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Abstract: We introduce an algorithm for auto-generating a Bayesian Network (BN) structure from a knowledge-base 

represented as an ontology with rules. The ontology and rules represent the assumptions of infectious disease 

risk in the epidemiology domain. The resulting BN will be the computational model for an infectious disease 

risk prediction service. The BN structure consists of one child node, to represent the chosen infectious disease, 

with multiple parent nodes to represent the contexts which affect infection risk. Thus, this BN generation 

algorithm is constrained to a relatively simple structure. The algorithm generates a BN using the API of BN 

modeler software, Netica-J. We evaluate two aspects of the generated BN: the network structure and the 

conditional probability tables (CPTs). The validation result shows that the algorithm generates an isomorphic 

BN compared with the ontology and the CPTs are populated with consistent ratios from epidemiological rules. 

Furthermore, the generated BN has resulted in a personalized infectious disease risk prediction based on the 

personal attributes and their environments. 

1 INTRODUCTION 

Risk prediction is an estimation of the chance of a 

person having an adverse event. Infectious disease 

risk prediction is considered as adverse event in this 

article since it is a major cause of deaths worldwide 

(Aiello, et al., 2016). Conventionally, infectious 

disease risk prediction deals with whether a new 

infectious disease outbreak is likely to happen (1), 

how fast an infection is likely to spread and the 

specific location affected (2), and how likely it is that 

certain measures will change the course of an 

epidemic if certain measures are taken (3). The 

system, for which this paper develops the algorithm, 

takes a different approach by calculating a personal 

risk of getting infected based on certain personal and 

environmental attributes (Rev2, 2017). Adding 

person properties to the prediction model allows it to 

account for human susceptibility to certain diseases, 

which differs from person to person (Shirai, et al., 

2004) (Shirai, et al., 2002).  

Besides personalization, environment also plays 

an important part in determining infection risk. The 

environment is represented by the user location and 

climate, including weather and season. Both 

environment and climate have been proven to have 

specific roles in boosting or limiting certain 

pathogens (Fisman, 2008) (Monath & Vasconcelos, 

2015) (WHO, 2003) (Wu, et al., 2016) (Yi, et al., 

2014). For example, children below five years old or 

male adolescents or soldiers who live in Indonesia or 

any countries between 30oN and 30oS are at twice the 

risk for Tuberculosis in summertime than others 

(Wertheim, et al., 2012). These predictors (person, 

location, weather and season) will be represented as 

knowledge to predict infectious disease risk in a 

person at a place and time. 

As epidemiological knowledge develops, more 

predictors may need to be taken into consideration in 

order to improve accuracy of prediction. In the 

previous example, to predict Tuberculosis risk, the 

person predictors, demographic risk factors (e.g. age, 

occupation and gender), are included in an initial risk 

prediction model. While Tuberculosis risk is now 

well understood, knowledge of newer predictor, 

behavioural risk factor (e.g. habit), is discovered. 

Therefore, an infectious disease risk prediction 

system that can be renewed to take account of new 

diseases, new predictors and new data is required. 

Knowledge about infectious disease predictors is 

available from authorized health agencies (e.g. WHO, 

CDC) in the Atlas of Human Infectious Diseases 

(AHID) and epidemiological journals in declarative 

form. Ontologies are used to represent this knowledge 
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(Ruttenberg, et al., 2016) (Third, 2014). Meanwhile, 

the predicted risk values need to be presented in 

numerical form. So, both ontology and rules need to 

be converted into a quantitative model that calculates 

the risk prediction. 

In this paper, we implement knowledge-driven 

model generation which focuses on Bayesian 

Networks (BN) as the generated model. We start by 

building a knowledge-base that becomes the main 

source of BN generation, Infectious Disease Risk 

Ontology (IDR), by accumulating the declarative 

knowledge manually. The IDR consists of general 

infectious disease risk knowledge structure and 

epidemiological rules. We introduce and validate an 

algorithm that allows the automatic generation of a 

BN, including populating the Conditional Probability 

Tables (CPTs), directly from the knowledge-base.  

The structure of the paper is as follows. Section 2 

discusses related work. Section 3 presents the main 

components of the Infectious Disease Risk Prediction 

service including the BN generation algorithm. 

Section 4 describes the evaluation of the generated 

BN. Section 5 presents the evaluation results. Section 

6 discusses the limitations and the advantages of 

using this algorithm to generate a BN. Section 7 

summarizes the contributions of the current work and 

outlines future plans. 

2 RELATED WORK 

Knowledge-driven model generation has several 

advantages in the context of continuously growing 

knowledge rather than the former approach, data-

driven model generation. The knowledge-driven 

system facilitates experts to contribute their best 

knowledge without ruling out data and the given 

contexts (Baumeister & Striffler, 2015). The 

knowledge-driven modelling approach relies mainly 

on the given domain knowledge (Fan, et al., 2015). 

