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Abstract: There is a growing interest in monitoring of vital signs through wearable devices, such as heart rate (HR). A
comfortable and non-invasive technique to measure the HR is pulse photoplethysmography (PPG) with the
use of a smartwatch. This watch records also triaxial accelerometry (ACM). However, it is well known that
motion and noise artifacts (MNA) are present. A MNA detection method, which classifies into a clean or MNA
segment, is trained and tested on a dataset of 17 patients, each with a recording duration of 24 hours. PPG-
and ACM-derived features are extracted and classified with a LS-SVM classifier. A sensitivity and specificity
of respectively 85.50 % and 92.36 % are obtained. For this dataset, the ACM features do not improve the
performance, suggesting that ACM recording could be avoided from the point of view for detecting MNA in
PPG signals during daily life.

1 INTRODUCTION

There is a growing interest in wearable and continu-
ous monitoring of vital signs, such as heart rate (HR).
A comfortable and non-invasive technique to measure
the HR is pulse photoplethysmography (PPG). PPG
makes use of reflected or transmitted light through
the skin to measure a pulsatile physiological wave-
form caused by changes in the blood volume due to
a heart beat. Common PPG recording locations in-
clude fingers, ears, toes, forehead or wrist (Allen,
2007). The wrist is a possible recording location. An
advantage is that the PPG sensor can be embedded
in a watch. However, it is well known that motion
and noise artifacts (MNA) can distort the signal (Pet-
terson et al., 2007). Those MNA are caused by 1)
the movement of venous blood as well as other non-
pulsatile components 2) variations in the optical cou-
pling between the sensor and the skin (Barker and
Shah, 1997; Tobin et al., 2002). The MNA can be
particularly challenging when computing derived fea-
tures from the PPG waveform such as HR. Various
design approaches to reduce MNA have been pro-
posed (Li and Warren, 2012). With these improve-
ments, MNA are stil present. Therefore, algorithm-

based MNA reduction methods were proposed (Tor-
res et al., 2016; Lai and Kim, 2015; Fukushima
et al., 2012; Pan et al., 2016; Torres et al., 2016;
Yousefi et al., 2012; Ram et al., 2012; Lee et al.,
2010; Temko, 2017; Torres et al., 2016; Kim and
Yoo, 2006). These MNA reduction algorithms op-
erate also on clean parts of the signal, which is un-
necessary computation and can cause distortion of the
signal. Therefore an algorithm which can distinguish
clean parts from MNA is desired. MNA detection al-
gorithms are designed with the use of waveform mor-
phologies (Sukor et al., 2011; Li et al., 2012; Li et al.,
2008; Fischer et al., 2017) or filtered output (Naka-
jima et al., 1996; Karlen et al., 2012). Statistical mea-
sures, such as skewness, kurtosis, shannon entropy
and Renyi’s entropy have been shown useful for auto-
matic detection of MNA (Selvaraj et al., 2011; Krish-
nan et al., 2008). Another approach, using Hjorth pa-
rameters was proposed (Gil et al., 2008). Other meth-
ods were published, which perform classification with
a support vector machine (SVM) with time-domain
features (Chong et al., 2014) or time-frequency spec-
trum analysis (Dao et al., 2016) .

To the best of our knowledge, all these methods
are tested and validated for PPG recorded on the ears,

