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Layout analysis, mainly including binarization and page segmentation, is one of the most important perfor-

mance determining steps of an OCR system for complex medieval document images, which contain noise,
distortions and irregular layouts. In this paper, we present high performance page segmentation techniques
for medieval European document images which include a novel main-body and side-notes segregation and
an improved version of OCRopus (OCRopus, ) based text line extraction. In order to complete the high
performance layout analysis pipeline, we have also presented the application of the percentile based binariza-
tion (Afzal et al., 2014) and the multiresolution morphology based text and non-text segmentation (Bukhari
et al., 2011) methods over historical document images. presented layout analysis techniques are applied to a
collection of the 15th century Latin document images, which achieved more than 90% accuracy for each of

the segmentation techniques.

1 INTRODUCTION

This paper addresses the problem of layout analysis
of historical European document images. Most lan-
guages of Europe belong to the Indo-European lan-
guage family. This family is divided into a number
of branches, including Romance, Germanic, Baltic,
Slavic, Albanian, Celtic, Armenian and Hellenic
(Greek). The Uralic languages, which include Hun-
garian, Finnish, and Estonian, also have a significant
presence in Europe. Example of Latin European doc-
ument images are shown in Figurel.

Layout analysis, text and non-text segmentation,
main-body and side-notes segregation, and text-line
extraction, is a major performance limiting step in
large scale document digitization projects. Over the
last two decades, several layout analysis algorithms
have been proposed in the literature (Cattoni et al.,
1998), (Nagy, 2000) that work for different layouts,
scripts and are quite robust to the presence of noise
in documents. Here, we briefly discuss some state-of-
the-art document image layout analysis approaches in
connection to European documents. Text and non-
text segmentation is an important layout analysis step,
which may directly affect the performance of further
layout processing tasks such as text-line extraction,
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Figure 1: 15 century Medieval European Documents from
the Kallimachos Project (Kallimachos, ); (a), on the left,
contains both Text and Non-Text regions; Document (b), on
the right, contains only Text regions.

and/or character recognition. The performance of
classification based on text and non-text segmentation
approaches (Bukhari et al., 2010) heavily depends on
training samples, and they can not be directly ap-
plied to different scripts. On the other hand, smear-
ing (Wong et al., 1982) and multiresolution morphol-
ogy (Bloomberg, 1991), (Bukhari et al., 2011) based
approaches work on an assumption that non-text el-
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(b) Binarized Document

Figure 2: The Percentile based Binarization Methodology(Afzal et al., 2014). Input scanned document (a) is binarized using

percentile filtering to give binary output document (b).

ements are bigger than text elements, however these
approaches are script independent and can be directly
used for European script document images.

Text-line extraction is the backbone of a layout anal-
ysis system. Kumar et al. (Kumar et al., 2007) have
evaluated the performance of six algorithms for page
segmentation on Nastaliq script: the x-y cut (Nagy
etal., 1992), the smearing (Wong et al., 1982), whites-
pace analysis (Baird, 1994), the constrained text-line
finding (Baird, 2002), Docstrum (OGorman, 1993),
and the Voronoi-diagram based approach (Kise et al.,
1998). These algorithms work very well in segment-
ing documents in Latin script as shown in (Shafait
et al., 2008). However, none of these algorithms were
able to achieve an accuracy of more than 70% on their
test data which had simple book layouts. More so-
phisticated approaches for text-line extraction have
been presented in the domain of segmenting hand-
written European document so far. However, the key
problem addressed in these approaches is to handle
local non-linearity of text-lines.

In this paper, we present a high performance lay-
out analysis system for a wide variety of Historical
European document images that belong to a diverse
collection of layout structures such as books, maga-
zines, and newspapers. Our layout analysis system is
a suitable combination of robust and well-established
text and non-text segmentation, main-body and side-
notes segregation, and text-line extraction techniques.
First, it performs text and non-text segmentation using
multiresolution morphology based method (Bukhari
et al,, 2011). Then, it segregates main-body and

side-notes based on vertical white space calculation
and filtering for a variety of single and multi-column
layouts. Finally, it determines the text-lines that
are extracted based on y-derivative of Gaussian ker-
nel. In this way, our layout analysis system extends
OCRopus (OCRopus, ) based layout analysis sys-
tem (text-line extraction) by incorporating text and
non-text segmentation, a novel main-body and side-
notes segregation and an improvised text-line extrac-
tion method. To evaluate the performance of the pre-
sented layout analysis system for real-world docu-
ments, a dataset of European scanned documents is
prepared. This paper focuses on an extensive exper-
imental evaluation of the presented layout analysis
system and its comparison with state-of-the-art tech-
niques. The rest of this paper is organized as fol-
lows. Our layout analysis system for historical Eu-
ropean document images is described in Section II.
Performance evaluation and experimental results are
discussed in Section III, followed by a conclusion in
Section IV.

