control points l7, l8,
r7 and r8 to meet all of the C1 and two of the three
C2 continuity conditions. Then in a second step, we
update the values of central control points l4 and r4
by minimizing the C3 discontinuity across the macro-
boundary and meet the remaining C2 continuity con-
dition, while maintaining the C1 and the first two C2

continuity conditions.
Figure 7 shows the control points around a exte-

rior boundary. Let (u,v,w) be the barycentric coordi-
nates of S′ with respect to 4SP1P2, and let (u′,v′,w′)
be the barycentric coordinates of S with respect to
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Figure 7: An exterior boundary across quartic macro-
triangles.

Figure 8: l7, l8, r7, and r8 (red points) are set to meet the C1

and C2 conditions imposed by gray and turquoise panels.

4S′P2P1. There are three C2 conditions, as illustrated
by the dark gray, green, and turquoise panels in Fig-
ure 8. In the first step, we adjust the values of l7, l8,
r7 and r8 to meet the C1 and two of the C2 conditions
(the ones illustrated by the dark gray and the turquoise
panels in Figure 8). The solution to this problem is
unique:

e1 = −u2l3−uvl6 + r5− vr9
e2 = −u2l5−uwl9 + r3−wr6
e3 = −vwc1−w2c2
e4 = −v2c2− vwc3
l7 = (e1 + e3)/2uw
l8 = (e2 + e4)/2uv
r7 = (e2− e4)/2v
r8 = (e1− e3)/2w.

(7)

In the second step, we adjust the control points
l4 and r4. The values of l4 and r4 (the red points in
Figure 9) need to satisfy the conditions

ul4 + vl7 +wl8 = u′r4 + v′r7 +w′r8 (8)

to meet the third C2 continuity conditions. The C3

discontinuity across the macro-boundary can be rep-

Figure 9: l4 and r4 (red points) are set to minimize the C3

discontinuity (imposed by gray and turquoise panels) while
maintaining C2 condition (green panels).

resented in least squares form as

((u(ul2 + vl4 +wl5)+ vc′2 +wc′3)
−(u′r1 + v′r3 +w′r4))

2

+((u(ul1 + vl3 +wl4)+ vc′1 +wc′2)
−(u′r2 + v′r4 +w′r5))

2

(9)

where c′1, c′2, and c′3 are the corresponding extension
points:

c′1 = ul3 + vl6 +wl7
= u′r5 + v′r8 +w′r9

c′2 = ul4 + vl7 +wl8
= u′r4 + v′r7 +w′r8

c′3 = ul5 + vl8 +wl9
= u′r3 + v′r6 +w′r7.

(10)

Minimizing the value of (9) in a least squares
sense while maintaining condition (8), the optimal
values of l4 and r4 are

e5 = u2l2 +uwl5 +uvw′l7 +uvv′l8
−u′r1− v′r3
−ww′r7− vw′r8 +wa2

e6 = u2l1 +uvl3 +uww′l7 +uwv′l8
−u′r2−w′r5
−wv′r7− vv′r8 + va1

e7 = −(ve5 +we6)/3(v2 +w2)
l4 = u′e7 + v′l8 +w′l7
r4 = ue7 + vr8 +wr7.

(11)

After setting l7, l8, r7, and r8 with (7) and then set-
ting lr and r4 with (11), the patches will meet with C2

continuity across the macro-patch boundaries (with a
minimal C3 discontinuity), but the patches will meet
with only C0 across mini-patch boundaries.

4.2 Macro-Boundaries Modification

In this section we will adjust the boundary curves
along macro-patch boundaries. A quartic boundary

A Quartic Clough-Tocher Interpolant

203



curve has five control points. In our quartic Clough-
Tocher scheme, four of the control points on each
macro-boundary are set by the position and tangent
information that the patch needs to interpolate. This
leaves one control point whose value we can adjust
to achieve better shape. In particular, we can adjust
the value of c2 in Figure 7. Initially this control point
comes from the degree raised cubic precision Clough-
Tocher interpolant. With the method described in Sec-
tion 4.1, for a given value of c2, there exist a corre-
sponding value of c′2 and a corresponding optimal C3

discontinuity value across the exterior boundary.
One idea is to treat c2 as a variable, and substitute

the relationship between c′2 and c2 in Section 4.1 into
the formula of C3 discontinuity (9), then minimize the
C3 discontinuity across the exterior boundary. How-
ever, the resulting C3 discontinuity equation is inde-
pendent of the value of c2. Thus this approach cannot
be used to adjust the boundary control point c2.

Instead, we use the approach that Kashyap used on
the interior boundaries, and we find the settings of c′2
such that the movement of l4 and r4 will be minimized
when a variation of the C3 minimization of (9) is used.
We minimize

(u′c′2 + v′l8 +w′l7− l̄4)2

+(uc′2 + vr8 +wr7− r̄4)
2 (12)

in a least squares sense, where l̄4 and r̄4 is the original
value of points l4 and r4. The optimal value of c′2 is

f1 = −u2l3−uvl6 + r5− vr9
f2 = −u2l5−uwl9 + r3−wr6
f3 = −vwc1−w2c2
f4 = −v2c2− vwc3

c′2 = (u′ l̄4 +ur̄4− v′
2v ( f2 + f4)

− w′
2w ( f1 + f3)− uv

2w ( f1− f3)
− uw

2v ( f2− f4))/(u2 +u′2),

(13)

which can be rewritten as

f5 =
(

u′ l̄4 +ur̄4

− u′w′+u2v
2uw f1

− u′v′+u2w
2uv f2

− uv2+u′w′2
2 c1

− uw2+u′v′2
2 c3

)
/(u2 +u′2)

f6 = −(uvw+u′v′w′)/(u2 +u′2)
c′2 = f5 + f6c2.