182
Vandecasteele, K., Lázaro, J., Cleeren, E., Claes, K., Paesschen, W., Huffel, S. and Hunyadi, B.
Artifact Detection of Wrist Photoplethysmograph Signals.
DOI: 10.5220/0006594301820189
In Proceedings of the 11th International Joint Conference on Biomedical Engineering Systems and Technologies (BIOSTEC 2018) - Volume 4: BIOSIGNALS, pages 182-189
ISBN: 978-989-758-279-0
Copyright © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



fingers or forehead, but none have been validated on
the wrist. Moreover, these methods are never tested
on 24 hour recordings. In our paper, we propose
an automated computer-based method for the detec-
tion of MNA in PPG signals, recorded with a wrist
watch. The method is validated on 24-hour data
recordings. The classification is performed with a
LS-SVM model using previously published features
(Selvaraj et al., 2011; Gil et al., 2008; Chong et al.,
2014), together with new features. Additional to the
PPG signals, most smart watches also record the ac-
celerometry (ACM). Therefore, it is investigated if
the ACM improves the MNA detection method. A
backwards wrapper feature selection is implemented
to determine which features are the most discrimina-
tive ones. The goal of the paper is to provide a reliable
MNA detection method, validated for wrist PPG sig-
nals, and additionally to evaluate whether the ACM
improves the detection performance.

2 METHODOLOGY

The methodology consists of five parts. Firstly,
the data collection is described. Secondly, the ex-
tracted features from the PPG signal, are summa-
rized. Thirdly, a LS-SVM-based classifier is dis-
cussed. Fourthly, a feature selection method is ex-
plained, which selects the most discriminative fea-
tures. Lastly, the labelling process is explained. With
the use of a reference signal, a label (Clean or MNA)
is given to each PPG segment.

2.1 Data Acquisition

The dataset, used in this experiment, contains record-
ings of 17 epilepsy patients, each with a duration
around 24 hours. The epilepsy patients were recorded
with a wired conventional multi-channel scalp EEG.
Additionally to the standard clinical equipment,
recordings were made with a wearable ECG device:
the 180o eMotion Faros (Bittium Biosignals Ltd,
2017), and a wrist-worn PPG device: the E4 Empatica
wristband (Empatica Inc, 2017). The Faros ECG was
used in a single-channel configuration. The Empatica
E4 measures reflective PPG using a green and a red
LED on the wrist. The device returns a single chan-
nel which is obtained by combining the green and the
red channels using Empatica’s proprietary algorithm.
Additional to the 1-channel PPG, the triaxial ACM
is recorded. Considering that the intravenous inser-
tion, used to administer medication in clinical prac-
tice, is routinely placed at the non-dominant wrist, the
patients wore the Empatica watch on the dominant

hand. The sampling rate of the Faros and Empatica
(PPG/ACM) device are respectively 500Hz and 64Hz
(PPG)/32 Hz (ACM).

2.2 Feature Extraction

Features are extracted from both the PPG signal and
ACM signal. Features from literature, which are pre-
viously shown to be useful, are combined with our
own features. First, the PPG signal was preprocessed
by a 5th order bandpass butterworth filter [0.5 - 12
Hz]. The ACM was preprocessed by a 3th order but-
terworth filter [0.2 - 10Hz]. The PPG signal and cor-
responding ACM data are segmented in 7 seconds, be-
cause it was reported to be the optimal segment length
for MNA detection (Chong et al., 2014).

2.2.1 PPG

The following features were extracted from the PPG
segments:

• Standard Deviation of Pulse-to-Pulse Interval
(ST DHR), Standard Deviation of Pulse-to-Pulse
Amplitude (ST Damp), Standard Deviation of Sys-
tolic and Diastolic Ratio (ST DSD) and Mean-
Standard Deviation of Pulse Shape (ST DWAV ),
which are described in (Chong et al., 2014)

• Kurtosis (K) and Shannon Entropy (SE), which
are described in (Selvaraj et al., 2011)

• Variance (Var) of the signal segment

• The frequency of the first/second/third-largest
peak in the power spectrum (FLP/SLP/TLP),
which are expected to be around 1Hz (the HR fre-
quency)/ 2Hz (the first harmonic)/ 3Hz (the sec-
ond harmonic) for a clean segment

• Spectral Shannon entropy (SSE), which is the
shannon entropy of the power spectrum

• Hjorth parameters: H1 and H2, which represents
respectively the central frequency and half of the
bandwidth (Gil et al., 2008)

