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Abstract: In this paper, robots have to distribute themselves across a set of regions where they will serve in foraging
tasks, transporting objects repetitively. Each region stores information about the performance of the subgroup
of robots serving that region. Robots can also share information between them and identify which region is
offering better conditions to forage. In particular, each region has a different rate to recover recently removed
objects, which demands a different number of robot foragers. We explore the effects of the network structure
in robot distribution and their performance. Results indicate a small dependence of robot-robot connections
and a great dependence of robot-environment interaction. Since cooperative robots are going after a global
goal, the proposed distribution rules combined with environmental aids allowed them to make better decisions
autonomously, increasing the number of transported objects and reducing the number of travels.

1 INTRODUCTION

Social insects live in colonies, but they divide them-
selves into subgroups to complete different tasks, for
instance, honeybees searching for nest sites (Seeley
et al., 2006), wasps storing wood (Jeanne and Nord-
heim, 1996), or ants collecting food (Anderson and
Bartholdi, 2000). These insects tend to distribute
themselves between regions to perform specific jobs.
However, they can switch between jobs whenever the
colony needs it (Zahadat et al., 2015). Scientists at-
tribute their success and recovery skills to the coor-
dination within and across the subgroups of insects
(Bonabeau et al., 1999).

In (Schmickl et al., 2012), the authors showed,
with bees in a simulated environment, that their adapt-
ability depends on regulated communication. The
swarm has only a few receivers in the entrance of
the hive. They get information about source qual-
ity, which foragers share them through a short-range
communication (trophallaxis). Then, receivers spread
this information through a long-range communication
(waggle-dance) to help in the recruitment of other
bees. Thus, bees could distribute themselves to forage
for nectar by combining short and long-range commu-
nication.

Insects also exhibit a highly decentralized con-
trol; it seems they have no leader, known as divi-
sional autonomy. On the other hand, they follow col-

lective rules, known as distributed control (Anderson
and Bartholdi, 2000). For instance, in the bee colony
investigated in (De Marco and Farina, 2001), individ-
uals can decide which recruiter to follow, exhibiting
divisional autonomy. However, they have to forage
for nectar for the colony, following distributed control
rules. In other words, individuals are autonomous, but
some group rules or objectives restrain their auton-
omy.

Due to insect success, robotics researchers
brought forth the concept of swarm robotics. It is a
novel concept inspired by insect strategies to solve
complex tasks, which began to grow at the begin-
ning of the 2000s. In particular, such solutions of-
fer a far better alternative by employing simpler units.
Designing simple robots seems easier than creating a
big, expensive, and heavy robot. In (Şahin, 2005),
the authors considered pertinent to describe the desir-
able properties of swarm robotics before new works
blurred this concept through time, which continue un-
til our days:

• Robustness: redundancy and decentralization
should foster the swarm to continue operating de-
spite failures or disturbances in the environment,
although at a lower performance.

• Flexibility: requires the swarm to be able to gen-
erate modularized solutions to different tasks.

• Scalability: considers that the coordination
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mechanism would be able to deal with a large
number of relatively simple robots.

Modern applications with a swarm of robots range
from navigation to surveillance problems, for in-
stance: wildfires containment (Phan and Liu, 2008),
intruders detection (Raty, 2010; Khan et al., 2016),
and area exploration (Antoun et al., 2016). In those
scenarios, robots have to coordinate among them-
selves to achieve multiple objectives. Therefore, it is
necessary to allow them to divide into subgroups. As
insects, robots can make their own decisions, but their
behaviors need an orientation toward the group goal.

A common approach to design these decision-
making strategies is to model the group as a Multi-
Agent System (MAS), define a local utility function
for each objective, and establish the common goal as
the sum of all utility functions (Krause and Guestrin,
2007). Thus, if agents optimize the sum of all lo-
cal utilities, they also achieve the common goal. De-
spite MAS solutions are generic and often abstract in-
herent complexities of Multi-Robot Systems (MRS),
the decision-making rules stimulate individuals to co-
operate among subgroups such that they may maxi-
mize the group utility. Some authors have reached
optimal solutions by adapting multi-agent decision-
making rules to robots as described in the survey pre-
sented in (Yan et al., 2013).

For instance, in (Krause and Guestrin, 2007), the
authors employ the law of diminishing returns to de-
sign utility functions. They incorporate the benefits
of assigning an extra robot to serve a particular lo-
cation. In particular, robots have to surveil a water
distribution system divided into regions. Each region
has a probability of intrusions and a potential detri-
ment if a robot is not serving there (e.g., the affected
population by an intrusion). Robots make decisions
based on the marginal contribution they yield when
selecting a region. Thus, when robots optimize the
utility functions, they reach an effective allocation for
the surveillance. Unlike some agent models, nature of
robots restrains them to be in one place at a time.

