
Can Abstraction Be Taught?
Refactoring-based Abstraction Learning

Naoyasu Ubayashi, Yasutaka Kamei and Ryosuke Sato
Kyushu University, Fukuoka, Japan

Keywords: Abstraction, Refinement, Abstraction-aware Refactoring.

Abstract: Can the notion of abstraction be taught to students? It is a very difficult question. Abstraction plays an impor-
tant role in software development. This paper shows that refactoring is effective for students to learn the notion
of abstraction. We focus on design abstraction, because it is one of the crucial parts in teaching the essence
of software engineering. To explore for a well-balanced separation of concerns between design and code, it
is not avoidable to go back and forth between them. To help a student find an appropriate abstraction level,
we introduce abstraction-aware refactoring patterns consisting ofMoveM2C(Move concerns from Model to
Code) andCopyC2M(Copy concerns from Code to Model). The patterns enable a student to refine abstraction
while preserving not only external functionality but also traceability between design and code.

1 INTRODUCTION

Can the notion of abstraction be effectively taught
to students? It is a very difficult question. Ab-
straction plays an important role in software devel-
opment. J. Kramer not only claims that abstraction
is crucial for computing professionals but also raises
questions (Kramer, 2007):Why is it that some soft-
ware engineers and computer scientists are able to
produce clear, elegant designs and programs, while
others cannot? Is it possible to improve these skills
through education and training? His hypothesis is
thatcritical to these questions is the notion of abstrac-
tion. Many researchers and developers agree that ab-
straction is one of the most important skills in soft-
ware engineering. However, there are different as-
pects of abstraction: abstraction in design specifica-
tions, abstraction in program modules, abstraction in
software architectures, and so on. In this paper, we
focus on abstraction between design and implementa-
tion, because it is one of the crucial parts in teaching
the essence of software engineering to university stu-
dents. In many universities, programming is taught
first and after that software design is taught. Most
students feel that there is a big gap between software
design and programming in terms of abstraction.

This paper shows that refactoring crosscutting
over design and code is effective for ordinary students
to learn the notion of abstraction. In (Batini and Vis-
cusi, 2016), the etymology of abstraction is shown as

follows: (14c.) from Latin abstractionem (nomina-
tive abstractio), noun of action from past participle
stem of abstrahere “drag away, pull away, divert”.
From this etymology, abstraction can be defined as
removal of details. There are two different abstrac-
tions: abstraction by forgetting (details)andabstrac-
tion by hiding. Class hierarchy is an example of the
former type. On the other hand, the latter type is cru-
cial in terms of abstraction between design and code,
because design is a specification of software architec-
ture (Shaw and Garlan, 1994) hiding detail implemen-
tation.

In this paper, we introduce a set of patterns for
abstraction-aware refactoring. The patterns consist
of MoveM2C(Move concerns from Model to Code)
andCopyC2M(Copy concerns from Code to Model).
In our educational experience, students often fail to
make a model at the first time, because they cannot
understand to what extent the model should be de-
tailed. Some students make a very detailed model
equal to the program code. Such a model is hard to
maintain, because it has to be modified whenever the
code is revised. Some students make a too abstract
model containing only few model elements and can-
not understand how to relate the model to the code.
They have the knowledge of UML notations but do
not understand in depth what is abstraction. On the
other hand, it is relatively easy for them to write a
program, although abstraction skills in programming
might be insufficient. Our teaching objective is to

Ubayashi, N., Kamei, Y. and Sato, R.
Can Abstraction Be Taught? Refactoring-based Abstraction Learning.
DOI: 10.5220/0006604804290437
In Proceedings of the 6th International Conference on Model-Driven Engineering and Software Development (MODELSWARD 2018), pages 429-437
ISBN: 978-989-758-283-7
Copyright © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