In order to calculate the features ST DHR and
ST Damp, the location and amplitude of the pulse
peaks are needed. The feature ST DSD requires the
systolic and diastolic time, which are respectively the
rising time from valley to peak and the falling time
from peak to the next valley. The feature ST DWAV re-
quire the alignment of the pulses in a segment, which
is done with the peak location. To calculate the loca-
tion and amplitude of the pulse peaks and pulse val-
leys, an algorithm developed in (Lázaro et al., 2014) is
used. This algorithm consists of two phases: a linear
filtering transformation and an adaptive thresholding
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operation. The filtering step consists of a linear-phase
FIR low-pass-differentiator filter, which is used to ac-
centuate the abrupt upslopes of the PPG pulses. The
abrupt upslopes correspond to peaks in the filtered
signal, which are detected by an adaptive threshold-
ing operation. Once the peaks in the filtered signal
are found, the maximum and minimum point in the
original PPG signal are found.

2.2.2 ACM

The following features were extracted from each di-
rection and Euclidean norm of the ACM segments:

1. The maximal value of the rectified segment
(maxx,maxy,maxz and maxnorm)

2. The 90th percentile of the rectified segment
(90x,90y,90z and 90norm)

3. The Variance of the segment (Varx,Vary,Varz and
Varnorm)

4. The mean absolute deviation of the segment
(MADx,MADy,MADz and MADnorm)

5. The norm of the segment (Normx,Normy,Normz
and Normnorm)

2.3 LS-SVM based Classification of
MNA

The classification is done with a LS-SVM (Least
Squares Support Vector Machines) classifier (De Bra-
banter et al., 2003) using a linear kernel. The classifier
is trained and tested within a leave-one-patient-out
cross-validation (LOPO-CV) approach. In this way,
no data of the patient itself is used for the training.
To evaluate the classifier, the sensitivity (proportion
of MNA segments that are correctly classified), the
specificity (the proportion of clean segments that are
correctly classified) and the accuracy are calculated.
The classifier is tested with only PPG features, only
ACC features and all the features together.

2.4 Feature Selection

In order to investigate which features are discrimina-
tive for clean and MNA PPG segments, a backwards
wrapper feature selection method is implemented. In
Figure 1 a flow diagram of the method is shown. At
the start, the total feature set is used to train and test
the classifier within a LOPO-CV approach. As evalu-
ation criteria, the F1-score is calculated, which is the
harmonic mean of the sensitivity and the specificity.
In a next step, new feature sets are created by leaving
out each feature one time. So, if there are N features,

N new feature sets are created. Again the classifier is
trained and tested with these new feature sets within
a LOPO-CV approach and the F1-scores are calcu-
lated. Next, the maximal F1-score, corresponding to
the best new feature set, is compared with the original
F1-score. If this F1-score is higher or equal, this fea-
ture doesn’t improve the classification problem and is
removed. Whole the procedure is calculated again by
starting with the new feature set, corresponding to the
highest F1-score. With every iteration only 1 feature
can be removed. The method will stop when all the
new F1-scores are lower.

Figure 1: Flowchart: Backwards wrapper feature selection.

The feature selection procedure was performed on
the PPG features, ACM features and all the features
together.

2.5 Reference Signal: ECG

In order to train and test a classifier, labels for each
segment are needed. A visual reference is avoided
because it’s very subjective, i.e. different visual in-
spectors annotate the segments differently. Further-
more, it would be very time consuming to annotate a
whole dataset of 408 hours (17*24 hours). Instead,
we performed an automatic labelling procedure based
on the reference electrocardiography (ECG) signal,
similarly as in (Chong et al., 2014). The heart rate
variability (HRV) is calculated, by finding the loca-
tion of the R-peaks (Varon et al., 2015). For each PPG
segment and corresponding ECG segment, the mean
RR-interval (RRECG) and mean PP-interval (PPPPG)
and standard deviation of the RR- and PP-interval
(ST DECG and ST DPPG) are calculated. A segment is
classified as MNA, if |RRECG−PPPPG| > 150ms or
|ST DECG− ST DPPG| > 100ms. These thresholds are
set empirically based on a subset of the data.
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3 RESULTS AND DISCUSSION