(14)

With c2 as the variable, we now perform least squares
minimization of (9) using (10) for c′1 and c′3 but (14)
for c′2 (Figure 10 illustrates this construction graphi-

Figure 10: Adjusting the red (boundary) control point to
minimize movement of cyan points on the C3 minimization
step.

cally). The least squares minimization gives

f7 = u2l2 + 3
2 uwl5 + 1

2 w2l9−u′r1
− 3

2 v′r3 +
1
2 wv′r6

−v2w′c1− 1
2 w2w′c3

f8 = u2l1 + 3
2 uvl3 + 1

2 v2l6−u′r2
− 3

2 w′r5 +
1
2 vw′r9

− 1
2 v2v′c1−w2v′c3

f9 = − 3
2 v2v′

f10 = − 3
2 w2w′

f11 = ( f7 +3v f5)( f9 +3v f6)
+( f8 +3w f5)( f10 +3w f6)

f12 = ( f9 +3v f6)
2 +( f10 +3w f6)

2

c2 = − f11/ f12.

(15)

Our algorithm will set c2 with (15) and then ap-
ply the macro-boundary optimization of the previous
section.

4.3 C1 Smoothing

After adjusting the interior control points as described
in Section 4.1, the mini-patches will only meet with
C0 continuity. We need an additional step, similar to
the original Clough-Tocher, to make the patches meet
with C1 continuity across the mini-patch boundaries.
Referring to Figure 6, the following constructs a C1

join across the mini-boundaries of the quartic patch:

1. Set p5 to lie in the plane spanned by p2, p4,r7; q5
to lie in the plane spanned by q2,q4, p7; and r5 to
lie in the plane spanned by r2,r4,q7.

2. Set p9 to lie in the plane spanned by p5, p8,r8; q9
to lie in the plane spanned by q5,q8, p8; and r9 to
lie in the plane spanned by r5,r8,q8.

3. Finally, set S to lie in the plane spanned by
p9,r9,q9.
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Construct the cubic precision interpolant
for i=0 to N

Adjust the boundary control points
Set c2 with (15)

Exterior Fairing
Set l7, l8,r7,r8 with (7)
Set l4,r4 with (11)

C1 Smoothing (Section 4.3)
end

Figure 11: Code for quartic Clough-Tocher algorithm.

Table 1: Comparison of errors.

Cubic Precision Kashyap Quartic
RMS 0.0172 0.0166 0.0170
Max 0.0754 0.0752 0.0690

5 ALGORITHM AND EXAMPLE

Similar to Kashyap’s scheme, our algorithm it-
erates between three adjustments: adjusting the
boundary control points (Section 4.2); adjusting the
crossboundary control points (Section 4.1); and C1

smoothing on mini-triangle boundaries (Section 4.3).
Pseudo-code for our algorithm appears in Figure 11.
The cubic precision Clough-Tocher interpolant was
used to create initial locations for the control points
of our method as well as the variation of Kashyap’s
method that we implemented.

Figure 12 compares the error of our method to the
cubic precision interpolant and to Kashyap’s scheme
on a sampling of the Frankye function (Frankye,
1982),

F(x,y) = 0.75e−
(9x−2)2+(9y−2)2

4

+0.75e−
(9x+1)2

49 − 9y+1
10

+0.5e−
(9x−7)2+(9y−3)2

4

−0.2e−(9x−4)2−(9y−7)2
,

where we used a 5× 5 sampling of F as our data.
Table 1 gives both the RMS error and the maxi-
mum (|CT −F |) error for the three methods on this
data. From the data, we see that the errors are not
substantially different. As our interest is more in
shape than in data reproduction, Figure 13 shows
shaded images and Gaussian curvature plots of the
three surfaces. Here we see that despite similar error,
Kashyap’s scheme gives a visible improvement over
the cubic precision Clough-Tocher interpolant, while
our quartic scheme gives a visual improvement over
Kashyap’s scheme.

6 CONCLUSIONS

In this paper, we presented a quartic version of
Clough-Tocher interpolation that gives a shape im-
provement over a similar cubic scheme of Kashyap.
Both methods used least squares to do fairing of the
surfaces. However, while Kashyap did fairing across
both the macro- and mini-boundaries, we used fair-
ing across the macro-boundaries and to adjust the
macro-boundary curve. The adjustment to the macro-
boundary curve was key to our shape improvements.
We also tested a method to smooth across the mini-
triangle boundaries (similar to what Kashyap did, al-
though with our higher degree patches, our mini-
triangle smoothing achieved C3 continuity across the
mini-triangle boundaries). However, with this inte-
rior smoothing step in the quartic scheme, our quartic
surfaces were of similar quality to Kashyap’s cubic
surfaces. It was only when we adjusted the macro-
boundary (and no longer did interior boundary dis-
continuity minimization) that our quartic scheme gave
better surfaces than Kashyap’s cubic scheme.

Additional details of our scheme can be found
in (Fang, 2017).
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Figure 12: 2D Error Plots. Left: cubic precision; middle: Kashyap’s scheme; right: quartic scheme. Blue represents negative
error, green represents zero error, yellow/red represent positive error, with error values in the range of [−0.0754,0.0436].

Figure 13: Left: cubic precision; middle: Kashyap’s scheme; right: quartic scheme. Top row: shaded images; bottom
row: Gaussian curvature plots. Blue represents negative Gaussian curvature, zero represents zero Gaussian curvature, and
yellow/red represent positive Gaussian curvature.
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