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Abstract: Dynamic Programming (DP) is an effective procedure to solve many combinatorial optimization problems
and optimal Coalition Structure generation (CSG) is one of them. Optimal CSG is an important combinatorial
optimization problem with significant real-life applications. The current best result in terms of worst case time
complexity isO(3n). So, there is a need to find speedy approaches. This paper proposes a parallel dynamic
programming algorithm for optimal CSG. We performed the comparison of our algorithm with the DP for
CSG problem which happens to be a sequential procedure. The theoretical, as well as the empirical results
show that our proposed method works faster than its sequential counterpart. We obtain a speed-up that is
almost 14 times in case of 17 agents using a 16-core machine.

1 INTRODUCTION

Coalition formation is one of the pivotal coordination
mechanisms in multi-agent system where a group of
autonomous agents come forward and form alliances.
Such alliances are needed when a task can not be ac-
complished by a single agent or a group of agents
need to yield the result faster than that of a single
agent (Rahwan et al., 2015). Coalition formation con-
sists of 3 activities:

• Coalition value calculation.

• Partitioning the set of agents into the most benefi-
cial one.

• Dividing the revenue earned among the agents.

This paper focuses on the second step that involves
partitioning a set of agents into disjoint subsets so
as to maximize the sum of the coalition values of
the corresponding coalitions. Coalition formation
has become ubiquitous in the past several years. In
many real world problems, for example, e-commerce,
where customers can form a group in case of bulk pur-
chasing (Tsvetovat and Sycara, 2000). In distributed
vehicle routing (Sandhlom and Lesser, 1997), com-
panies form coalition to supply the deliveries. An-
other example of coalition formation in real life is the
carpooling problem (Arib and Aknine, 2013), where
users want to share their means of transportation. So-
cial Ridesharing problem, where a set of commuters,
connected through a social network, arrange one-time
ride at short notice (Bistaffa et al., 2015). Surveil-

lance of an area can be improved using autonomous
sensors (Glinton et al., 2008).

To solve this CSG problem, researchers have ex-
plored different approaches. They can be typically
clustered into 3 categories:

• Dynamic Programming (DP) algorithms: Prelim-
inary work on this technique started way back in
1980’s. Advantage of this algorithm is that, given
a finite number of agents, it guarantees to find an
optimal solution inO(3n) (Rahwan and Jennings,
2008). Dynamic Programming (DP) avoids rep-
etition by storing values of the subproblems in
memory. First dynamic programming algorithm
for CSG was proposed in 1986 by Yun Yeh (Yeh,
1986). Improved version of DP (Rahwan and Jen-
nings, 2008) proposed by Rahwan et al. performs
fewer operation than DP.

• Anytime algorithm: With short execution time
and strict deadlines, DP becomes futile as it needs
to be run to completion. An anytime algorithm
can return a valid solution even if it is interrupted
before it ends. It works by generating an initial
solution within a bound from the optimal, then
gradually improve its quality as it search more
search space. First anytime algorithm for CSG
problem was proposed by (Sandholm et al., 1999)
with worst-case guarantees. Such algorithm oper-
ates on the space betweenω(nn) to O(nn). (Dang
and Jennings, 2004) proposed an anytime algo-
rithm that produces solutions that are within a fi-
nite bound from the optimal. A few more algo-
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rithms are (Rahwan et al., 2007), (Adams et al.,
2010), (Changder et al., 2016).

• Heuristic: Objective of heuristic is to produce a
good enoughsolution for a given problem within
a reasonable amount of time. Due to the expo-
nential nature of the problem, it is used when rel-
atively quick result is needed. In the paper (She-
hory and Kraus, 1998), authors have proposed an
greedy algorithm, putting restriction on the size of
the coalition.

The rest of the paper is organized as follows: Sec-
tion 2 describes the background and relates work of
optimal CSG problem. Section 3 describes the DP
algorithm for the same. Section 4 focuses on the mo-
tivation for implementing parallelism. Proposed par-
allel DP has been described in section 5. Section 6
and 7 discusses about evaluation and performance re-
spectively. Finally section 8 draws conclusion.