Domain knowledge for this research (i.e. infectious 

disease risk) is available from various knowledge 

sources and structures. Although some basic 

knowledge structure is provided by BioPortal in 

Ontology form (e.g. Epidemiology Ontology – EPO, 

Infectious Disease Ontology – IDO and ClinicAl Risk 

factoRs, Evidence and observables – CARRE) 

(Ruttenberg, et al., 2016) (Third, 2014), a significant 

body of relevant knowledge is gathered from the 

Atlas of Human Infectious Diseases in declarative 

form (Wertheim, et al., 2012). 

Some quantitative models, in the public health risk 

prediction domain, allow this knowledge 

incorporation, such as Rule-based prediction model, 

Logistic Regression, Fuzzy Cognitive Map and 

Bayesian Networks (BN) (Lopman, et al., 2009) 

(Blake, et al., 2016) (Jiang, et al., 2014) (Semakula, 

et al., 2016) (Onisko, et al., 2001) (Jombart, et al., 

2014) (Austin & Onisko, 2015) (Douali, et al., 2014) 

(Kunjunninair, 2012). BNs are able to incorporate 

personal factors as nodes and connect to other nodes 

without difficulties (e.g. data training, model fitting). 

Also, BNs have been used in both personalization and 

risk prediction research (Gao, et al., 2010). 

Our previous work looked out at whether BNs that 

built from declarative knowledge gathered from 

AHID, CDC, and WHO fact sheets had a promising 

risk prediction result (Vinarti & Hederman, 2017). 

The paper predicted risk prediction result in Anthrax 

disease compared with real patient data records. The 

Anthrax BN was built manually, neither learnt from 

historical datasets nor generated automatically by a 

specific mechanism – which this paper now presents.  

Rule1: The type of neighbourhood someone 

lives in influences whether their house will 

be burglarized. 

IF: Neighbourhood(x): {bad, average, good} 

THEN: Burglary(x): {true, false} 

Matrix: (6 entries) 

 

Rule2: Both a burglary and an earthquake can 

cause someone’s alarm to go off. 

IF: Burglary(x): {true, false} AND 

EarthQuake: {tremor, moderate, severe} 

THEN: Alarm(x): {true, false} 

Matrix: (12 entries) 

 

Rule2: An earthquake is often reported on the 

radio. 

IF: EarthQuake: {tremor, moderate, severe} 

THEN: Radio: {true, false} 

Matrix: (6 entries) 

......  

Figure 1: Probability Logic Knowledge-base.(Haddawy, 

1994). 

Generating a Bayesian Network from a probabilistic 

knowledge-base was pioneered by Peter Haddawy 

(Haddawy, 1994). He used Horn clauses to form a 

probabilistic knowledge-base (Figure 1). The 

knowledge-base used rules to define predictors, and 

matrix to define conditional probability tables. By 

using these clauses, he generated an isomorphic 

Bayesian Network automatically. Whereas Haddawy 

used random values in order to generate the BN, this 

article seeks to populate these tables with appropriate 

conditional probability values. 
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3 THE PERSONALIZED 

INFECTIOUS DISEASE RISK 

PREDICTION 

The infectious disease risk prediction web service is 

designed to serve client applications which advise 

users when and how to protect themselves from 

infections. The service computes a person’s risk of 

being infected by a specified disease today (or this 

week or season depending on the disease), given their 

demographic details and location. The service uses 

geocodes to find weather, season and location 

features (e.g. swamp, forest, river). For example, a 3-

year old female located at (40.440625, -79.995886) is 

looking for their risk of Anthrax on the day 

(04/07/2017, 07:55:45). 

This section explains the components of the 

service that are needed for predicting infectious 

disease risk: (1) an ontology and rules that describes 

the main elements of infectious disease risk to 

represent the relationships between risk predictors 

and a disease; (2) a main engine to predict the risk, a 

quantitative prediction model (BN), which represents 

the newest knowledge for each infectious disease; (3) 

packages that support the BN to predict accurately 

(weather, location APIs, health surveillance APIs and 

simple functions to accommodate inputs/outputs). 

The service will contain multiple independent BNs, 

one per infection.  

When epidemiologists find new knowledge or 

new predictors about infectious disease risk, new 

objects will be added to the ontology and rules, and 

the BN model needs to be renewed. The renew 

process makes use of the algorithm proposed in this 

article to auto-generate the BN so that the prediction 

model is isomorphic with the knowledge-base that 

stores newest information. In this system, the 

generated BN is isomorphic if all individuals and sub-

classes in the IDR Ontology have been transformed. 

The individuals become the states and their sub-

classes become their nodes in the BN. 