Here, we adapted the MAS decision-making
strategies described in (Nogales and Finke, 2013)
to reach a near-optimal distribution with foraging
robots. Each task is associated with a region where
robots have to forage for virtual objects. In par-
ticular, we mimic the receivers at the entrance of a
hive of bees with some environmental aids to help
robots to share information. Robot’s decision-making
strategies depend on the law of diminishing returns,
which allow individuals to show both divisional au-
tonomy and distributed control. Each individual can
decide which task to serve, while it seeks to op-
timize the group utility. We tested three different

decision-making models varying their information-
sharing structure and robot autonomy. The proposed
decision-making models stimulate robots to cooperate
among subgroups such that they maximize the num-
ber of foraged objects.

The rest of the paper is organized as follows: Sec-
tion 2 describes previous works and their strategies.
Our proposal is detailed in Section 4, while the exper-
iments and results are in Section 5. Finally, Section 6
provides a short discussion of the results and suggests
future work.

2 RELATED WORKS

In this section, we focus on Multi-Robot Task Alloca-
tion (MRTA) for foraging. It is important to mention
that Search and Rescue missions are related to forag-
ing task (Ahuja et al., 2002; Liu and Nejat, 2013), but
they are out of the scope of this work. The objective of
MRTA is to assign M jobs to N robots. Unlike MAS,
robots have to interact with a physical world and with
one another (Cao et al., 1997). Thus, we first reviewed
some works in MRTA solving foraging tasks, then, we
described a pair of papers in MAS, which followed a
similar way to the one we designed the local utilities
for the decision-making rules. In particular, because
they work with the law of diminishing returns to reach
an optimal distribution of agents.

Task allocation has brought significant improve-
ments in foraging tasks. Foraging robots are trans-
porting objects from one place (e.g., a source) to an-
other (e.g., a nest). Notwithstanding, the problem
continues in terms of jobs and workers that must max-
imize the overall performance (Dasgupta, 2011). The-
ories from operational research and combinatorial op-
timizations underlie several approaches of task allo-
cation. Such solutions employed concepts like util-
ity functions (Sung et al., 2013), auctions (Viguria
et al., 2007), market-based processes (Akbarimajd
and Simzan, 2014), game theory payoffs (Marden
et al., 2009), and the like to help robots in coordi-
nation. In those works, the impact of robot decision
appears only after a robot takes action according to its
selection.

One of the former and most cited works with
robots transporting objects while employing task allo-
cation strategies is (Kube and Bonabeau, 2000). The
authors tested MURDOCH, an auction-based task al-
location system, in a box-pushing experiment with
heterogeneous robots. Their results show auctions
as a promising strategy for foraging with task allo-
cation. Later, several variations of auctions strategies
appeared, e.g., repetitive auction processes, decentral-
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ized auctions, and role assignment strategy. In par-
ticular, the idea of role assignment came from robot
soccer domain, where each robot calculates its utility
for each role and periodically broadcasts these values
to coordinate with its teammates (Stone and Veloso,
1999). The authors of (Chaimowicz et al., 2002) in-
troduced roles, as functions robots must perform to
transport an object. Thus, when a robot finds an ob-
ject, it shares information about the utility of the avail-
able role and the need of helpers. Robots would listen
this alternative, and some of them could consider it a
better option. Then, similar to the bidding process of
an auction, they would offer their help to the leader,
which would choose the best-qualified helper to trans-
port that object.

In other transportation tasks, the robots have pre-
vious knowledge of the object positions and can em-
ploy path-planning strategies to avoid collisions. For
instance, in (Yan et al., 2012), the robots could mini-
mize the total transportation time while keeping a low
energy consumption on each robot. The environment
includes a place of constant production of goods, but
their rate of production is unknown. The authors im-
plemented a heuristic that helps robots to estimate the
rate of production and define their idle periods to re-
duce their energy consumption. They compared their
heuristic solution to a centralized replanner described
in (Wawerla and Vaughan, 2010). The results show
that their strategy was faster in the implemented en-
vironments, and it only required a few more energy
than the replanner.