2 BACKGROUND AND RELATED
WORK

Definition 1 Given a set of agents A=
{a1,a2, . . . ,an}, all the non-empty subsets are
the possible coalitions, denoted as

• each coalition is a subset of set A, i.e., C= {ai|i ∈
[1,n]}.

• the number of possible coalition is|C |= 2n−1.
• all the subsets are pairwise disjoint Ci ∩Cj = /0.

e.g., if a set has 3 agents, then the possible coalitions
are {a1}, {a2}, {a3}, {a1,a2}, {a1,a3}, {a2,a3},
{a1,a2,a3}.
Definition 2 Coalition structure (CS) over A is a par-
titioning of the agents into different coalitions. Set of
all coalition structure is denoted as∏A.

• CS= {CS∈∏A |CS⊆C}
• ∪s

i=1(Ci) = A where Ci ∈CS and s=size of CS.

e.g., if a set A has 3 agents{a1,a2,a3} then
the coalition structure will be{{a1},{a2,a3}},
{{a2},{a1,a3}}, {{a3},{a1,a2}}, {{a1,a2,a3}},
{{a1},{a2},{a3}}
Definition 3 Characteristics function game G is de-
fined by a pair (A, f), where A is a set of agents par-
ticipating in the game f: 2A→ ℜ. In our coalition
structure generation (CSG) problem this function as-
signs a real value v(C) to each of the coalitions.

• f : C→ v(C) where C⊆ A
• value of any coalition structure will be sum of the

coalition value of each coalition present in the CS.

• our objective is to find the CS whose value v(CS)
is maximum so as to maximize the social welfare.
CS⋆ = argmaxCS∈∏Av(CS)

Time required to enumerate all the coalition structures
in a brute force manner isΩ(nn/2) (Sandholm et al.,
1999). The number of subsets increases exponentially
as the number of agents increases linearly. The DP al-
gorithm was used by Sandhlom et al. (Lehmann et al.,
2006) to determine the solution of another combina-
torial problem, winner determination problem in auc-
tion.

Another algorithm IP, proposed by Talal Rahwan
(Rahwan et al., 2009), is faster than DP by several
order of magnitude for some data distributions.Im-
proved Dynamic Programming(IDP) algorithm (Rah-
wan and Jennings, 2008) is an improved version of
DP. Authors have proved it to be faster and also it re-
quires less memory but the drawback is that it takes
O(3n) time in worst case. A modified version of IDP
(Rahwan et al., 2012), uses goodness of both the al-
gorithms IDP and IP.

Optimal Dynamic Programming(ODP) algorithm
(Michalak et al., 2016) performs only one third of
DP’s operation by avoiding the redundant operations
without losing the guarantee of finding the optimal
solution. A hybrid version of ODP, called ODP-IP is
also proposed in (Michalak et al., 2016) and authors
have shown it is faster than other algorithms empiri-
cally.

In multi-agent system, there are often limits on the
time to determine the solution of the problem. For
example, a rescue operation is to be carried out by
a pack ofn agents. In such a case, instead of enu-
merating the whole search-space to find out the best
coalition structure, initiation of the job is much more
important. Researchers are continuously trying to im-
prove the time taken by DP but all of these approaches
aresequential. Whereas there is a scope to implement
parallelism in the existing algorithms. First paral-
lel DP algorithm for CSG was proposed in (Svensson
et al., 2013). (Cruz et al., 2017) is about parallelisa-
tion of IDP using traditional CPU. With the increas-
ing availability of parallel computing techniques, re-
searchers are using more computational power into
existing method to shorten the computation time sub-
stantially (Kumar et al., 1994).

In this paper we present a parallel approach of
the DP algorithm using master-slave model. It also
presents an evaluation of the same, both analytically
and empirically.
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3 DYNAMIC PROGRAMMING
ALGORITHM

Coalition Structure Generation (CSG) problem has
been made faster by solving it with the help of
Dynamic Programming (DP). The procedure is ex-
plained in Algorithm 1.