At runtime, the Live APIs tier collects current 

contexts of the environment based on user’s location 

and sends the retrieved values to the Context 

Collector in the Logic tier. The BN model, also in the 

Logic tier, takes the person’s demographics and 

values from the Context Collector as inputs (i.e. 

beliefs). Thereafter, the BN uses the CPT to yield the 

risk prediction which is passed to the client through 

the Presentation layer. In Figure 2, the separation 

between runtime (left-side) and BN build time (right-

side) is illustrated by a dashed line. 

The BN used at runtime is initially generated, and 

further rebuilt every time there is something new 

added to the knowledge-base (ontology and rules). In 

order to generate a BN, nodes and states need to be 

extracted from the ontology. Also, the child node’s 

CPT needs to be populated by computing numerical 

values from the rules. This is the main role of the BN 

Builder package. For parent nodes, marginal 

probability data is retrieved from sources such as the 

United Nations (UN) Data API by MarginalProb 

Supplier. Then, they are loaded to form parent nodes’ 

CPTs. 

3.1 Structure of the Knowledge Base 
and the Generated Bayesian 
Network 

An ontology is used to represent the relationship 

between predictors and infectious disease risk. 

Existing ontologies related to this subject and some 

declarative knowledge sources have been studied and 

reused to create the Infectious Disease Risk (IDR) 

ontology (Figure 3). The main classes (e.g. Person, 

Infectious Disease, Environment) are denoted by 

rectangles. Sub-classes represent the risk factors of an 

infectious disease for each class (e.g. age, gender in a 

person); they are denoted by ellipses. Individuals are 

the instances of the sub-classes (e.g. female and male 

in gender). 

Some individuals are different for each disease, 

for example, age in Tuberculosis will have different 

categorization with age in Anthrax. But, some other 

individuals are same (e.g. female and male as 

instances of gender). The individuals are not 

illustrated in Figure 3. The IDR ontology is used to 

support epidemiological rules in Semantic Web Rule 

Language (SWRL). The SWRL rules refer to the IDR 

classes, sub-classes and individuals. 

Rules are used to define statements about the 

factors of a person, and their environment, that affect 

whether they get infected by a disease. These rules are 

manually encoded from declarative knowledge 

sources: Atlas of Human Infectious Disease (AHID), 

Centres of Disease Control and Prevention (CDC). 

They are written in SWRL form by a knowledge 

engineer using numerical inputs (x1, x2, y, z in Table 

1) from Health Surveillance Reports and journals 

related to epidemiology of infectious diseases. 

The common composition of rules is antecedent 

(A), consequent (B) and denoted as (A → B). The 

antecedent covers the predictors and the consequent 

covers the disease. CARRE project and its related 

publications introduce the clinical risk model to 

describe a disease risk in a person (Third, 2014). They 
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Figure 2: The Infectious Disease Risk Prediction Service Architecture. 

involved risk quantification as risk ratio (i.e. Odds 

Ratio – OR or Relative Risk – RR) for each risk 

factor. Therefore, for the algorithm introduced in this 

research, each antecedent load personal attribute(s) as 

risk factor (e.g. vegan, farmers, or adult in Table 1). 

Whereas its consequent has two components: the 

disease name and the numerical value that shows the 

significance of the risk factor to the infectious disease 

risk. The numerical value is either an OR/RR or a 

prevalence rate or zero (in the case of pathogen 

dormancy).  

Person
Infectious 

Diseases

Location Climate

risk of

live in
pathogen 

lifecycle

prevalence

Environment

Age

Gender

Disease

Name

Season

Weather

Existing 

Illness

Features

Country

Occupation

Geocodes

live around

access date

Habit

 

Figure 3: The Generic Infectious Disease Risk Ontology 

(IDR). 

For Anthrax, these numerical values are expressed in 

%K units (K=0.001), which show the risk of a disease 

per 100,000 population in a particular location. Other 

diseases may use different units. These values will be 

inputted by the epidemiologist by identifying them 

from the declarative knowledge sources. Later, the 

CPT will be populated from these values by following 

several procedures and computations. The 

computation is embedded in the BN generation 

algorithm. 

There are three types of rule for representing 

infectious disease risk: the first, stores OR values for 

each state, the second type stores prevalence or 

incidence rate for each disease, and the third type 

describes the pathogen availability in specific 

conditions (e.g. location, weather, season). The key 

difference between OR and prevalence-type rules is 

the predicate at the consequent part. An OR-type rule 

has alterRisk while the prevalence-type rule has 

setRisk predicate (bold letters in Table 1). Therefore, 

one disease ontology has multiple OR-type rules and 

at least one prevalence-type rule.  

In this version of algorithm, the pathogen-type 

rule uses the same predicate as prevalence-type rule 

(setRisk), but the numerical value of the pathogen-

type rule is zero. This follows the assumption that the 

pathogen is always considered as active unless there 

is a declaration of inactivity (dormancy). 