2 HIGH PERFORMANCE
LAYOUT ANALYSIS OF
HISTORICAL EUROPEAN
DOCUMENT IMAGES

The high performance layout analysis of historical
European document images in this paper comprises of
the following main steps; binarization and page seg-
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mentation which includes text and non-text segmen-
tation, main body and side note segregation and text-
line extraction. For this purpose, more specifically,
we have proposed a novel main-body and side-notes
segregation technique, and we have improved OCRo-
pus (OCRopus, ) based text-line extraction technique.
Together with that we have applied the percentile
based binarization method (Afzal et al., 2014) of
OCRopus and Bukhari et al. (Bukhari et al., 2011)
based text and non-text segmentation techniques on
historical documents. For the completeness of this
paper, together with explaining our novel main-body
and side-notes segregation technique and improved
version of OCRopus (OCRopus, ) based text-line ex-
traction method, we have also briefly described the
percentile based binarization method and the mul-
tiresolution morphology based text and non-text seg-
mentation (Bukhari et al., 2011) based techniques.

A brief description of these steps is provided here:

2.1 The Percentile based Binarization
Method (Afzal et al., 2014)

In general, an image can be thresholded by determin-
ing a global threshold for the entire page (known as
global binarization method) or by using the statis-
tics obtained from a local window centered around
the pixel which is being thresholded. The percentile
based binarization method (Afzal et al., 2014) by
OCRopus takes into consideration the background
statistics based on percentile filters.In this method,
text and non-text regions are treated equally for de-
termining the threshold used for local binarization. It
works well both on focused and defocused images.
This method also works well on monocular images
with defocused parts. The binarization method starts
with estimating the background at each location in the
image,i.e., a whole new image is created having only
the background of the image based on percentile.The
threshold in this method is adapted in accordance with
the background properties of the image. The origi-
nal image has a domain of all gray level values, i.e.,
[0,255] and the background image estimated for each
value based on percentile filters at every location has
a domain of only two levels,i.e.,0,255. The threshold-
ing is done in a way that if the pixel value in original
image is less than ’t’ times the pixel value in back-
ground estimated image, then the corresponding pixel
value in the output image is labeled one, where ’t’ is
the parameter used to determine that whether a pixel
is foreground or background, depending on the sim-
ilarity of the pixel, and the background, which has
been estimated using percentile filter; otherwise it is
labeled zero.
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2.2 The Multiresolution Morphology
based Text and Non-text
Segmentation (Bukhari et al., 2011)

Bloomberg (Bloomberg, 1991) presented a multires-
olution morphology based text and non-text segmen-
tation method. It is a simple and script independent
text and non-text segmentation method. It performs
well for halftone mask segmentation, for which it
was designed, but most of the time fails to accurately
segment drawing type non-text elements such as line
art, maps etc. Bukhari et al. (Bukhari et al., 2011)
presented an improved multiressolution morphology
based text and non-text segmentation algorithm, that
can handle halftones as well as drawing type non-
text elements. A sample document image and its text
and non-text segmentation results for the original and
the improved version of multiresolution morphology
based methods are shown in Figure 3.

2.3 The Improved Text-Line Extraction
Method

The text-line extraction technique proposed here is
a modified version of the OCRopus’ text-line ex-
traction method, which is called “ocropus-gpageseg”.
The OCRopus technique of text-line extraction is ex-
plained briefly here;

It first estimates the scale” of the text by find-
ing connected components of individual letters in the
binary image and calculating the median of their di-
mensions. It removes components which are too big
or too small (according to scale) which are unlikely to
be letters.

In the baseline ocropus-gpageseg method, column
separators in binary image are found using convolu-
tion and thresholding. At first vertical white spaces
on binary image are found and then the rest region is
filled in order to form smooth text region using filter-
ing. Then using Guassian and uniform filtering, the
column edges (gradients) are found in the binary im-
age by setting a certain threshold in accordance with
the scale of the image. Then the smoothened text re-
gion and the column edges are combined to get col-
umn separators. In the next step, out of the total col-
umn separators, only selected number of column sep-
arators with dimensions greater than minimum value
are selected.