In (Lerman and Galstyan, 2002), the authors ex-
amine a scenario for foraging objects where experi-
ments show a decreasing average return effect, which
is known as the law of diminishing returns. Loosely
speaking, each additional robot working on a task
would increase the performance, but the size of its im-
provement is gradually lower until the group reaches a
size with which its performance declines (Färe, 1980).
Several works in MRTA exhibit this phenomenon
(Bonabeau et al., 1997; Schmickl et al., 2012; Akbari-
majd and Simzan, 2014). However, few works exploit
it to help the group to find an optimal distribution of
agents (Nogales and Finke, 2013) or to reach a near-
optimal distribution of robots (Krause and Guestrin,
2007).

In particular, this phenomenon appears due to both
limited resources and space where robots interact with
one another while exploring or going after an ob-
ject. As the group grows, more interference appears
lengthening the delivery of the items to nests. In some
occasions, robots begin to focus on avoiding colli-
sions, which holds them back from delivering objects.
Finally, in (Lerman and Galstyan, 2002), the authors

concluded that there is an optimal quantity of robots,
and beyond that number, the benefits of parallelism
begin to disappear.

Finally, the most accepted taxonomy of the classi-
fication of MRTA problems was found in (Gerkey and
Matari, 2004), which divides problems as follows:

• Single (ST) vs Multiple Tasks (MT): refers to a
number of tasks a robot can carry out simultane-
ously

• Single (SR) vs Multiple Robots (MR): refers to
a number of robots needed to fulfill a task

• Instantaneous (IA) vs. Time-extended Assign-
ment (TA): refers to the available information for
planning future allocations

Although our robots reallocate themselves dy-
namically, we can consider that our proposal belongs
to the group of ST-MR-IA, because several robots
have to forage for objects, and each object requires
one robot for its transport. They cannot predict the
rates of object production of the environment as in
(Yan et al., 2012), i.e., they are working with cur-
rent (and possibly outdated) information. Different
levels of communication are also explored. Three
decision-making strategies must help robots to find
a balance between inhibition and stimulation of au-
tonomy through communication. For instance, if a
robot informs that its region is providing objects more
quickly, most robots could decide to arrive at that re-
gion and increase the congestion, which would hold
them back, as a group. Therefore, we need to find
a threshold between divisional autonomy and dis-
tributed control.

Besides that, we associate each subgroup to math-
ematical functions that satisfy the law of diminishing
returns to regulate robots autonomy. We opted for
the MAS strategy described in (Nogales and Finke,
2013), which we adapted for a MRTA system. In
particular, because those decision-making rules con-
sider: i) delays in both communication and move-
ment of heterogeneous agents, ii) agents can serve
in only one task at a time, and iii) since agents are
of the same type, they generate the same contribution
to the utility being indistinguishable from each other.
Thus, our robots could employ utility functions based
on the law of diminishing returns to distribute them-
selves and reach an (near-)optimal number of foraged
objects when following those rules.

3 PROBLEM

Following the objective of MRTA, we have to de-
fine the tasks for our foraging robots and an envi-
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ronment that favors task allocation strategies. In par-
ticular, we adapted the decentralized task allocation
strategy for multi-agent systems found in (Nogales
and Finke, 2013) to work with a multi-robot system.
Although in (Nogales and Finke, 2013), agents can
be of various types, here, we worked with homoge-
neous robots to follow one of the conditions of swarm
robotics (Şahin, 2005). However, another type of
robots could work in parallel tasks.

We employed graph theory to model the environ-
ment and its tasks, besides complex network sub-
strates for robot-robot and robot-environment infor-
mation sharing. Thus, let nodes represent the regions,
i.e., distributed locations in which robots perform for-
aging tasks. Nodes belong to a set N, indexed from 1
to n. Figure 1 illustrates how a graph models the
rooms of a floor in a warehouse.

Figure 1: Transforming a warehouse scenario into a graph
model. Small circles represent the nodes, while the dashed
circle represent the floor.

In this building, robots have to move objects
within a room (node), but each room requires a dif-
ferent number of robots. Therefore, robots should
distribute themselves between the rooms. Note that
the graph can be as complex as the designer needs to
model the environment.

Challenge

As illustrated in the warehouse of Figure 1, we model
the regions of the environment as nodes into a graph.
Note that within each node, a robot should perform
several subtasks, e.g., repetitive object transportation.
For mathematical reasons, we assume that the num-
ber of robots is large enough to be appropriately rep-
resented by a continuous variable. However, as our

experiments show, this is not a critical assumption for
a practical implementation.