The numerical values which are stored in the rules 

bring important epidemiological parameters to 

populate the child node’s CPT. Meanwhile, these 

rules depend on the ontology structure (classes, sub-

classes and individuals). So, both ontology and 

SWRL rules inside the knowledge-base tier need to 

be transformed carefully into a prediction model 

(Bayesian Network).  
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Table 1: Sample SWRL Rule Encoding for Anthrax Risk. 

Simplified Declarative Knowledge Rules Rule Type 

Anthrax prevalence in the US is 12 per 100,000 

population per year. 

Person(?all) ^ liveIn(?all, US) -> 

setRisk(Anthrax, 1.12) Prevalence 

An analysis of seven studies estimated a pooled 

odds ratio for Anthrax risk in non-vegan 

compared with vegan is doubled. 

Person(?all) ^ hasHabits(?all, vegan) -> 

alterRisk(Anthrax,x1) 

Person(?all) ^ hasHabits(?all, carnivore) -> 

alterRisk(Anthrax,x2) 

OR 

Farmers are at the highest risk. 
Person(?all) ^ hasOccupation(?all, farmers) -> 

alterRisk(Anthrax,y) OR 

Children are at less risk of Anthrax compared to 

Adult or Elderly 

Person(?all) ^ hasDevelopmentStage(?all, 

Children) -> alterRisk(Anthrax,z) OR 

Anthrax pathogens are dormant during winter. 
Person(?all) ^ accessDuring(?all, Winter) -> 

setRisk(Anthrax,0) Pathogen 
 

3.2 The BN Builder Package 

A basic BN consists of parent and child nodes. In this 

system, the predictors become parent nodes and the 

disease whose risk is being predicted becomes the 

child node. Each node contains a CPT which consists 

of states and probabilities. Parent nodes’ CPTs need 

marginal probability values (e.g. the probability of a 

person being a child). These values are loaded from 

UN Data API. The child node’s CPT stores all 

parent’s states combinations and their conditional 

probabilities (e.g. the probability of a female child 

getting Anthrax). 

The BN Builder package aims to generate code to 

call Netica-J built-in functions that generate an 

isomorphic BN from the knowledge-base. The BN 

Builder has two tasks: (1) create the network 

structure, and (2) fill in the parent and child nodes’ 

CPTs. To fulfil these objectives, two algorithms are 

introduced in this article: Network Construction and 

CPT Population algorithm. The Network 

Construction algorithm is used to create the BN 

structure while the CPT Population algorithm is used 

to transform rules into child node’s CPT. Both 

algorithms use intermediate representations (Table 2 

and Table 3 in the next sub-section). 

It is also useful for the algorithm to have a 

specification of impossible combinations of parent 

nodes’ states as done by (Das, 2004). For example, 

(e.g. pregnant – male, male – pregnant). By having 

this, some unnecessary work can be reduced in the 

later stage (CPT Population). 

Software for managing the knowledge-base, 

Protégé, is used to create the IDR and write the 

SWRL rules. In general, there are two ways of using 

an ontology in the context of knowledge-driven 

model generation: exporting it to RDF representation 

and  using  XML  technology  to  query  the  RDF,  or 

 

directly by querying the knowledge-base using 

SPARQL. This research uses XPath to retrieve items 

in the knowledge-base then store them into 

intermediate representations. 

3.2.1 Intermediate Representation of 
Network Structure and Rules 

The creation of a network structure needs some 

information needed to create a BN structure. The 

information is obtained from the knowledge-base 

representation, RDF (Figure 4). XPath queries are 

then used to select the items by locating their paths in 

the RDF. 

 

Figure 4: RDF Structure. 

The bold tags show the sections needed to build a BN. 

The information about nodes and states to construct a 

BN are stored in <Individuals> tags, while resources 

about OR, prevalence and other information needed 

to populate child node’s CPT are stored in <Rules> 

tags. An example of a line in <Individuals> 

expressing a state named female belonging to a node 

named gender is given below. 
 
IDR:Female rdf:type owl:NamedIndividual , 

IDR:Gender . 

 

XPath queries are used to obtain all nodes and states 

from the <Individuals> tags (given below). The 

results of these queries are then stored in the 
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intermediate representation in a fixed order as 

presented in Table 2.  
 
nodesQuery = "/rdf:RDF/owl:NamedIndividual/ 

rdf:type/@rdf:resource"; 

statesQuery = "/rdf:RDF/owl:NamedIndividual/ 

@rdf:about"; 

Table 2: Sample Content of the Nodes and States. 

Order Nodes States 

1 Age Child 

Adult 

Elderly 

2 Gender Female 

Male 

3 Occupation Farmers 

Soldiers 

For the rules, the intermediate representation uses 

five components: name, disease, attribute value, 

predicate and the numerical value (Table 3). Since our 

rules each only refer to one attribute, this 

representation is sufficient. 