In order to find text lines, at first, box-map (bound-
ing box) is found by setting two thresholds. If the
area of the slice list lies in between the threshold ar-
eas, then that slice is labeled one, otherwise it is la-
beled zero- it helps in removing noise. Then a clean
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Figure 3: Text & Non-Text Segmentation Methodology by Bukhari et al. (Bukhari et al., 2011). The input image, on the left,
is segmented into two images- one containing only Text regions and the other containing only Non-Text regions.

image is obtained by multiplying the two image ar-
rays of box-map and the given binary image, keeping
only the desired text. On this cleaned image, the y-
derivative of a Gaussian kernel is applied to detect the
top and bottom edges of the remaining features. It
then blurs this horizontally to blend the tops of letters
on the same line together. The same is done with the
bottoms of the letters. The areas between top and bot-
tom edges are blurred and treated as text line regions

and termed as line seeds. )
Then column separators and line seeds are com-

bined and used to segment the binary images. Basi-
cally, column separators restrict line seeds i.e., sepa-
rate two lines horizontally.

In our presented modified version of ocropus-
gpageseg method, column separators in binary
image are found more accurately using convolution
and thresholding with some optimal parametrical
changes and post-processing steps like removal of
two column separators that are too close to each other
in the same horizontal line and extension of column
separators to the first and last rows of the image with
a condition that no character is crossed in between
on the extended path. At first vertical white spaces
on binary image are found and then the rest region
is labeled in order to form smooth text region using
filtering. Then using Gaussian and uniform filtering,
the column edges (gradients) are found in the binary

image by setting a certain threshold in accordance
with the scale of the image. The smoothened text
region and the column edges are combined to get
column separators. In the next step, out of the total
column separators, only selected number of column
separators with dimension greater than min value
are selected. The finally obtained column separators
are then combined with the initially obtained text
region (through white space method) in order to
find more precise text only regions in the binary
image. All the gaps/holes within the text regions
are filled up and thus final text only regions are
obtained. In the Improved OCRopus Text-Line
Method, we focused more on extracting the precise
text only regions which form a sentence and separate
them from other text regions like side-notes which
are too close to the main-body text regions and
then extract text lines using y-derivative of Gaus-
sian kernel and filtering. The result of improved
OCRopus text-line extraction method is shown in 4.

2.4 The Novel Main Body and Side
Notes Segregation Technique

In this segregation technique, the main objective is
the classification of text only regions after segment-
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Figure 4: Image(a): Binarized European Document; Image(b): Main-Body and Side-Notes Segregated Document; Image(c):

Improved OCRopus based Text-Line Segmented Document.

ing the binary image of a European document into
text and non-text. After removing the non-text re-
gions and major noise content from the binary im-
age, the image is smoothened in order to label the text
regions and form a blob over them by finding verti-
cal white spaces and applying Gaussian and uniform
filtering. The blobs are formed over the text regions
in such a way that the text-lines which are not part
of a sentence but appear too close to each other are
also separated. Among all the blobs formed over text
regions, the ones below a certain adaptive threshold
width are classified as side notes and the rest are la-
beled as main body text regions. Too small blobs be-
low a certain adaptive threshold with respect to me-
dian of heights of every character connected com-
ponent is considered as noise and hence removed.
The result of main-body and side-notes segregation
method is shown in 4.

3 PERFORMANCE EVALUATION

The 15th century novel “Narrenschiff” is part of
the German government funded project Kallima-
chos (Kallimachos, ). For the performance evaluation
of the proposed layout analysis techniques, we have
selected a subset of 50 images from one of the Latin
novels in the Kallimachos project. Sample document
images are shown in Figure 1. These images con-
tain both text and non-text regions, as well as main
body and side notes within text regions. For this
dataset, text and non-text segmentation, main body
and side note segregation, and text-line extraction
ground-truths containing both text and non-text re-
gions are prepared in color coded pixel form as shown
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in Figures 6,7 and 8. The images have variety of both
single and multi-column layouts and hence they can
be used to evaluate the performance of a layout anal-
ysis algorithms for European document images. Be-
low, the performance evaluation of the presented lay-
out analysis techniques is done in three parts. The
first part evaluates the performance of text and non-
text segmentation, the second part analyzes the errors
made in main body and side note segregation, and the
third part evaluates the overall accuracy of text-line
extraction technique.

Main Body & Side
Notes Segregation

o
=1

Textline Extraction

Text & Non-Text|

Binarization Segmentation

Figure 5: Complete Methodology.

3.1 Text and Non-text Segmentation

As stated above, our dataset contains 50 historical
document images. We test the performance of our ap-
proach using images with different writing styles and
layout structures which were not used for training.
Pixel-level ground truth has been generated by
manually assigning text in the documents of the test-
ing set with one of the two classes, main-body or side-
notes text. Several methods to measure the segmen-
tation accuracy have been reported in literature. We
evaluate the segmentation accuracy by adopting the F-
measure metric which combines precision and recall
values into a single scalar representative. It guaran-
tees that both values are high (conservative), in con-
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Figure 6: Text & Non-Text Ground Truth Generation.

trary to the average (tolerant) which does not hold this
property. For example, when precision and recall both
equals one, the average and F-measure will both be
one, but, if the precision is one and the recall is zero,
the average would be 0.5 and the F-measure would be
zero. Therefore,this measure has been adopted as it
reliably measures the segmentation accuracy. Preci-
sion and recall are estimated according to Eq. 1 and
Eq. 2, resp.