DP algorithm for CSG works by maintaining two
tables.Partition tablePart(C) andValue tableVal(C).
Former one stores the partition that gives the high-
est value and later one stores the values of corre-
sponding partitioning. In order to do so, the al-
gorithm first evaluates all possible ways of splitting
up the coalition C into two and checks whether it
is beneficial to split C or not. The highest value
as well as the partition (or no partition) are stored
in table Val(C) and Part(C) respectively. For ex-

Algorithm 1: Dynamic Programming algorithm.

Input: Set of all possible non- empty subsets ofn
agents(2n− 1) . The value of any coalitionC is
v(C). If no v(C) is specified thenv(C) = 0
Output: Optimal coalition structureCS∗(n)

1: for i = 1 ton do
2: for C⊆ A, where|C|= i do ⊲ A is set ofn

agents
3: Val(C)← v(C)
4: Part(C)←{C}
5: for C′ ⊂C do ⊲ for every possible way

of splittingC into two halves
6: if Val(C′)+Val(C\C′)> v(C) then
7: Val(C)←Val(C′)+Val(C/C′)
8: Part(C)← {C′,C\C′}
9: end if

10: end for
11: end for
12: end for
13: CS∗← {A}
14: for C∈CS∗ do
15: if Part(C) 6= {C} then
16: CS∗← (CS∗ \C,Part(C))
17: Go to line 14 and start with the newCS∗

18: end if
19: end for
20: Return CS∗(n)

ample C = {a1,a3}, in this case either they will
work separately i.e.,{{a1},{a3}} or they will form
a coalition, i.e.,{a1,a3}. Now, v[{a1,a3}]=60 and
v[{a1}] + v[{a3}]=55 so, here DP will store{a1,a3}
in Part(C) table and 60 in Val(C) table. Every split-
ting (C,C/C′) is evaluated asv(C′)+ v(C/C′). Table
1. shows how DP works for 4-agents. In each step

Table 1: Example of DP program with 4 agents.

Size C v(C) All splitting by DP Part(C) Val(C)

{a1} 30 v[{a1}] = 30 {a1} 30

1 {a2} 40 v[{a2}] = 40 {a2} 40

{a3} 25 v[{a3}] = 25 {a3} 25

{a4} 45 v[{a4}] = 45 {a4} 45

{a1,a2} 50 v[{a1,a2}] = 50,v{a1}+ v{a2}= 70 {a1}{a2} 70

{a1,a3} 60 v[{a1,a3}] = 60,v{a1}+ v{a3}= 55 {a1,a3} 60

2 {a1,a4} 80 v[{a1,a4}] = 80,v{a1}+ v{a4}= 75 {a1,a4} 80

{a2,a3} 55 v[{a2,a3}] = 55,v{a2}+ v{a3}= 65 {a2}{a3} 65

{a2,a4} 70 v[{a2,a4}] = 70,v{a2}+ v{a4}= 85 {a2}{a4} 85

{a3,a4} 80 v[{a3,a4}] = 80,v{a3}+ v{a4}= 70 {a3,a4} 80

{a1,a2,a3} 90 v[{a1,a2,a3}] = 90,v{a1}+ v{a2,a3}= 95 {a2}{a1,a3} 100

v{a2}+ v{a1,a3}= 100,v{a3}+ v{a1,a2}= 95

{a1,a2,a4} 120 v[{a1,a2,a4}] = 120,v{a1}+ v{a2,a4}= 115 {a1,a2,a4} 120

v{a2}+ v{a1,a4}= 110,v{a4}+ v{a1,a2}= 115

3 {a1,a3,a4} 100 v[{a1,a3,a4}] = 100,v{a1}+ v{a3,a4}= 110 {a1}{a3,a4} 110

v{a3}+ v{a1,a4}= 105,v{a4}+ v{a1,a3}= 105

{a2,a3,a4} 115 v[{a2,a3,a4}] = 115,v{a2}+ v{a3,a4}= 120 {a2}{a3,a4} 120

v{a3}+ v{a2,a4}= 110,v{a4}+ v{a2,a3}= 110

{a1,a2,a3,a4} 140 v[{a1,a2,a3,a4}] = 140,v{a1}+ v{a2,a3,a4}= 150 {a1}{a2,a3,a4} 150

v{a2}+ v{a1,a3,a4}= 150,v{a3}+ v{a1,a2,a4}= 145

4 v{a4}+ v{a1,a2,a3}= 145,v{a1,a2}+ v{a3,a4}= 120

v{a1,a3}+ v{a2,a4}= 145,v{a1,a4}+ v{a2,a3}= 145

DP actually checks all the possible combinations i.e.,(n
s

)
. Each combination then generates 2s−1 partitions.