Table 3: Sample of the Rule Components. 

name disease 
attribute 

value 

predi 

cate 

num. 

values 

AntLoc1 Anthrax US set 1.12 

AntEnv3 Anthrax Winter set 0 

AntPrson2 Anthrax Children alter 0.85 

Table 3 shows examples of Prevalence, Pathogen and 

OR-type rules, respectively. Each numerical value 

represents OR, prevalence rate or pathogen dormancy 

depending on the rule type. To fill Table 3, antecedent 

and consequent of a rule is identified by swrl:body 

and swrl:head tags, respectively. The queries are 

given below Table 3. 
 
ruleName = "/rdf:RDF/rdf:Description/ 

rdfs:label"; 

ruleDisease = "/rdf:RDF/rdf:Description/ 

swrl:head/.//swrl:argument1/@rdf:resource"; 

ruleAtt = "/rdf:RDF/rdf:Description/ 

swrl:body/.//swrl:argument2/@rdf:resource"; 

rulePredicate = "/rdf:RDF/rdf:Description/ 

swrl:head/.//swrl:propertyPredicate/@rdf:res

ource"; 

ruleNum = "/rdf:RDF/rdf:Description/ 

swrl:head/.//swrl:argument2"; 

 

These intermediate representations are used to 

construct the Network and populate the child node’s 

CPT as explained in the following sub-sections. 

3.2.2 Constructing the Network 

A BN structure consists of nodes and states. Referring 

to the Table 2 as example, age, gender, occupation, 

and Anthrax are nodes, while the items on the right-

side column are their states. These details are 

obtained from the intermediate representation (Table 

2). For the disease prediction BN, the predictors (age, 

gender, occupation) form the parent nodes, and the 

disease (e.g. Anthrax) is the child node. 

In order to construct the network, the BN Builder 

closely follows the Netica-J procedure in Pseudocode 

1 (Norsys, 1995-2017). The bold items represent the 

automation this paper presents. 

 
Pseudocode 1: Network Construction 

1. Create and set the Netica environment 

2. Declaration and assignment of a child 

node 

3. Declaration of parent nodes 

4. Loading resources from intermediate 

representations 

5. foreach node do 

a. Assign each parent node using three 

input parameters: node name, 

stateString (result from Statenames 

Concatenation), Netica environment 

b. Construct the marginal probability 

of each parent node using two input 

parameters: node name, MarginalProb 

array (result from MarginalProb 

Concatenation) 

c. Save the order of parent node into 

nodequeue 

d. Connect parent with child node 

6. Construct the conditional probability 

of the child node using nodequeue. 

7. Write the network into Netica readable 

file (.dne file) 

The automation of Pseudocode 1 begins with parent 

node assignment (line 3 and 5). The Netica-J built-in 

function to assign a node is given as follows: 

Node temporary = new Node (String nodename, 

String statenames, net); 

The declaration of a temporary node starts in line 3 

and it is initialized with null value. In line 5a, the 

temporary node will be assigned with real nodes and 

states taken from the intermediate representation. The 

assignment of this node is called for as many nodes 

as found in the Table 2. 

 
Pseudocode 2: Statenames Concatenation 

1. Create a stateString 

2. foreach state in a parent node do 

a. Append the the state name to 

stateString, followed by a comma. 

3. end 
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Pseudocode 3: MarginalProb Concatenation 

1. Create a MarginalProb array 

2. foreach state in a parent node do 

a. Append the MarginalProb array with 

related marginal probability. 

3. end 

 

Marginal probabilities, for example the ratio of Male 

to Female in a specific region, are provided by the 

MarginalProb Supplier package (see Figure 2). 

Information to fill MarginalProb is usually found in 

UN Data API. In Netica, the assignment of the 

marginal probability to a node uses a statement: 
 
parentNode.setCPTable(MarginalProb[]); 

 

However, if no marginal probability data is provided, 

Netica-J, by default, assigns equal fractions based on 

number of states in the node. For instance, the default 

MarginalProb of a two-state node is <0.5, 0.5>. 

Once the nodes and their states are defined, the 

order of parent nodes must be saved (line 5c) before 

connecting the parents with child node (line 5d). The 

order will be used by CPT Population algorithm. Line 

6 in Pseudocode 1 handles the CPT population for the 

child node. The details are explained in the next sub-

section. 

3.2.3 Populating the CPT 

The child node’s CPT is calculated from the 

numerical parameters in the intermediate 

representation of rule (Table 3). This involves first, 

generating all combinations of the relevant states and 

then computing the conditional probability for each 

combination. See Figure 9 for sample extract of the 

CPT for Anthrax in Netica.  

To illustrate, the needed state combinations are 

presented in Figure 5. The number of combinations is 
∏ 𝑠𝑖
𝑛
𝑖=1  where si is number of states in node i, and n is 

number of nodes.  