429



help students understand how to remove details at the
beginning of learning modeling. Traditional refactor-
ing (Fowler, 1999) improves the code structures while
preserving the external functionality. Our refactor-
ing patterns refine abstraction while preserving not
only external functionality but also traceability be-
tween design and code. Traceability is important for
students to understand how a model is related to the
code in software development. Although it is prefer-
able to firmly separate design from its implementa-
tion (or hide non-essential implementation details),
this separation is not easy for many students because
an abstraction level—How much should a design be
more abstract than code?—tends to change during the
progress of software development. In general, an im-
portant decision on software architecture is made at
the design phase and a decision on the detailed pro-
gram structure concerning API usages, variables, and
methods is made at the coding phase. However, this
distinction is relative and vague in many cases. R. N.
Taylor et al. pointed out the need for adequate sup-
port for fluidly moving between design and coding
tasks (Taylor and Hoek, 2007). Because offluid mov-
ing, abstraction level may fluidly change as a result
of reconsidering the balance between design and its
implementation—which concern should be described
in design and which concern should be written in
code. Our refactoring patterns supportsfluid abstrac-
tion, a design approach in which appropriate abstrac-
tion can be captured by the convergence of fluid mov-
ing and removing details. Why do we use the word
fluid abstraction? The reason is that abstraction in de-
sign and coding phases should not be absolutely given
by a teacher but be flexible for a student to seek the
best combination of design and code.

We evaluated the effectiveness of the proposed
refactoring patterns by applying them to a system
developed in our university’s PBL (Project-Based
Learning) class. This experiment gave us the interest-
ing knowledge about teaching software development
in terms of abstraction. We addressed three research
questions: RQ1) How much value does an abstrac-
tion level become in an educational project? ; RQ2)
What becomes the trigger of applying the refactoring
patterns? ; and RQ3) Does an abstraction level finally
converge to a certain value by applying the refactoring
patterns? For RQ1, the abstraction levell (0≤ l ≤ 1)
was about around 0.5 in the educational system devel-
opment. For RQ2, we could extract two bad smells
triggering abstraction-aware refactoring:“abnormal
abstraction level”and“inconsistency between design
and code.” For RQ3, all design models converged to
the similar abstraction level. We consider that the ex-
istence of a converged abstraction level is important

for a student to capture an abstraction skill, because
he or she can understand that there is an abstraction
structure in a real system.

This paper is structured as follows. The techni-
cal background needed to understand our approach
is briefly explained in Section 2. Abstraction-aware
refactoring patterns are introduced in Section 3. In
Section 4, we showiArch, a support tool for apply-
ing the refactoring patterns. In Section 5, we show
the evaluation results in our university’s PBL class.
In Section 6, we show related work. Concluding re-
marks are provided in Section 7.

2 BACKGROUND

In this section, we introduce the technical back-
ground of the abstraction-aware refactoring patterns.
Our approach is based on an interface mechanism
that represents a contract between design and code.
This interface is calledArchface(Architectural Inter-
face) (Ubayashi et al., 2014). A student has to define
this interface that enforces the student to decide which
concern should be included in both a design model
and code. The student has to remove the non-essential
details from the design model by not specifying them
in the interface.

2.1 Archface

Archfaceexposes architectural points shared between
design and code. These points termedarchpointshave
to be modeled as design points in a UML model and
have to be implemented as program points in its code.
Archfaceis a contract that should be guaranteed be-
tween design and code in terms of abstraction. An
abstraction level is determined by selecting archpoints
that should be shared between design and code. There
are two kinds of type checking: type check between
Archfaceand a UML model; and type check between
Archfaceand code. If both type checks are correct,
a design model is traceable to the code in terms of a
defined abstraction level.

Table 1 shows design points, program points, and
archpoints. It is easy for a student to understand
which archpoint corresponds to a model element (de-
sign point) in a design model or a program snip-
pet (program point). We limited archpoints to basic
points that can be easily understood by students, al-
though more complex archpoints can be introduced
(e.g., data flow archpoints). There are several mer-
its in using the notion ofpoints. One of the essential
merits is that points are countable and an abstraction
level can be easily calculated. There are two types of

MODELSWARD 2018 - 6th International Conference on Model-Driven Engineering and Software Development

430



Table 1: Design Points, Program Points, and Archpoints.