Thus, for a node i, the number of robots is de-
fined by ri. Let ∆q ⊂ Rn denote the (n− 1) di-
mensional simplex defined by the equality constraint
∑n

i=1 ri = q, where q denotes the quantity of robots
available. The benefit of having an amount of robots
ri foraging within node i is given by the utility func-
tion fi : R→ [0,∞). The total utility function is de-
fined by f : Rn → [0,∞), f (r) = ∑n

i=1 fi(ri), where
r = [r1, ...,rn]

> represents the state of the system.
Under the assumption of local information-sharing
and decentralized decision-making, the objective is to
identify conditions that allow us to solve the follow-
ing optimization problem

maximize f (r), subject to r ∈ ∆q. (1)

In other words, we want to find the optimal alloca-
tion of all robots that maximizes the utility associated
to each node. The following section details the pro-
posed environment, the mathematical notation, and
the decision-making mechanisms.

4 PROPOSAL

In this work, the information sharing structure has two
layers that include robot-robot and robot-environment
connections. Since TAMs are available in the envi-
ronment, we can consider them as an additional aid
for communication and coordination between robots.
TAM devices emulate picking or dropping activities
of virtual objects through color codes. Besides that,
TAMs, as proposed in (Brutschy et al., 2015), can
connect one another through a Zigbee network in-
creasing the possibility of spreading information be-
tween regions. The second layer allows different net-
work structures to underlie the communication be-
tween robots.

4.1 Environment

Since we want to evaluate the team performance in
foraging through a task allocation strategy, we em-
ployed an environment consisting of several regions.
Commonly, the environment for foraging includes at
least two regions: one where they deposit objects and
other where robots explore (Mataric, 1994). Notwith-
standing, more regions can appear when: robots di-
vide the environment into regions (Pini et al., 2014;
Buchanan et al., 2016) or the researchers provide a
predefined division (Bobadilla et al., 2012; Piton-
akova et al., 2016). We opted for a predefined division
of the environment by combining ground color, smart

ICAART 2018 - 10th International Conference on Agents and Artificial Intelligence

28



color-changing landmarks (Brutschy et al., 2015), and
gates (Bobadilla et al., 2012) to separate the regions.
Figure 2 shows the environment dimensions, gates,
landmarks and their distribution.

1m

1.5m
0.5m

Region

1

Region

2

Region

3

Figure 2: Environment for the foraging task. Upper image
considers all dimensions of the environment. Below it is the
transformation to a graph considering robot movements.

Note that these environmental aids are a cheap so-
lution to distinguish regions. The more complex aids
we used are TAMs, which are smart landmarks pro-
posed in (Brutschy et al., 2015). TAMs’ dimensions
are 10×10 cm2 in order that an e-puck robot can enter
them. Every region has five TAMs working as nests
and five working as sources. In each region, TAMs
working as nests store performance and utility infor-
mation of that region and help the subgroup of robots
working in the same region to update this information.
On the other hand, TAMs working as sources have a
rate for the delivery of objects, which is different for
each region (as production rates of goods in compa-
nies). However, robots and TAMs do not know about
these rates.

Note that the environment consists of three re-
gions that are linked through hallways with automatic
gates. Since transitions between regions last a finite
time in real environments, we added a predefined cost
(in time) in the gates. Once a robot reaches one of
the switches, the gate opens and waits enough time

for the robot to pass through. Next, when robots are
transitioning, they are not foraging in any region, con-
sequently, more travels leads to less objects foraged
from TAMs.

Although we compute the optimal quantity of
robots for the environment, in any moment, a region
can hold more robots than its optimal number. There-
fore, robots would need distributed rules inside their
decision-making mechanism in order to be able to de-
cide whether to abandon or remain there and to im-
prove their performance in each region.

4.2 Notation and Model

We adapted the MAS strategy proposed in (Nogales
and Finke, 2013) such that we could employ it in
a MRTA scenario. We implemented two decision-
making strategies: i) The deterministic model (D),
which guarantees an optimal distribution and works
as a reference for the other strategies and ii) A semi-
stochastic version (SS), which allows validating the
effect of connections with the environment as (SS-
TAM). These strategies tried to solve the problem de-
scribed in Section 3. However, we needed to add
some assumptions to make it possible for robots to
use the MAS solution. In particular, each utility fi
satisfies the following three assumptions (common in
economic theory (Färe, 1980)):

A1 Each function fi is continuously differentiable
on R.

A2 An increase in utility satisfies

fi(ri +ui)− fi(ri)

ui
>

fi(ri +wi)− fi(ri)

wi
(2)

where ri ∈ R, wi > ui > 0 represent a finite
number of robots entering node i.

A3 An increase in the number of robots within
a region increases the utility of that region,
bounded by

0 <
fi(ri +ui)− fi(ri)

ui
< ∞ (3)

Assumption A2 represents the law of diminish-
ing returns and implies that increasing the number of
robots in a node will always yield decreasing average
returns. Assumption A3 indicates that any additional
robot should increase the utility moderately.