Age, Gender, Occupation 

Children, Male, Farmers 

Children, Male, Soldiers 

Children, Female, Farmers 

Children, Female, Soldiers 

Adult, Male, Farmers 

... 

Figure 5: Sample of the StateCombination. 

To calculate a conditional probability (condProb), for 

a state combination, we apply Pseudocode 4 using the 

intermediate representation for rules as in Table 3. 

The algorithm can distinguish rule types as follows: 

pathogen-type rules are those where the predicate is 

setRisk and the value is 0; prevalence-type rules are 

those whose predicate is setRisk and the value is 

non-zero; OR-type rules are those with predicate 

alterRisk. Then, the numerical values of each rule 

type are used in different part in the process of 

populating the CPT. 

The algorithm checks for conditions that result in 

zero disease risk (line 2 in Pseudocode 4): either there 

is matching a pathogen-type rule attribute or there is 

an impossible combination. By filtering these 

conditions upfront, only combinations that need 

calculation of conditional probabilities is left.  

After the prevalence rate is obtained and set as the 

condProb (line 3a), for each OR-type rule, if the 

attribute value is contained in the state combination, 

the rule is considered “a match”. For example, each 

of ‘Adult’, ‘Male’, ‘Farmers’ in the ‘Children, 

Male, Farmers’ combinations, only Farmers is 

considered as “match” with AntPerson1 rule. Then, 

the conditional probability is calculated by 

multiplying the ORs of the matched rule by the 

existing condProb (line 4a). 

 
Pseudocode 4: CondProb Calculation  

1. Initialize condProb to 1 

2. IF there is a matching pathogen-type 

rule attribute or IF the combination is 

impossible 

a. Set the condProb to 0 
3. ELSE IF there is a matching prevalence-

type rule attribute,  

a. Set the condProb to that value 

(Prevalence) 

4. ELSE for each matching OR-type rule 

attribute 

a. condProb = condProb * OR 
5. end 

4 EVALUATIONS 

The algorithm’s main functions are converting the 

IDR into an isomorphic BN, and populating its CPT 

based on the inputted OR and prevalence values. 

Therefore, the evaluation of the algorithm’s 

correctness will consider the BN result and the child 

node’s CPT values.  

The BN generation algorithm described above 

was tested on two diseases along with their risk 

factors as predictors: Anthrax and Tuberculosis. The 

Anthrax BN has 13 parent nodes, 36 states in total, 

and 248,832 state combinations, of which only 

96,768 combinations are possible. The Tuberculosis 

has 12 parent nodes, 34 states in total and 138,240 

state combinations, and all are possible combinations. 

An OntoGraf, a common layout for organizing an 

ontology structure in Protégé, is used to present the 
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created IDR (Figure 6). The class and subclasses are 

marked with circle symbol, while, individuals are 

symbolized by diamonds. The example of Weather’s 

individuals (Humid, Windy, Sunny, Cold) are given 

in the right-hand side of Figure 6. The solid and 

dashed lines represent direct and indirect relationship 

in a class, respectively. 

In Figure 7, SWRL rules for Anthrax are 

presented. For OR-type rules, the numerical values 

less than one show a decreased risk (AntPerson2), and 

those of more than one show an increased risk of the 

disease (AntEnv1). These rules use the alterRisk 

predicate. Meanwhile, the setRisk rules can have 

two options: zero and non-zero. 

For AntEnv3, the zero value means the pathogen 

is inactive, thus, it represents a pathogen-type rule. 

The non-zero values mean prevalence or incidence 

rates of the disease in the certain location (e.g. 

AntLoc1), thus, it represents prevalence-type rules. 

Figure 8 shows the generated BN for Anthrax; the 

number of states per node varies and all states are 

successfully added to its node. Also, the parent nodes 

are all connected to the child node, as expected from 

the algorithm. The marginal probabilities for all 

parent nodes are set to default. This happens because 

for this test we did not provide exact values for the 

marginal probabilities but let the program use the 

default uniform distribution setting. 

Figure 9 shows a small extract of the generated CPT 

for the child node. It consists of state combinations 

(left-side of the table) which are generated by 

StateCombination Generation and a conditional 

probability value for each child node’s state (i.e. 

AtRisk) (right-side of the table) which are calculated 

by CondProb Calculation. 

The last two rows in Figure 9 shows that a 

function to check impossible permutations is working 

for <<Indonesia> <Autumn>> – they have AtRisk 

values of 0. The middle four rows show that the 

pathogen-type rule works properly on all state 

combinations that contain “Winter” – they have 

AtRisk values of 0. 

A computer with specification Intel Core i3 CPU 

1.7GHz with 4GB of memory was used to generate 

the BNs and populate the CPTs. It took 17 to 19 

minutes approximately. The generation of state 

combinations accounts for most of the time.  

  

 

Figure 6: OntoGraf of the IDR. 

 

Figure 7: SWRL rules for Anthrax used to populate CPT.
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Figure 8: The generated isomorphic BN. 