Design point Program point Archpoint
(UML2 metamodel) (Java)
Class class aclass
Operation method amethod
Property field a field
Message MessageEnd method call amcall
(sendEvent)
Message MessageEnd method exec amexec
(receiveEvent)

archpoints: structural archpoints based on class struc-
tures and behavioral archpoints based on LTS (La-
belled Transition Systems). Both structural and be-
havioral aspects are essential in learning modeling.

Archface, which supports component-and-
connector architecture (Allen and Garlan, 1994),
consists of two kinds of interface:componentand
connector. The former exposes archpoints and the
latter defines how to coordinate them. AnArchface
definition of theObserverpattern is shown in List 1.
[List 1] -- Java & FSP Syntax
01: interface component cSubject {
02: public void addObserver(Observer);
03: public void removeObserver(Observer);
04: public String getState();
05: public void setState(String);
06: }
07:
08: interface component cObserver {
09: public void update();
10: }
11:
12: interface connector cObserverPattern
13: (cSubject, cObserver){
14: cSubject = (cSubject.setState->cObserver.update
15: ->cSubject.getState->cSubject);
16: cObserver = (cObserver.update->cSubject.getState
17: ->cObserver);
18: }

The structural aspect is described as a Java-like
interface and the behavioral aspect is specified using
process algebra. That is, message interactions are de-
scribed based on FSP (Finite State Processes) (Magee
and Kramer, 2006) whose specifications generate fi-
nite LTS. The notation→ indicates a control flow
represented by a method call. An interaction be-
tween a subject and observers is defined in line 14-
17. A message is sent from a subject to an observer by
cObserver.update in line 14 and 16. ThecSubject
is specified as a process that repeatedly receives
setState, sendsupdate to thecObserver, and re-
ceivesgetState. In the same way, thecObserver is
specified as a process that repeatedly receivesupdate
and sendsgetState to thecSubject.

2.2 Abstraction-aware Compiler

The conformance toArchfacecan be checked by a
type system taking into account not only programs
but also design models. Type checking is performed
by verifying whether or not a design point (program

point) corresponding to an archpoint exists in a design
model (program) while satisfying constraints among
design points (program points) (e.g., the order of mes-
sage sequences). Although traditional types are struc-
tural, Archfaceis based on archpoints including be-
havior. The reason is because a design model imposes
structural or behavioral architectural constraints on a
program. Our type checker verifies the simulation re-
lation between a design model and its code via FSP
descriptions inArchface. Fixing inter-model incon-
sistency is an important problem (Egyed et al., 2008)
when students understand how a diagram is related to
other diagrams and which role each diagram has. Our
compiler can verify inconsistency not only between a
model and code but also between models.

2.3 Abstraction Level

An abstraction level—How much should a design
model be more abstract than its code?—is determined
by selecting archpoints that should be shared between
design and code. Theabstraction ratiois a metric
for measuring an abstraction level. The value of this
metric is 1−#ArchPoint/#ProgramPoint.#ArchPoint
and #ProgramPointare the number of archpoints and
program points, respectively. We provided a simple
metric for a student to understand abstraction intu-
itively and quantitatively. #DesignPoint, the number
of design points, can be larger than #ArchPointwhen
there are design concerns that are not reflected into
the code. On the other hand, #ArchPoint indicates
the number of design points that should be reflected
to the code. The value of this metric ranges from 0
to 1. A large value close to 1 indicates that the ab-
straction level is high. A small value close to 0 in-
dicates that the abstraction level is low. The number
of archpoints and program points is automatically cal-
culated from theArchfacedefinitions by our support
tool iArch shown in Section 4. In case ofRatio= 0,
all archpoints are mapped to the corresponding pro-
gram points. This case indicates that a model is equal
to the code. In case ofRatio= 1, there are no design
descriptions corresponding to a program. There are
no archpoints. A software artifact that does not con-
tain design descriptions is an example of this case.

3 REFACTORING PATTERNS

In this section, we introduce the abstraction-aware
refactoring patterns that help a student explore an ap-
propriate abstraction level ranging between 0 and 1.
The refactoring proposed by us refines an abstraction
level while preserving not only external functionality

Can Abstraction Be Taught? Refactoring-based Abstraction Learning

431



Table 2: Abstraction-aware Refactoring Patterns.