3.1 Feature Selection

In table 1, 2 and 3 the selected features are shown in
bold, starting from respectively the PPG, ACM and
all the features. From the newly proposed PPG fea-
tures, 3 features are retained by the feature selection:
the variance, the frequency of the second and third
largest peak in the power spectrum. These 3 features
do have an added value for the MNA detection algo-
rithm. The feature selection process with the ACM
features shows that all features which make use of the
y-direction are left out. The y-direction is the direc-
tion along the lower arm, from wrist towards the el-
bow, as shown in Fig. 2. The accelerometry in this di-
rection doesn’t have an added value for the algorithm
for this dataset.

Figure 2: ACM axis.

It might be that motion in the y-direction, which
is along the direction of the lower arm, causes less
MNA than the other directions. Another reason can
be that this direction is less present during daily mo-
tion compared to the other directions. The feature se-
lection process with all the features shows that 4 from
the 13 PPG-derived and 10 from the 20 ACM-derived
features are removed. It seems that the ACM-features
have an added value, but this added value is only mi-
nor. With all the resulting features, a F1-score of
0.8841 is obtained. If 1 of those PPG-derived features
is removed, a F1-score between 0.8474 and 0.8836
is obtained. If one of the ACM-derived features is
removed, a F1-score between 0.8831 and 0.8841 is
obtained. So leaving out a ACM-feature would only
decrease the F1-score slightly.

3.2 Classification Performance

In Figure 3 the sensitivities (Sens), specificities
(Spec) and accuracies (Acc) are plotted for all the pa-
tients. The sensitivity (specificity) is the proportion of
MNA (clean) segments that are correctly classified.

Table 1: Feature selection PPG.

STDHR, STDamp, STDSD and STDWAV
K and SE

Var
FLP, SLP and TLP

SSE
H1 and H2

Table 2: Feature selection ACC.

maxx, maxy, maxz and maxnorm
90x, 90y, 90z and 90norm

Varx, Vary, Varz and Varnorm
MADx, MADy, MADz and MADnorm
Normx, Normy, Normz and Normnorm

Table 3: Feature selection ALL.

STDHR, STDamp, STDSD and STDWAV
K and SE

Var
FLP, SLP and TLP

SSE
H1 and H2

maxx, maxy, maxz and maxnorm
90x, 90y, 90z and 90norm

Varx, Vary, Varz and Varnorm
MADx, MADy, MADz and MADnorm

Normx, Normy, Normz and Normnorm

The accuracy is the proportion of segments that are
correctly classified. In Table 4 the average values ±
standard deviations are shown.

The performance with PPG features is similar as
the performance with all features. Adding the ACM
features to the classification does not increase the per-
formance. The reason is that the PPG signal has al-
ready enough information on itself. The MNA seg-
ments show large differences with clean segments,
which is illustrated in Figure 4.

By using only the ACM features, a low sensitivity
is obtained. This is due to the fact that not all kind
of MNA are caused by wrist motion. For example
subtle finger motion, which is shown in Figure 5, or
bad positioning of the sensor cause MNA, but there is
no corresponding ACM activation.

In table 5 previous experiments and results from
literature are summarized. In all the studies reflective
PPG with infrared light is recorded. The dataset and
sensor type are different for each study, which makes
it difficult to compare quantitatively the results.
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Figure 3: Classification performance.

Table 4: Classification performance.