Running time of DP is
(n

s

)
·O(2k) = O(3n).

To fill up the entries of Val(C) table of size-s, all
the precedent coalition of size 1,2, . . .s−1 are calcu-
lated and then those values are simply reused. Once
the DP determines all the entries of both Part(C)
and Val(C) tables, the optimal coalition structure
CS∗ is computed recursively. DP starts from the
grand coalition{a1,a2,a3,a4} and find highest val-
ued coalition structure is{{a1},{a2,a3,a4}}. Next
it looks for {a2,a3,a4} and finds beneficial split is
{{a2},{a3,a4}} and lastly it findsa3 anda4 works to-
gether as shown in Table 1. As a result, DP concludes
that the optimal solution is{{a1},{a2},{a3,a4}}

4 MOTIVATION FOR
PARALLELISM

DP solves a given problem by dividing it into sub-
problems and later on solves those subproblems and
eventually combines those results in order to ob-
tain the final result. To compute the values Val(C)
(Table. 1) of coalition size s, algorithm calcu-
lates Val(C) of all coalition of size 1,2, . . . ,s− 1.
Once all the entries of both the table Part(C) and
Val(C) are computed, algorithm looks for the op-
timal solution CS⋆ recursively. A 3-size coali-
tion {{a1,a3,a4}} is divided into 2s−1 = 22 = 4
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{a1,a3,a4}

{{a3},{a1,a4}}

23�1=4possibleway of 2-way partition

{{a1,a3,a4}} {{a4},{a1,a3}}{{a1},{a3,a4}}

Figure 1: Independent tasks.

possible ways, i.e.,{{a1,a3,a4}}, {{a1},{a3,a4}},
{{a3},{a1,a4}},{{a4},{a1,a3}}. To compute step-
1, DP looks into the memory where all the values are
stored and to compute the values of the rest of the
steps, it reuses values from previously stored entries.

Parallel algorithm design technique allows the de-
signer to perform some of the tasks concurrently. In-
dependent subproblems (subproblems with no data
dependencies) (Stivala et al., 2010) are executed si-
multaneously and then all the individual results are
summed up to generate the desired result. To get exe-
cuted parallelly, an algorithm should possess some or
all of the following traits (Kumar et al., 1994):

1. portions of the work that can be performed simul-
taneously.

2. mapping the concurrent pieces of work onto mul-
tiple processors running in parallel.

3. distribution of inputs, outputs to the process.

4.1 Decomposition

The process of dividing a computational task into
smaller and independent subprocess, which can be ex-
ecuted parallely is called process/task decomposition.
Here, in this coalition formation problem, two types
of parallelism are possible:

1. The first type of parallelism can be achieved while
Algorithm 1 performs exhaustive search for the
highest valued 2-way partitioning of each s-size
coalition i.e., computation of 2s−1 number of
partitioning can be performed independently and
concurrently. Figure 1 shows all possible 2-way
partitioning of coalition{{a1,a3,a4}}.

2. The second type of parallelism can be deployed
in each step. CREW SM SIMD model allows
concurrent-read (Aki, 1989)from the shared mem-
ory. It is also evident that all the s-size coalitions
are independent of each other. All they need is to
fetch the previously calculated values from table
Val(C) of coalition size 1,2,3, . . . ,s−1. Hence in
each step

(n
s

)
number of coalition formation can

be easily parallelised. Figure shows example of
one such possibility.

4
2

{a1,a2} {a1,a3} {a1,a4}{a2,a3} {a2,a3} {a3,a4}

4
2
tasks can bedone in parallel in step-2

Figure 2: Independent tasks.