Category Pattern Abbreviation Explanation Abstraction
1©Remove Class RmCs Remove a non-important class. ր
2©Remove Sub Class RmSubCs Remove a non-important sub class. ր

Structural 3©Remove Library Class RmLibCs Remove a non-important API class. ր
MoveM2C 4©Remove Method RmMs Remove a non-important method. ր

5©Remove Field RmFd Remove a non-important field. ր
Behavioral 6©Remove Message RmMsg Remove non-important message ր

7©Remove API Call RmAPI Remove a non-important API call. ր
8©Remove Object RmObj Remove a non-important object. ր
9©Add Class AddCs Add an important class existing in

the code to its design model.
ց

10©Add Sub Class AddSubCs Add an important sub class existing
in the code to its design model.

ց

Structural 10©Add Library Class AddLibCs Add an important API class existing
in the code to its design model.

ց

CopyC2M 12©Add Method AddMs Add an important method existing
in the code to its design model.

ց

13©Add Field AddFd Add an important field existing in
the code to its design model.

ց

14©Add Message AddMsg Add an important message
send/receive (method call) ex-
isting in the code to its design
model.

ց

Behavioral 15©Add API Call AddAPI Add an important API call in the
code to its design model.

ց

16©Add Object AddObj Add an important object in the code
to its design model.

ց

but also traceability between design and code. A stu-
dent can fluidly go back and forth between design and
code by using the refactoring patterns.

3.1 Pattern Catalog

Table 2 shows the pattern catalog composed of
MoveM2C(Move concerns from Model to Code) and
CopyC2M(Copy concerns from Code to Model).

A pattern in theMoveM2Ccategory moves a de-
sign concern to a code concern. This pattern is ap-
plied to the situation in which a design model has
to be changed frequently to reflect code change. It
may be preferable to locate the concern to code. As
another situation, this pattern can be temporarily ap-
plied if experimental coding is needed to find an ap-
propriate design such as performance issues and cor-
rect API usages. After finding an adequate design,
the CopyC2Mpattern category should be applied to
recover a design concern from its code. By apply-
ing theMoveM2Cpattern, we can raise an abstraction
level. The abstraction of a design model becomes an
appropriate level and the design model becomes sta-
ble (not frequently modified). TheMoveM2Ccate-
gory is divided into two kinds of patterns: one is the
structural patterns for abstracting class structures and
includesRmCs, RmSubCs, RmLibCs, RmMs, RmFd
patterns. Another is the behavioral patterns for ab-
stracting message sequences and includesRmMsg,
RmAPI, RmObjpatterns. These patterns are related

to each other. For example, if a message is removed
from a sequence diagram (RmMsg), we have to re-
move the target object (RmObj) and associated mes-
sage sequences (RmMsg). Moreover, we may have to
remove a class instantiating the object (RmCs), its sub
classes (RmSubCs), associated methods (RmMs), and
fields (RmFd) from a class diagram. Although each
pattern is simple, it is not easy to apply these patterns
while preserving the consistency. Our support tool
iArch can automate these tasks.

A pattern in theCopyC2Mcategory copies a code
concern to a design concern. This pattern, the reverse
of the MoveM2Cpattern, is applied to the situation
in which a student wants to change a design model
to reflect an important design concern that could not
be captured in the early phase but can be obtained in
the coding phase. By applying theCopyC2Mpattern,
we can lower an abstraction level. To perform the
CopyC2Mpattern efficiently,iArch supports the fol-
lowing: 1) a student selects a code region that should
be reflected to the corresponding design model; 2)
iArch shows the candidates of updatedArchfacede-
scriptions; 3) the student selects most appropriate one
from the candidates and modifies it if necessary; 4) a
model editor iniArch updates a design model in order
to reflect the updatedArchface. If the design model
already contains a design point related to a new arch-
point defined in the updatedArchface, the model edi-
tor simply reuses the design point.

MODELSWARD 2018 - 6th International Conference on Model-Driven Engineering and Software Development

432



Figure 1: GradualArchfaceRefinement.