PPG ACM ALL
Sens (%) 85.50 ± 8 58.04 ± 18 85.50 ± 7
Spec (%) 91.84 ± 5 93.01 ± 4 92.36 ± 4
Acc (%) 90.33 ± 2 76.23 ± 11 90.23 ± 3

Figure 4: Example: Clean (blue) and MNA (red) PPG seg-
ments with 3 axis ACM.

3.3 Overall Data Quality

In total 44.26% ± 16.20% of the data is labeled
as MNA based on the reference signal, 43.38% ±
15.62% of the data is detected as MNA by the algo-
rithm. This means that close to half of the measured
data are contaminated with MNA, so that the heart
rate variability cannot be reliably estimated by the al-
gorithm (Lázaro et al., 2014) from the recorded sig-
nals. Note that our dataset was acquired from patients
in a hospital environment. The patients are contin-
uously monitored with wired EEG, which limit their
mobility. Outside the hospital these percentages are
probably even higher.

5 10 15 20 25 30 35 40 45

time(s)

-150

-100

-50

0

50

100

Figure 5: Example: Clean (blue) and MNA, caused by fin-
ger motion, (red) PPG.

3.4 Limitations and Further Work

The algorithm is tested on a data set, recorded in the
hospital. The algorithm should also be tested on daily
life data, recorded outside the hospital.

Only one type of sensor is tested (wrist reflective
PPG). It should be extended to other sensors. In order
to compare the different studies, the MNA detection
algorithms should be tested on the same data sets.

The MNA detection method, explained in this pa-
per, makes use of a fixed window length of 7s. A
method should be investigated to automatically deter-
mine the length of the MNA.

Other models should be tested for this classifica-
tion problem, for example deep neural networks.

Extracting HR and HRV is more challenging dur-
ing these artifactual segments and further signal pro-
cessing techniques are needed. Further studies must
be elaborated to assess how these MNA affect to the
different HRV indices.

4 CONCLUSIONS

The goal of the paper is to provide a reliable motion
and noise artifact (MNA) detection method for PPG
signals, recorded with a wrist watch. PPG- and ACM-
derived features are extracted and classified with a
LS-SVM classifier. For this dataset, the ACM fea-
tures do not improve the performance, suggesting that
ACM recording could be avoided from the point of
view for detecting MNAs in PPG signals.
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Table 5: Comparison with literature [Rec.=Recording, Acc=Accuracy, Se=Sensitivity, Sp=Specificity, Results are in %].

No. subjects (Rec. duration) Sensor type Type of movement Results
Sukor et al., 2011

13 (8 min) Finger Hand movements
Acc: 83±11
Se: 89±10
Sp: 77±19

Selvaraj et al., 2011

10 (5 - 20 min) Ear/ Finger/ Forehead Involuntary movements
Acc: 99.0/94.8/93.3
Se: 100/99.3/96.3
Sp: 98.9/93.8/91.9

14 (10 min) Finger Voluntary movements
Acc: 88.8
Se: 86.9
Sp: 98.3

Chong et al., 2014

11 (10 min) Forehead Head movement
Acc: 94.4±3.3
Se: 94.7±3.4
Sp: 94.7±4.5

9 (10 min) Finger Finger movement
Acc: 93.4±3.5
Se: 88.8±7.9
Sp: 96.7±3.0

9 (45 min) Finger/Forehead Stair-climbing
Acc: 93.7±2.7
Se: 93.9±5.0
Sp: 91.4±2.0

Dao et al., 2016

11 (10 min) Forehead Head movement
Acc: 95.7±0.82
Se: 93.0±5.75
Sp: 96.6±1.48

11 (10 min) Finger Finger movement
Acc: 97.5±1.50
Se: 96.4±2.34
Sp: 98.1±1.43

10 Forehead UMMC hospital
Acc: 95.3±1.34
Se: 90.8±2.83
Sp: 98.7±1.07

10 Finger UMMC hospital
Acc: 94.3±1.64
Se: 88.5±2.23
Sp: 96.9±1.86
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