Using Eq. (2) and according to Assumption A3,
the partial derivative of fi with respect to ri, denoted
by si, satisfies

−a≤ si(xi)− si(yi)

xi− yi
≤−b (4)
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for any xi,yi ∈ R, xi 6= yi, and constants 0 < b ≤ a.
It can be shown that if Assumptions A1-A3 are sat-
isfied, the marginal utility functions si(·) are continu-
ous on R, strictly decreasing, and non-negative, while
fi(·) is strictly concave (see (Nogales and Finke,
2013) for details). Note that each additional robot
must yield a lower average return. We have to find
the marginal utility functions for the environment of
this proposal described in Figure 2.

Next, a connection between two nodes i and j (re-
gions) means that robots can move back and forth be-
tween them, and robots at node i can obtain informa-
tion about node j. By moving across nodes, robots
may join or leave them at time indexes t = 0,1,2, ...
according to the asynchronous occurrence of discrete
events. Let ei→k

ui
(t) denote the decision of a num-

ber ui of robots to leave node i ∈ N to join a neigh-
boring node k ∈ Ni at time t. Let ei→Ni

ui (t) denote
the set of all possible simultaneous decisions from
node i to its neighboring nodes Ni. The set of events
E = P ({ei→Ni

ui (t)})−{ /0} represents all possible si-
multaneous decisions from all nodes. A single event
e(t) ∈ E is defined as a set where each element rep-
resents a decision of a number of robots to abandon
the nodes (see robot movements in the graph model
between connected nodes in Figure 2).

If an event e(t) ∈E occurs at time t, the update of
the state of the system is given by r(t +1) = g(r(t)).
For the robots belonging to node i ∈ N, g(r(t)) is de-
fined as

ri(t +1)=ri(t)− ∑
{k:ei→k

ui
(t)∈e(t)}

ui(t)+ ∑
{ j:e j→i

u j (t)∈e(t)}
u j(t) (5)

In other words, the current amount minus those leav-
ing plus some arriving. Solving (1) requires that the
model satisfy the following assumptions on the net-
work and its robots:

A4 The nodes are in a connected graph Gn.
A5 There is a large enough number of robots, q,

such that there can be at least a robot within
each node providing a positive utility when
they reach the optimal distribution r ∈ ∆?

q.
Assumption A4 implies that there is a path across

all locations of the graph, placing minimum condi-
tions on the sensing and possible decisions of robots
across them. Assumption A5 requires a minimum
number of robots, which, in general, depends on the
nature of the utility functions. Moreover, under As-
sumptions A4 and A5, the optimal solution takes the
form

∆?
q = {r ∈ ∆q| ∀i ∈ N, ∀k ∈ Ni, si(ri) = sk(rk)} (6)

Thus, for any finite number of robots, the optimal
distribution r ∈ ∆?

q is unique (Bertsekas, 1999). The

distribution r ∈ ∆?
q captures the optimal division of

subgroups when all of them have the same marginal
utility because no robot has incentives to abandon its
node. How robots decide which node to serve is the
focus of the next section.

4.3 Deterministic Decision-making

In this section, we detail how environmental aids reg-
ulate robot movements and a variation where robots
recover their autonomy to decide which region to
serve by using these aids information. Both decision-
making models consider marginal utilities as the av-
erage number of packages delivered within a region’s
period. After a fixed period or interval of time, TAMs
update robots information such that they can restore
their performance metrics and update their informa-
tion to make their decisions.

4.3.1 Deterministic Decision-making (D)

Movements may be stochastic, but any ei→Ni
ui (t)∈ e(t)

must satisfy the following rules in this model.

D-R1 If si(ri(t)) ≥ s j(r j(t)) for all i ∈ Ni, then
ui(t) = 0, i.e., robots remain in a node
where they have a better marginal utility.

D-R2 If there exists a node j ∈ Ni such that
si(ri(t)) < s j(r j(t)), then some robots
could decide to abandon i to serve in the
neighboring node j, which has the high-
est marginal utility among the neighbors of
node i, Ni. In particular, the number of
robots leaving node i is bounded by

0 < ui(t)≤
1
2

φ [sk(rk(t))− si(ri(t))] (7)

where φ ∈ (0,1/a] represents the level of
cooperation between robots, and ∀ j,k ∈ Ni
sk`(rk(t))≥ s j(r j(t)).