Figure 2:iArch IDE.

4 LEARNING ENVIRONMENT

Figure 1 illustrates the abstraction refinement process
usingMoveM2CandCopyC2M. This refinement pro-
cess is supported by theiArch IDE (Ai et al., 2014)
consisting of the followings: 1) model editor, 2) pro-
gram editor, 3)Archfaceeditor and generator, 4) ab-
straction metrics calculator, and 5) abstraction-aware
verifying compiler. Figure 2 is a snapshot ofiArch
implemented as an Eclipse plug-in. 1) is class and se-
quence diagrams of theObserverpattern. 2) is a Java
program implementing theObserverpattern. 3) is an
Archfacedefinition. We can automatically generate
initial Archfacedescriptions from a design model. 4)
shows the abstraction ratio of theObserverpattern.
5) is the output from the abstraction-aware verifying
compiler. This compiler generates error messages if
the traceability between a design model and code is
violated. The refactoring support facility is newly
added to theiArch IDE.

5 EXPERIMENT

We evaluated the effectiveness of our refactoring pat-
terns by applying them to a system developed in our
university class. Although this is a preliminary ex-

periment and we cannot assume the generality of the
result, it gives us an interesting intuition about teach-
ing software development in terms of abstraction.

5.1 System Overview

A web-based online book-shop system was devel-
oped in a PBL, a class for master students to learn
the methods and processes for developing a practical
system. The artifacts of this system consist of UML
models and programs written in Java and JavaScript.
We used class diagrams, sequence diagrams, and Java
programs as the target of this evaluation. This system
consists of two main functions. One is a function for
a shop user to search book information and check the
user ranking. Another is a function for a shop clerk to
manage book information. Table 3 shows the system
configuration and its size (LOC: Lines of Code). The
software modules consist of 1) definition of the rela-
tion among modules (abs); 2) access control for the
database (asasecommon); 3) user service (web); and
4) clerk service (office).

5.2 Research Questions

In this experiment, we addressed the following three
research questions: RQ1) How much value does an
abstraction level become in an educational project?;
RQ2) What becomes the trigger of applying the refac-
toring patterns?; and RQ3) Does an abstraction level
finally converge to a certain value by applying the
refactoring patterns?

RQ1 is intended to clarify whether or not some
kind of tendency is seen about the value of an ab-
straction level. It is considered that the abstraction
level varies according to a project theme and a target
domain. However, there may be the similar tendency
in a similar team or a similar PBL theme. Of course,
we cannot definitely give a predictable value of the
abstraction level, because it is just the evaluation by
one project. RQ2 is intended to clarify bad smells
that trigger a student to refactor a design model and
its code. RQ3 is intended to measure the effect of ap-
plying the refactoring patterns.

5.3 Experiment Results

RQ1: Table 4 shows the abstraction level of the on-
line book shop system. The value was about around
0.5 in the system development of the educational pur-
pose. This value may be slightly lower than that of
the system development in companies. We consider
that the value is appropriate because one of the pur-
poses of this educational PBL is to help students un-

Can Abstraction Be Taught? Refactoring-based Abstraction Learning

433



Table 3: Project Size of an Online Book Shop System.

Module Name Number of Classes Number of Class Diagrams Number of Sequence Diagrams LOC
abs 23 1 0 411
asasecommon 26 1 0 1393
web 9 1 2 244
office 20 1 4 438
UI — — — 3170

Table 4: Initial Abstraction Level of the System.

ID Use Case (*) Archpoint Program Point Inconsistency Abstraction Ratio
u1 User: Check User Ranking 9 22

√
0.59

u2 User: Search Book Titles 16 24 0.33
u3 Clerk: Search/Update/Delete Publisher Information 31 76

√
0.59

u4 Clerk: Register Publisher Information 12 24
√

0.5
u5 Clerk: Search/Update/Delete Book Information 37 82

√
0.55

u6 Clerk: Register Book Information 12 24
√

0.5

* Each use case is modeled using a sequence diagram.

Table 5: Bad Smells and Refactoring Patterns to be Applied.