5 PARALLEL DYNAMIC
PROGRAMMING

A CREW SM SIMD computer consists of p proces-
sorsP1,P2, . . . ,Pp. Here we describe a parallel algo-
rithm (Algorithm 2) for parallel computation of coali-
tion structure generation (CSG) problem. For this, the
algorithm will take(2n−1) no. ofv(C)s and produce
optimal coalition structureCS∗. In order to design
a parallel algorithm following properties (Aki, 1989)
need to be satisfied:

• Number of processors

• speedup

5.1 Number of Processors

Theorem 1 For a problem of size m, the number of
processors required by a parallel algorithm, denoted
by p is smaller than m and is a sublinear function of
m, i.e., p< m and p= mx where0< x< 1.

Proof 1 Total no. of tasks in each s-sized coalition as
described in section 3 is, m=

(n
s

)
(2s−1),

Let no. of processors is even, i.e., p= 2b, where b∈N

∑
(

n
s

)
= 2n

total no. of terms=n+1
half of the terms =(n+1+1)

2
sum of half of the terms=2

n

2

= 2n−1

approximation of each term is

2n−1

(n+2)/2
=

2n

n+2

Hence, each term
(n

s

)
= 2n

n+2
From the above theorem,

p = nx
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putting all the values

2b = (
2n

n+2
·2s−1)x

=
1

(n+2)x · (2
n+s−1)x

again( 1
n+2)

x is always less than 1 or20.

So the number of processor will be,

2b = 20 · (2n+s−1)x

= 20+(n+s−1)·x

= 2(n+s−1)·x

5.2 Speedup

Theorem 2 Running time of the parallel algorithm
T(n) (where n is size of the input) is smaller than the
sequential algorithm for the problem at hand.

Proof 2 Total no. of processor our proposed system
will use is2(n+s−1)·x ,
there are total

(n
s

)
coalition in each step and each

of them takes(2s−1) time, so total amount of task
(in terms of time) that can be done in parallel is
m=

(n
s

)
(2s−1),

m =

(
n
s

)
(2s−1)

=
2n

n+2
·2s−1

=
1

n+2
·2n+s−1

parallel execution on p= 2b no. of processors in each
step will take t(n) = m

p amount of time.

m
p

=

(
n
s

)
2s−1

2b

=

(
n
s

)
2s−1

2(n+s−1)x

=
2n

n+2
· 2s−1

2(n+s−1)x

=
1

n+2
·2n 2s−1

2(n+s−1)x

=
1

n+2
· 2n+s−1

2(n+s−1)x

=
1

n+2
·2(n+s−1)(1−x)

Now, each step will take t(n) time and calculation of
step1,2, . . . ,n will be done sequentially. Eventually

our proposed algorithm will take

T(n) =
n

∑
s=1

t(n)

=
n

∑
s=1

1
n+2

·2(n+s−1)(1−x)

≈ n · 1
n+2

·2(n+s−1)(1−x)

≈ 2(n+s−1)(1−x)

Upper bound of x is 1. If x tends to 1 then(1−x) tends
to 0. And applying hit and trial method it is evident
that

lim
(1−x)→0

(n+ s−1)(1− x) < n

⇒ 2lim(1−x)→0(n+s−1)(1−x) < 2n

again2n < 3n

T(n) < 3n

⇒ 3n > T(n)
3n

T(n)
> 1

Time taken by DP is O(3n). Hence Speedup is greater
than 1.

5.3 Algorithm Details

Proposed Parallel Dynamic Programming (PDP) for
CSG works the same way as DP does, which is de-
scribed in Section 3. But the difference is that some
of the computations are done in parallel manner in
PDP. In traditional DP, in each step,

(n
s

)
·2s−1 number

of calculations are done sequentially i.e., one by one,
whereas in PDP, each step divides all possible coali-
tion i.e.,

(n
s

)
in chunks of slave processes. Each chunk

contains at least 2 slave processes. Furthermore, all
the coalitions inside a chunk divides them into 2s−1

parts.
Table 2. below shows which portion of the Algorithm
1 can be done concurrently. Three different colours
denotes 3 such different portions. Blue row denotes
that all the size-2 coalitions i.e.,

(4
2

)
=6, which are in-

dependent of each other. Likewise green denotes size-
3 coalitions and lastly red denotes size-4 coalition for
4 agents. For example, in size-3,

(4
3

)
=4 coalitions are

divided into two chunks of slave processes (or sub
processes) as described in Figure 3.{a1,a2,a3} and
{a1,a2,a4} in slave process 1, similarly{a1,a3,a4}
and{a2,a3,a4} in slave process 2. Now each slave
process, in this example has 2× 23−1 = 8 computa-
tions to perform.