Rules D-R1 and D-R2 restrain the allowable
events in the network. In particular, D-R2 captures
the tendency of robots to join a node that has a
higher marginal utility value than all other neighbor-
ing nodes. Within a particular node, robots show di-
visional autonomy in the sense that they are uncon-
strained in their decisions to serve that node. How-
ever, in this deterministic solution, nodes regulate
robot transitions; they choose which robot must de-
part bereaving them of node-to-node movements. It
would be as if in a warehouse scenario, robots serving
within a room could not move between rooms unless
the room indicates to do so.
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4.3.2 Semi-stochastic Decision-making (SS)

We allowed robots to choose the node where they
want to serve, that is, nodes have no authority upon
them. In this case, we needed to add the following
assumptions on communication:

A6 Each node offers information of its local util-
ity to robots working on it.

A7 If there is a connection between two nodes,
that is, j ∈ Ni, then there exists at least one
link communicating a robot from node i with
some robot in node j.

Assumptions A6 and A7 are guaranteeing com-
munication, which is a critical requirement in our
robotic task allocation. Robots need information
about neighboring nodes to decide which node is the
best for them. Note that Assumption A7 is a local
version of Assumption A4; it allows robots to receive
information about performances and local utilities in
neighboring nodes. A robot serving in the neighbor-
ing nodes shares this information. Thus, robots can
compare the options and make a decision.

Since robots following the semi-stochastic
decision-making have no node regulation, they are
free to move across nodes. Note that when robots
detect another node with a better utility, they could
depart massively and leave a node empty. Therefore,
we have to design local rules to avoid such massive
movements, i.e., to regulate robot movements such
that some robots remain in a node, even when there is
another node with a better utility. Thus, robots would
need to know or at least estimate how many of them
are working in that node. However, knowing this
information means they would have a kind of global
knowledge, which is commonly unavailable in swarm
robotics (Şahin, 2005). However, they can estimate
or guess how many are in the same node. Each robot
keeps track of its performance at node i in s`i (t),
which relates to its marginal contribution. Since we
are working with homogeneous robots, a robot ` can
estimate how many of them are foraging in the same
region by using the marginal utility of its region,
si(ri(t)), and its own performance, s`i (t). Despite
robots have a similar performance, it is not exactly
the same. Thus, for robot `, let r̂`i (t) = si(ri(t))/s`i (t)
represent its estimation of the number of robots
working in the same node.

Next, let p`i→ j(t) be the probability of robot ` de-
parting from node i toward node j, which offers a bet-
ter utility. When robots follow the proposed decision-
making strategy, any movement ei→Ni

ui (t) ∈ e(t) must
also satisfy the following rules.

S-R1 If si(ri(t)) = s`i (t) (i.e., r̂`i (t) = 1), then
p`i→ j(t) = 0, i.e., that robot is the only one

serving there and must remain in it even
when there is a node with a better utility.

S-R2 If si(ri(t)) > s`i (t) (i.e., r̂`i (t) > 1), then
p`i→ j(t)> 0, i.e., that robot should compute
its probability of departing toward node k
with a better utility. If robot ` is considering
departing, it means that node i has a neigh-
boring node k ∈ Ni such that sk(rk(t)) >
si(ri(t)). Then, some robots could decide
to abandon node i at the same time. The
probability of robot ` departing is given by

p`i→ j(t) =
1
2

φ`
[sk(rk(t))− si(ri(t))]

r̂`i (t)
(8)

where φ` is its level of cooperation.

Note that, unlike the deterministic solution, robots
use probability functions, and therefore, there is no
longer a warranty of achieving the optimal distribu-
tion. However, robots can reach a near-optimal solu-
tion as in (Krause and Guestrin, 2007).

4.4 Learning Mechanism

In this work, robots are learning about their perfor-
mance in each region. They keep a historical estima-
tion of the number of objects they transported. Recall
that if they did not work in a region, information from
other robots working there could spread up to them.
TAMs are helping in these information-sharing pro-
cesses by keeping track of the historical performance
of the region where they are and by indicating robots
the end of a period when they update local variables.
This idea resembles the way enterprises pay their em-
ployees: they are asynchronous and deliver the pay-
ments at the end of a period of work (e.g., 15 days or
monthly). Once TAMs indicate the end of a period in
their region, robots will consider how many objects
they transported as their marginal contribution.