ID Bad Smell Reason Refactoring Patterns
u1 B There is an inconsistency between a sequence dia-

gram and code, because the usage of API is changed.
RmAPI, RmObj, AddObj, AddMsg

u2 A It is not necessary to distinguish the brief search and
the detailed search.

RmMsg

u3 B A part of functions are not modeled in a sequence di-
agram.

AddObj, AddMsg, RmMsg

u4 B Same as above. AddObj, AddMsg, RmMsg
u5 B Same as above. AddObj, AddMsg, RmMsg
u6 B Same as above. AddObj, AddMsg, RmMsg

A: Abnormal Abstraction Level, B: Inconsistency between Design and Code

Table 6: Change of Abstraction Level at Each Refactoring Step.

ID Refactoring Step
1: Recover Traceability between Design and Code 2: Apply CopyC2M 3: Apply MoveM2C

u1 RmAPI, RmObj/ +0.09 AddObj, AddMsg/ -0.05 —
u2 — — RmMsg/ +0.25
u3 — AddObj, AddMsg/ -0.12 RmMsg/ +0.15
u4 — AddObj, AddMsg/ -0.12 RmMsg/ +0.16
u5 — AddObj, AddMsg/ -0.11 RmMsg/ +0.14
u6 — AddObj, AddMsg/ -0.12 RmMsg/ +0.16

Legend: Applied Patterns / Change of Abstraction Level (Difference Before and After Refactoring)

derstand the traceability between a design model and
the code in terms of abstraction. It is easy for a stu-
dent to understand abstraction when a design model
is not too abstract and is relatively close to its code.
On the other hand, the student may fail to capture the
abstraction skills if the abstraction level is larger than
0.5. We consider that it is effective to suggest to stu-
dents that they should make a design model with the
abstraction level 0.5 as the first learning step. Stu-
dents will find more appropriate abstraction level after
they can understand the meaning of 0.5.

RQ2: In this experiment, students in the PBL class
extracted two kinds of bad smells that triggered the
application of the abstraction-aware refactoring pat-
terns: 1) Abnormal abstraction level; and 2) Incon-
sistency between design and code. 1) indicates that
refactoring is needed if a class or a method has an

exceptional abstraction ratio comparing other classes
or methods. 2) indicates the situation in which trace-
ability is not preserved between artifacts. Someone
may consider why 2) is a bad smell, because the trace-
ability has to be maintained in software development.
However, many student projects cannot necessarily
preserve the traceability, because it has to be main-
tained by hand in most cases. Current MDD tools
do not provide the functions for practical traceabil-
ity checking. If traceability is not maintained, de-
sign models tend to evolve without taking into ac-
count the code. As a result, the abstraction level of
the design model may become inadequate. Table 5
shows bad smells and refactoring patterns to be ap-
plied. In Table 4, the abstraction level of the use case
u2 is 0.33. We cannot determine whether this value
is appropriate or not by checking only this value, al-

MODELSWARD 2018 - 6th International Conference on Model-Driven Engineering and Software Development

434



Abstraction

Ratio

Initial Step 1 Step 2 Step 3 Final

u1

u2

u4

u5

u6

u3

Figure 3: Change History of Abstraction Levels.

though one might consider the value is relatively low.
However, this value is exceptionally low comparing to
the abstraction levels of other use cases whose func-
tionality is similar to that of the use caseu2. There
was a possibility of a bad smell. We checked the se-
quence diagram representing the use caseu2 in detail
and found that a function “Search book information”
was divided into two use cases “brief search” and “de-
tailed search”. In this case, it is desirable to refactor
the sequence diagram representingu2 by applying the
RmMsgpattern. These bad smells help a student cap-
ture the practical skills for abstraction.
RQ3: In this PBL class, the students performed
three refactoring steps: 1) recover the traceability
link between a design model and code; 2) apply the
CopyC2Mpattern; and 3) apply theMoveM2Cpat-
tern as shown in Table 6 and Figure 3. All sequence
diagrams converged to the similar abstraction level.
The gap between maximum and minimum abstraction
level is changed from 0.26 (= 0.59-0.33) to 0.09 (=
0.63-0.54). Our refactoring patterns help a student re-
fine and explore an appropriate abstraction level. The
student can understand that he or she can obtain a sim-
ple and beautiful software structure by seeking an ap-
propriate abstraction level.