In this study, we have used up to 16 cores to
implement a master-slave parallel dynamic program-
ming (Li et al., 2013) to compute the optimal coalition
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Algorithm 2: Parallel Dynamic Programming algorithm.

Input: Set of all possible non- empty subsets ofn
agents(2n− 1) . The value of any coalitionC is
v(C). If no v(C) is specified thenv(C) = 0
Output: Optimal coalition structureCS∗(n)

1: for i = 1 ton do
2: C⊆ A, where|C|= i ⊲ A is set ofn agents
3: Val(C)← v(C)
4: Part(C)← {C}
5: end fors∈ 2, . . . ,n
6: ⊲ //do it in parallel//
7: for i ∈ 1, . . . ,nsdo
8: C⊆ A :|C |= i
9: Val(C)←− v(C)

10: Part(C)←−C
11: ⊲ //do it in parallel//
12: for i ∈ 1, . . . ,2s−1 do
13: each split of Subset C into twoC′,C/C′

14: ⊲ if C is not Split then
C′ =CandC/C′ = 0

15: ⊲ C will be divided in every possible
way into two halves

16: if Val(C′)+Val(C/C′)> v(C) then
17: Val(C)←−Val(C′)+Val(C/C′)
18: Part(C)←− (C′,C/C′)
19: end if
20: end for
21: end for
22: CS∗←− Ag
23: for everyC∈CS∗ do
24: if Part(C) 6=C then
25: CS∗←− (CS∗/C,Part(C))
26: start with newCS∗

27: end if
28: end for
29: Return CS∗(n)

value. Amaster processin each step divides all possi-
ble coalitions into groups ofslave processesdepend-
ing on the number of the processors we have. Master-
slave model (Li et al., 2014) is a commonly used
paradigm for parallelizing a DP algorithm. Here the
master process has a full version of DP algorithm and
slave process has only the code for the subtasks. Slave
processes evaluate their individual tasks and stores the
result in the memory of the master process. Compu-
tation of all the slave processes are done in parallel,
computation of the subtasks inside each subtask are
done in sequential manner. Slave processes are re-
sponsible for carrying out the subtasks by determin-
ing the highest valued coalition structure (CS) of each
coalition and send back it to their master process.

Table 2: Example of PDP program with 4 agents.

Size C v(C) All splitting by DP Part(C) Val(C)

{a1} 30 v[{a1}] = 30 {a1} 30

1 {a2} 40 v[{a2}] = 40 {a2} 40

{a3} 25 v[{a3}] = 25 {a3} 25

{a4} 45 v[{a4}] = 45 {a4} 45

{a1,a2} 50 v[{a1,a2}] = 50,v{a1}+v{a2}= 70 {a1}{a2} 70

{a1,a3} 60 v[{a1,a3}] = 60,v{a1}+v{a3}= 55 {a1,a3} 60

2 {a1,a4} 80 v[{a1,a4}] = 80,v{a1}+v{a4}= 75 {a1,a4} 80

{a2,a3} 55 v[{a2,a3}] = 55,v{a2}+v{a3}= 65 {a2}{a3} 65

{a2,a4} 70 v[{a2,a4}] = 70,v{a2}+v{a4}= 85 {a2}{a4} 85

{a3,a4} 80 v[{a3,a4}] = 80,v{a3}+v{a4}= 70 {a3,a4} 80

{a1,a2,a3} 90 v[{a1,a2,a3}] = 90,v{a1}+v{a2,a3}= 95 {a2}{a1,a3} 100

v{a2}+v{a1,a3}= 100,v{a3}+v{a1,a2}= 95

{a1,a2,a4} 120 v[{a1,a2,a4}] = 120,v{a1}+v{a2,a4}= 115 {a1,a2,a4} 120

v{a2}+v{a1,a4}= 110,v{a4}+v{a1,a2}= 115

3 {a1,a3,a4} 100 v[{a1,a3,a4}] = 100,v{a1}+v{a3,a4}= 110 {a1}{a3,a4} 110

v{a3}+v{a1,a4}= 105,v{a4}+v{a1,a3}= 105

{a2,a3,a4} 115 v[{a2,a3,a4}] = 115,v{a2}+v{a3,a4}= 120 {a2}{a3,a4} 120

v{a3}+v{a2,a4}= 110,v{a4}+v{a2,a3}= 110
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Figure 3: Illustration of master-slave parallel DP for CSG.