TP
Precision = ——— @))
TP+FP
TP
Recall = ——— 2)
TP+FN

where True-Positive(TP), False-Positive(FP)and
False-Negative(FN) with respect to side-notes, are de-
fined as following:

e TP:side-notes text classified as side-notes text.
e FP:side-notes text classified as main-body text.
e FN:main-body text classified as side-notes text.

Likewise, these metrics can also be defined with
respect to main-body text. Once we have the precision
and recall counts, F-measure is calculated according
to Eq. 3.

2 ..
F — Measure = (1+pB*)*Precision*Recall 3)

B2xRecall+Precision

Assigning B = 1| induces equal emphasis of pre-
cision and recall on F-measure estimation. The F-
Measure accuracies are shown in Table 1.

F-measure for both main-body and side-notes text
with different postprocessing window sizes is shown
in Table 1. Note that the optimal window size is 100.

Table 1: Performance of Text and Non-Text Extraction
method by calculating F-Measure for Text and Non-Text re-
gions.

Text and Non-Text Segmentation

Main-Body F-Measure(%) 99.433%

99.6683%

Side-Notes F-Measure(%)

3.2 Main Body and Side Note
Segregation

The performance evaluation matrices for main body
and side note segregation accuracy are based on f-
measure calculation as described in previous section.
The F-Measure accuracies are shown in Table 2.

Table 2: Performance of Main-Body and Side-Notes segre-
gation method by calculating F-Measure for main body and
side note text regions.

Main-Body and Side-Notes Segregation

Main-Body F-Measure(%) 99.7646%

Side-Notes F-Measure(%) 80.4962%

3.3 Text-line Extraction

The ground-truth images for evaluation of Text-Line
Extraction Technique performance are created manu-
ally by pixel coloring

The performance evaluation metrics for text-line
detection accuracy are defined in (Shafait et al.,
2008), where a text-line is said to be correctly
detected if it does not fall into any of the fol-
lowing categories of errors: over-segmentation,
under-segmentation, missed text-lines, and false-
alarms. Let,N,:ground-truth text-lines;Ny:segmented
text-lines;Nyo,:0ne-2-one correctly detected text-
lines. The one-to-one text-line detection accuracy is
represented by Eq. 4.
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Figure 7: Ground-Truth Generation for Main & Side Body Segregation.
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For modified text-line extraction methodology on Eu-
ropean dataset, we achieved a performance gain from
72.18% to 94.53% after text and non-text segmenta-
tion as shown in Table 3.

Table 3: Performance of Improved Text-Line Extraction
method based on performance evaluation metrics for text-
line detection accuracy defined in (Shafait et al., 2008).

Technique Accuracy(%)
OCRopus-gpageseg 72.177338%
Improved OCRopus-gpageseg | 94.530014%

4 CONCLUSION

In this paper, we have presented a high performance
layout analysis system for historical European doc-
ument images, which are composed of a variety of
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single and multi-column layouts. The presented lay-
out analysis system is composed of a suitable com-
bination of well-established and robust text and non-
text segmentation, novel main-body and side-notes
segregation, and text-line extraction methods. We
have evaluated the presented layout analysis system
on the dataset of 50 document images from a 15th
century Latin script historical novel from the Kalli-
machos project (Kallimachos, ), which are composed
of a different layout structures as shown in Figure
1 containg both text and non-text regions. For text
and non-text segmentation, multiresolution morphol-
ogy based method (Bukhari et al., 2011) is used. We
have achieved above 99%text and non-text segmen-
tation accuracy on the dataset. For main-body and
side-notes segregation, the methodology is explained
in (Section II-D). For this mthod, we achieved 99%
main-body segregation accuracy and above 80% side-
notes accuracy for the dataset. For text-line extrac-
tion, improved version of OCRopus based text-line
extraction method is used, which is described in (Sec-
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tion II-C). For Improved OCRopus based text-line ex-
traction method, we have achieved above 94% text-
line extraction accuracy for the dataset, which is bet-
ter than the performance of above 72% of OCRopus-
gpageseg method on the dataset. Altogether, the pre-
sented layout analysis system showed good perfor-
mance for text and non-text segmentation, main-body
and side-notes segregation, and text-line extraction on
a variety of European document images, and it can be
used for large scale European documents digitization
processes.
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