6 RELATED WORK

Someone might wonder what is a distinction between
our approach and a view supported by many modeling
tools that can hide a portion of a model. If a developer
makes a detailed model equal to the code, an abstract
model can be obtained from the original model with-
out using our approach. However, a student cannot
get a skill for making an abstract model but write code
just using modeling notations. Moreover, in practical
development, it is not realistic to make a code-level
model, because the model is not only useless but also
difficult to maintain.

As claimed in this paper, traceability between de-
sign and code plays an important role in teaching ab-

straction, because an abstract design model cannot
exist without considering the relation to its program
implementation. There are several studies on trace-
ability. T. D’Hondt et al. introduced LMP (Logic-
Meta Programming) to enforce the synchronization
between object-oriented design and code (D’Hondt
et al., 2001). H. Bagheri et al. showed a way for au-
tomated formal derivation of style-specific architec-
tures (Bagheri et al., 2010). Y. Zheng and R. N. Taylor
proposed 1.x-way architecture-implementation map-
ping (Zheng and Taylor, 2012) for deep separation of
generated and non-generated code. JaMoPP1, a set of
plug-ins for parsing Java code into models based on
EMF (Eclipse Modeling Framework), bridges the gap
between modeling and programming. MoDisco2 is a
framework to develop model-driven tools supporting
software modernization. Both JaMoPP and MoDisco
provide reverse engineering facilities. In the past,
many ADLs (Architecture Description Languages)
have been proposed to describe an architectural de-
sign model at a high abstraction level. R. Allen and
D. Garlan proposedWright (Allen and Garlan, 1994)
to formalize thecomponent-and-connectorarchitec-
ture. J. Aldrich et al. proposedArchJava(Aldrich
et al., 2002), an extension of Java. ArchJava unifies
architecture and implementation, ensuring that the
implementation conforms to architectural constraints.
Umple3 supports the notion of model-oriented pro-
gramming that adds modeling features derived from
UML to object-oriented languages such as Java. Us-
ing ArchJavaor Umple, we can merge modeling with
programming. Cassou et al. explored the design
space between abstract and concrete component in-
teraction specifications (Cassou et al., 2011).

However, these approaches do not support fluid
moving while preserving abstraction. They take the
policy that separation of concerns between design and
code should be firmly determined at the initial design
phase. However, we often observe fluid moving and
frequent change of abstraction in educational projects
as repeatedly claimed in this paper, because an ordi-
nary student cannot create a well-abstract design at
the initial phase. It is necessary to provide a method
for supporting fluid moving in the light of abstraction.
Our proposal is one of the solutions for dealing with
this educational challenge.

Automated verification tools supporting formal
specifications are useful for students to capture their
abstraction skills, because the repeated cycle of trial-
and-error development gives the students opportuni-
ties of rethinking the abstract specifications. For ex-

1http://www.jamopp.org/
2http://www.eclipse.org/MoDisco/
3http://cruise.eecs.uottawa.ca/umple/

Can Abstraction Be Taught? Refactoring-based Abstraction Learning

435



ample, the Alloy analyzer (Jackson, 2006) is suitable
for students to understand the essence of software ab-
stractions. Our abstraction-aware verifying compiler
helps a student understand the traceability between
design and code in terms of abstraction.

7 CONCLUSIONS

In this paper, we showed that refactoring crosscutting
over design and code is effective for ordinary students
to learn software abstractions. However, many educa-
tional challenges still remain, because abstraction is
a philosophical deep concept. Our definition of ab-
straction (removal of details) is based on archpoints,
a simple mechanism for not only representing abstrac-
tion but also realizing traceability. However, abstrac-
tions existing in a real software development project
are not limited to the concepts in which design points
and program points are mapped each other. Never-
theless, we consider our approach is effective for ed-
ucational purposes, because it can integrate many im-
portant notions such as definition of abstraction level,
traceability check, and refactoring both design mod-
els and code.