Next, a robot ` uses the following exponential
moving average function for learning updates with its
own measurements and with incoming messages

s`i (t) = α∗ s`i (t−1)+(1−α)∗M`
i (9)

where α ∈ (0,1] is the rate of learning, M`
i is the

score the robot measured (listened) during that pe-
riod, and s`i (t) defines the performance estimation that
robot ` has of working at node i. Robots are sharing
this estimation with neighboring robots, that is, those
robots with which they have a connection. Therefore,
changes in the communication structure may affect
the task allocation process because they are affecting
the learning process. Note that if robots have no path
of connections with other regions, their only possible
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reality is that their current region is the best. They
would never got information about other regions.

The following section describes the preliminary
analysis to configure the environment parameters,
simulations, and the results of both decision-making
strategies that performed the foraging task in the pro-
posed environment.

5 EXPERIMENTS

Initially, we needed to find the marginal utility func-
tions of the environment. Recall that to find the op-
timal distribution point, ∆?

q in Eq. (6), it is necessary
to have the marginal utility functions, because the op-
timal distribution is reached when all marginal utili-
ties have the same value. We measured the marginal
utility as the number of foraged objects in each re-
gion within a period. Since robots are transitioning
between regions, we established a periodical evalua-
tion of the marginal utilities every 1,000 steps. We
ran our simulations in Netlogo and fixed cooperation
for all robots to 1.

Thus, if the system follows the law of diminish-
ing returns, the marginal utility of a region should de-
crease by adding more robots into that region (node).
Since each region has the same dimensions, we chose
one of them and variated the rate of recovery in that
region. This rate indicates the capacity of sources to
restore objects as soon as robots remove them. How-
ever, a source evaluates if it can recover the object ev-
ery period (1,000 steps). The rate of recovery of the
objects removed by robots can be 20%, 40%, 60%,
80%, and 100%. Figure 3 shows the marginal utility
functions with each rate of recovery (30 simulations
for each rate of recovery).
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Figure 3: Marginal utility functions for the different rates of
recovery of the sources.

By moving the point of optimal distribution and
using the functions, we could get an estimation of the
quantity of robots the environment requires. For in-
stance, working with the optimal point of Figure 3
and defining the rates of the regions as follows: the
first region (red ground) with 20% needs 4 robots, the
second (gray ground) with 40% needs 4 robots, and
the third (blue ground) with 80% needs 11. We would
need 19 robots with these rates of recovery. However,
the initial distribution is different from this optimal
one so that the decision-making rules lead them to-
ward it.

Next, for the simulations, we have a determin-
istic model (D), the semi-stochastic with (SS-TAM)
and without TAMs’ help (SS). In the models with in-
formation sharing available (i.e., working with As-
sumptions A6 and A7), we tested three different net-
works in robot-robot interaction: Fully connected and
two regular networks with degree 3 and 1. We also
tested a variation with switching-links strategy in the
information-sharing structure to observe the effects of
changing neighbors. In particular, after a robot transi-
tion, they could abandon previous neighbors and con-
nect to some of those in the new region. For this vari-
ation, we added a prefix (-S). The following sections
describes the results in two groups of different sizes.

5.1 Simulation Results

First, we settle the regions rate such that the optimal
distribution point is 2-5-9 (i.e., 2 in the red region, 5
for the gray region, and 9 for the blue region). This
indicates that we need 16 robots for this configura-
tion. With this number of robots, we tried different
initial conditions avoiding the optimal one. For rea-
sons of space, we opted for showing only the results
with the initial distribution 5-5-6, almost the same
number of robots in each region. Note that only three
robots should move from red to blue region, but sys-
tem decentralization and robot autonomy generated
more travels. Figure 4 shows the results of 30 sim-
ulations of 10,000 steps for all the models with and
without switching-links strategy.

Note that the deterministic model delivered the
best performance; t-test showed that it has no com-
petitor. SS-TAM-S with a network of degree 3 got
the second place (losing by an average of 18 objects,
with p= 0.001). Although the box-plots show that the
variation in the results with the switching-links strat-
egy decreases, the t-tests indicate there is no signifi-
cant deterioration in introducing this strategy in any
model with any network structure. On the other hand,
it means that robots could work with local-range com-
munication.
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Figure 4: Performance and travels of robots while foraging in the environment with different network structures. Desired
distribution 2-5-9.
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Figure 6: Performance and travels of robots while foraging in the environment with different network structures. Desired
distribution 5-11-16.

Note also that robots with lower amount of trav-
els obtained the best performances. In the SS model,

which did not include the TAMs’ information, robots
required more travels because they only have the in-
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formation shared among neighbors. In other words,
without Assumption A6, robots invested more time
traveling than foraging due to lack of information. In
contrast to SS, robots foraging with SS-TAM obtain
better results due to more accurate information re-
ceived from TAMs. Moreover, they have more auton-
omy than those foraging with the deterministic model.
Although they were considering only an estimation of
the number of partners, they reached a near-optimal
performance.