5 EVALUATION RESULTS 

Results of the validation will be justified by the 

correctness of the algorithm. The algorithm is correct 

when it generates an isomorphic BN and populates 

the CPT as given odds ratios. 

5.1 Evaluation on the Generated BN 

Not all classes or sub-classes in the IDR will be 

transformed into nodes in the BN; only classes that 

have at least one individual are converted. To 

compare the generated BN with the IDR, a 

mechanism to retrieve all the individuals with their 

corresponding classes and sub-classes directly from 

the Protégé is needed. A SPARQL query is used in 

the Protégé environment to execute the required 

mechanism. 
 

SELECT * 

WHERE {?individual rdf:type ?type . 

OPTIONAL {?type rdfs:subClassOf ?class}} 

ORDER BY ?type 

 

Thereafter, the results of this query were compared 

with the generated BN (Figure 8). It can be seen from 

Fig. 6 that all sub-classes are transformed into nodes 

and all individuals are transformed into states. 

Furthermore, the node-state arrangements in the BN 

follow exactly the sub-classes and individuals’ 

arrangements in the ontology. Other cases have been 

checked, for example, having empty sub-classes or 

non-referenced data or object properties in the IDR. 

Those conditions have no impact on the generated 

BN. Thus, it has been shown that the generated BN is 

isomorphic with the IDR. 

5.2 Evaluation of the Populated CPT 

To show that the algorithm correctly represents the 

SWRL rules presented in Figure 7 in the child node’s 

CPT, an evaluation of the CPT is carried out. 

The numerical values stored in the SWRL rules 

reveal the behaviour (e.g. inclination or declination) 

of the disease risk. The CPT population algorithm 

makes use of these numerical values to produce the 

conditional probabilities. Thus, all rules are taken as 

inputs and the related conditional probabilities are 

taken as outputs of this evaluation.  

Then, the correctness of the CPT population 

algorithm is analysed by observing the outputs in two 

aspects: (1) the behaviour of the conditional 

probabilities has a consistent ratio with the given 

numerical values in the rules, and (2) the generated 

probabilities have different values for different 

personal and environmental conditions. 

Table 4 shows validation for all Anthrax rules 

shown in Figure 7. Two countries are involved in this 

evaluation: US and Indonesia. All results for 

correspondent country are given for each OR-type 

and pathogen-type rules. The aggregated ratio for 

each state is given in the Result column. Then, to 

observe the ratio of prevalence between two 

countries, all ratios for OR-type rules are aggregated 

and placed on the Ratio column (e.g. 1.12043 for the 

AntLoc1 rule). From this process, the algorithm 

populates the child node’s CPT automatically from 

the SWRL rules as presented in Figure 7. Also, they 

produce the comparable ratios with the given 

numerical values in the SWRL rules. 
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Furthermore, the resulting conditional 

probabilities show that these conditions result in 

different prediction results as stated on the rules. 

(a) different personal attributes (e.g. Age, 

Gender) which are taken as different person 

(b) the same person living in a country during 

different season (e.g. Winter, Spring) 

(c) or the same person moving to different 

location features (e.g. Lake, Farms) within a 

country 

Thus, we see that the populated CPT yield a 

personalized infectious disease risk prediction based 

on the personal and environmental attributes. 

6 DISCUSSION 

The algorithm describes about a mechanism to 

convert a knowledge-base (ontology and rules) 

representing an infectious disease to a risk prediction 

model (BN and its CPT). Since this paper introduces 

a BN generation algorithm, the comparative 

evaluation is of the functional requirements of the 

standard BNs. The requirements are generating BN 

structure (1), and populating the CPT (2). However, 

the algorithm makes some assumptions which lead to 

some limitations that are discussed in this section. 

States in a node are assumed to be unique and 

discrete. Some possibilities that makes a node 

become non-unique are (1) continuous states, and (2) 

non-unique individual names across classes. Netica-

BN allows continuous numerical forms as states but 

later any continuous nodes taking part in an equation 

must first have been discretized (Norsys, 1995-2017). 

However, no need for continuous nodes for modelling 

infectious disease risk prediction. In addition, 

continuous numerical forms of predictor rarely use a 

BN as the prediction model. A Logistic Regression or 

Bayesian Logistic Regression is more suitable for this 

kind of forms (Koop, et al., 2013). 

Rules in the IDR are assumed to have one attribute 

per rule. For most diseases, the OR usually represents 

one risk factor (e.g. male) which is independent of the 

disease risk. However, other diseases may have two 

or more risk factors for one OR (e.g. male, adult) or 

dependent risk factors. This condition is not equal 

with multiplying OR for male and adult. The current 

version of the algorithm cannot handle more than one 

attribute in one rule. 

 

Figure 9: Extract of the child node’s CPT. 