6 EVALUATION

This section first describes the experimental setup of
our proposed algorithm.

6.1 Experimental Setup

The proposed Parallel DP algorithm for finding the
optimal coalition structure (CS) is coded in Python.
In order to provide a direct comparison with the se-
rial version of the algorithm, the same is also coded
in Python. The codes of the two algorithms were exe-
cuted on a Dell PowerEdge R720 rack server with two
eight core Intel Xeon E5-2600 processors and 96GB
memory. Each execution was exclusive, i.e., no other
user application or code was executed simultaneously.
The inputs to the program, i.e., the values of the grand
coalitions, was randomly generated using the Chi-
square distribution ang Agent-based Normal distribu-
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tion. The number of agents was varied from 10 to 17.

6.2 Dataset Generation

The NP-complete problems are intractable, i.e., they
can be solved theoretically but in practice they take
too long for their solutions to be useful. Coalition
structure generation problem is also an NP-complete
problem. We compared our proposed parallel dy-
namic programming algorithm with dynamic pro-
gramming using following value distributions.

• Chisquare (χ2)— The value of each coalitionC
is drawn fromv(C) ∼ |C|×χ2(ν), whereν = 0.5
is degrees of freedom.

• Agent-based Normal—as in (Michalak et al.,
2016), each agentai is assigned a random power
pi ∼ N(10,0.01). Then for all coalitionsC in
which agentai appears, the actual power ofai
in C is determined aspC

i ∼ N(pi ,0.01) and the
coalition value is calculated as the sum of all
the members’ power in that coalition. That is,
∀C, v(C) = ∑ai∈C pC

i .

7 PERFORMANCE

The parallel algorithm was executed with the same
parameters as the serial algorithm. The algorithm
computes the values of all coalition structures of a
particular size in parallel. This is termed as com-
pleting one round of the execution. It was expected
that the parallel algorithm would outperform the serial
one. Through a theoretical analysis of the problem,
the number of processors required, can be approx-
imated and also we can achieve sub-linear speedup
(Tan et al., 2007).
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Figure 4: Performance analysis of DP and PDP to solve
CSG problem for chi-square data distribution.

This grouping scheme was implemented and the
maximum number of slave-processes (or sub-process)
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Figure 5: Performance analysis of DP and PDP to solve
CSG problem for Agent-based Normal data distribution.

was kept fixed in a range between 2 to 96. The same
hardware used in the previous evaluation tests was
used to execute the modified algorithm. The graph
shown in Figure 4 and Figure 5 represents the speed-
up plots of varying number of agents against the num-
ber of slave-processes (sub-processes) for Chi-square
and Agent-based Normal respectively. The arrows
mark the highest speed-up for a particular number of
agents, e.g., speed-up is almost 14 times in case of 17
agents.
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Figure 6: Performance analysis using various number of
threads.

Figure 6 represents performance of our proposed
algorithm using different number of threads. It has
been observed that greater number of threads will not
always result into greater speed-up.

8 CONCLUSION

Coalition structure generation is an NP-complete op-
timization problem in multi-agent system. This work
presents a parallel dynamic programming for solving
the CSG problem and has been compared with the tra-
ditional DP. Parallel dynamic programming is a well-
known paradigm where dynamic programming meets
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parallelism and results into a stronger method.
Evaluation shows our proposed technique is faster

than traditional DP by several times, almost 14 times
for 17 agents. Future work would implement the par-
allel DP algorithm for CSG problem using more par-
allel computing resources. Also we will focus on the
relationship between the measure of parallelism (e.g.,
no. of processors), no. of agents and solution time.
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