Next, to see which mechanism was near to the
optimal distribution point ∆?

q, we computed the Eu-
clidean distance of the last distribution. We allowed
simulations to run about 4 periods of 1,000 steps after
the deterministic model reached a value near the equi-
librium. Table 1 shows the results of the Euclidean
distance.

Table 1: Values of the Euclidean distance of the imple-
mented models and the computed optimal distribution.

Structure
Model Fully Reg. d-3 Reg. d-1
D 1.31 1.31 1.31
SS 1.75 1.72 3.42
SS-S 2.23 2.39 2.60
SS-TAM 1.71 1.04 1.74
SS-TAM-S 1.53 0.80 1.48

The SS and SS-TAM models (with and with-
out TAM information, respectively) delivered a value
near to the optimal distribution. To know the reason
behind their difference in performance, we observed
the evolution of the marginal utilities. The SS-TAM
model was faster in reaching such value near the op-
timal distribution. Since the only difference between
SS and SS-TAM is the information available in the
TAMs of each region, we can affirm that TAMs were
fundamental for a better performance in SS-TAM.
Figure 5 shows the settling time for the evolution of
marginal utilities of a simulation with each model.

It is clear that the faster model to reach the bal-
ance is the deterministic one. However, we reached
a near-optimal solution where robots could keep their
autonomy in making decisions to transition between
regions without restriction. Although robots follow-
ing the SS model without TAMs’ help reached a good
distribution, they required a large time due to diversity
in the estimations of other robots.

We increased the number of robots by moving the
optimal distribution point downward. We settled the
regions rate in 20%, 40%, and 60% and the optimal
distribution point became 5-11-16 (i.e., 5 in the red
region, 11 for the gray region, and 16 for the blue
region). This indicates that we need 32 robots for

this configuration. With this group of robots, we tried
different initial conditions avoiding the optimal robot
distribution. In this occasion, we opted for 1-15-16 as
initial distribution. The following paragraphs details
the effects of working with a large group.

Again, the deterministic model delivered the best
performance; t-test showed it has surpassed all other
models. Only the SS-TAM-S model with a fully con-
nected network was near, with a difference of 13
objects in the average performance and p = 0.002.
Moreover, t-test results indicated that there is no sig-
nificant difference between the models with and with-
out the switching-link strategy. Nevertheless, it was
observed a lower variability among the simulations
(i.e., the box-plots seem shorter).

We arrived to similar conclusions of those ob-
tained with the small group. The semi-stochastic
model without TAMs’ help worsened its performance
because a greater number of robots increases the di-
versity in the estimations of each robot too. In the
travel plots, we could confirm that SS has the greatest
amount of travels and the lowest number of foraged
objects. In other words, TAMs information was key
to stimulate robots to focus on foraging and avoid too
much travels between regions.

6 CONCLUSIONS

We adjusted a MAS strategy to work in a MRTA sce-
nario successfully. The optimal solution provided
by Bertsekas worked because the performance is
non-linear; the robots exhibited a diminishing return
curve. However, we could only reach near-optimal
solutions. We offered a decentralized solution that al-
lowed robots to keep their autonomy; however, it was
necessary to add environmental aids. In particular, the
information provided by TAMs was critical for robots
to reach a better performance. TAMs helped robots
to have a better reference for decentralized decisions
(autonomy).

The different structures of robot-robot communi-
cation show that robots could forage with a minimal
condition on information sharing, not necessarily a
fully connected network. However, they would sacri-
fice a small portion of their performance. Therefore, it
depends on the environment dimensions and the hard-
ware embedded in the robots to decide between fully
communication and highest performance, or scarcely
connection and a still-good performance.

All decision-making models stimulated robots to
work for the group goals (distributed control) through
the diminishing return utility functions. Nevertheless,
the time to reduce the distance to the optimal point
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indicates that it is important to achieve such point as
faster as robots can. Although we have provided a
good alternative for the deterministic solution, in fu-
ture works, we want to explore alternatives to improve
the speed to reach such point without depending on
TAMs or losing autonomy.

Moreover, the phenomenon of diminishing returns
is present in many scenarios where the incorporation
of an additional worker to a job may improve the per-
formance, but each additional worker increases (grad-
ually) in smaller portions the performance. We have
seen this kind of shapes in many previous works of
MRTA because robots are sharing limited resources.
Therefore, there is a great opportunity to adjust this
same set of rules for those systems. It would be easily
adjusted for each environment and its conditions.
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