Table 4: Evaluation of generated model. 

DESIGN RESULT 

Rule Names 
Type of 

attribute 

Numerical Values given on 

the Rules 
Rule Type Generated conditional probability values Ratio 

Context: People living in the US and Indonesia during rainy season seek for Anthrax risk disease 

AntLoc1 Country US = 1.12, Indonesia = 1 Prevalence US Indonesia 1.12043 

AntPerson1 Personal 
Farmers = 1.83 x Military or 

Jobless 
OR 

Farmers = 0.06476 

Military = 0.03539 

Jobless = 0.03539 

Farmers = 0.05782 

Military = 0.03159 

Jobless = 0.03159 

1.83005 

AntPerson2 Personal 
Children = 0.85 x Adult or 

Elderly 
OR 

Adult = 0.03539 

Children = 0.03008 

Elderly = 0.03539 

Adult = 0.03159 

Children = 0.02686 

Elderly = 0.03159 

0.85005 

AntPerson3 Personal Omnivore = 1.73 x Vegan OR 
Vegan = 0.03539 

Omnivore = 0.06128 

Carnivore = 0.06831 

Vegan = 0.03159 

Omnivore = 0.05466 

Carnivore = 0.06098 

1.7309 

AntPerson4 Personal Carnivore = 1.93 x Vegan OR 1.93025 

AntEnv4 
Feature of 

Location 
Farms = 3.16 x Lake OR 

Farms = 0.03539 

Lake = 0.0112 

Farms = 0.03159 

Lake = 0.00999 
3.16095 

AntEnv1 Season Summer = 2.05 OR 
Winter = 0,  

Spring = 0.03539 

Summer = 0.0725 

Autumn = 0.03539 

Rain = 0.03159 

Dry = 0.03159 

2.0486 

AntEnv3 Climate Winter = 0 Pathogen - 
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Another limitation of this algorithm is on handling 

non-unique individual names. For example, an 

individual none belong to vaccinated and symptoms 

sub-classes. For now, if this situation happens, the 

knowledge engineer should concatenate the names 

with attribute values (e.g. notVaccinated).  

The underlying assumption of the generated BN 

is no intermediate nodes between parent and child 

nodes, and all predictors are assumed to be 

independent of each other. Most interdisciplinary 

research takes this assumption to simplify the 

network and prediction model (Fenton, et al., 2016).  

The current system only allows for pathogen to be 

active and inactive (set risk to 0). A support for more 

complex pathogen model (Kilianski, et al., 2015) 

(Huang, et al., 2012) would be beneficial. 

Finally, for the requirements to predict a 

personalized infectious disease risk, some critical 

features are already facilitated in initial version in this 

paper. Further development related to detailed 

specification can be accommodated without 

significant changes to either the knowledge-base or 

the generation algorithm. 

7 CONCLUSIONS AND FUTURE 

WORKS 

This paper has described an algorithm for generating 

a Bayesian Network from the declarative infectious 

disease knowledge stored in an Ontology and SWRL 

rules. This algorithm allows additions or 

modifications to the ontology and will generate an 

isomorphic Bayesian Network and populate its child 

node’s CPT automatically. However, the algorithm is 

a preliminary result with several limitations.  

This paper uses the IDR, an Infectious Disease 

Risk Ontology and SWRL rules, as main reference of 

BN generation. This IDR will have numerous 

individuals for each disease as the knowledge 

becomes available in the future. Three types of rules 

have been introduced in this paper: OR, prevalence, 

pathogen-type rules. In this algorithm version, the 

pathogen availability is considered as always active, 

unless there is a declaration of pathogen inactivity. 

Another progressing work is ready to be published in 

a separated article. 

The algorithm introduced in this paper only 

covers one possible source of OR and prevalence 

values – explicitly provided by experts within rules. 

There is another source that is possible to access: 

WHO data sources in UN Data or Health Surveillance 

API. By opting in these sources, there will be an 

automated process that aims to put the numerical 

values in the rule. This leads to some possibilities that 

are not covered by this algorithm for now, such as 

contradicting the established rules. A procedure to 

manage the rules might be a substantial improvement 

in the future. 

Some other further works be (1) modifying the 

intermediate representation and the XPath queries for 

accommodating more than one dependent attribute in 

one rule, (2) observing relevant time period for 

predicting various infectious disease risks; this will 

impact on the conditional probabilities given to a 

client and thus will slightly modify the CPT 

Population algorithm.  

To sum up, from the evaluation section, it can be 

concluded that the Network Creation algorithm has 

successfully generated an isomorphic BN from the 

Ontology structure. In addition, the CPT Population 

algorithm has auto-populated the child node’s CPT 

and the ratio of the conditional probability results are 

consistent with the inputted OR. Furthermore, the BN 

Builder package has resulted in a personalized 

infectious disease risk prediction based on the 

personal attributes and their environments. 
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