Although this paper focused on the educational as-
pect in university, we expect that our approach can be
applied to leverage the modeling skills of primary en-
gineers. The lack of proper skills for abstraction is a
real problem in industry. The first author of this paper
worked in industry as a software engineer for twenty
years before moving to academia. To tell the truth,
this research is motivated by the author’s experience
in industry. We believe that a systematic method for
improving abstraction skills is one of the most impor-
tant issues both in academia and industry. Unfortu-
nately, such a method does not exist yet. Our pro-
posal is a first step towards method development for
improving abstraction skills.

ACKNOWLEDGMENTS

We thank Di Ai, Peiyuan Li, Yuning Li, and Zhongx-
iao Guo for their great contributions. They were stu-
dents of our university. They implemented theiArch
IDE. Di Ai assisted the evaluation shown in Section 5.
This work was supported by JSPS KAKENHI Grant
Numbers JP26240007, JP25540025.

REFERENCES

Ai, D., Ubayashi, N., Li, P., Hosoai, S., and Kamei, Y.
(2014). iarch: An ide for supporting abstraction-aware
design traceability. InProceedings of the 2nd In-
ternational Conference on Model-Driven Engineering
and Software Development (MODELSWARD 2014),
pp.442-447.

Aldrich, J., Chambers, C., and Notkin, D. (2002). Archjava:
Connecting software architecture to implementation.
In Proceedings of the 24th International Conference
on Software Engineering (ICSE 2002), pp.187-197.

Allen, R. and Garlan, D. (1994). Formalizing archi-
tectural connection. InProceedings of the 16th
International Conference on Software Engineering
(ICSE’94), pp.71-80.

Bagheri, H., Song, Y., and Sullivan, K. J. (2010). Architec-
tural style as an independent variable. InProceedings
of the 25th IEEE/ACM International Conference on
Automated Software Engineering (ASE 2010), pp.159-
162.

Batini, C. and Viscusi, G. (2016). Er2016 - tutorial on ab-
stractions in conceptual modelling and surroundings.

Cassou, D., Balland, E., Consel, C., and Lawall, J. (2011).
Leveraging software architectures to guide and ver-
ify the development of sense/compute/control appli-
cations,. InProceedings of the 33rd International
Conference on Software Engineering (ICSE 2011),
pp.431-440.

D’Hondt, T., Volder, K. D., Mens, K., and Wuyts, R. (2001).
Co-evolution of object-oriented software design and
implementation. InSoftware Architectures and Com-
ponent Technology, pp.207-224. Kluwer Academic
Publishers.

Egyed, A., Letier, E., and Finkelstein, A. (2008). Gener-
ating and evaluating choices for fixing inconsistencies
in uml design models. InProceedings of the 23rd In-
ternational Conference on Automated Software Engi-
neering (ASE 2008), pp.99-108.

Fowler, M. (1999). Refactoring: Improving the Design of
Existing Code. Addison-Wesley.

Jackson, D. (2006).Software Abstractions: Logic, Lan-
guage, and Analysis. The MIT Press.

Kramer, J. (2007). Is abstraction the key to computing? In
Communications of the ACM, Vol. 50 Issue 4, pp.36-
42.

Magee, J. and Kramer, J. (2006).Concurrency: State Mod-
els and Java Programs. Wiley.

Shaw, M. and Garlan, D. (1994). Characteristics of higher
level languages for software architecture. InTechni-
cal Report, CMU-CS-94-210. Carnegie Mellon Uni-
versity.

Taylor, R. N. and Hoek, A. (2007). Software design and ar-
chitecture –the once and future focus of software en-
gineering. InProceedings of 2007 Future of Software
Engineering (FOSE 2007), pp.226-243.

Ubayashi, N., Ai, D., Li, P., Li, Y., Hosoai, S., and Kamei,
Y. (2014). Abstraction-aware verifying compiler for
yet another mdd. InProceedings of the 29th Interna-

MODELSWARD 2018 - 6th International Conference on Model-Driven Engineering and Software Development

436



tional Conference on Automated Software Engineer-
ing (ASE 2014), New Ideas Paper, pp.557-562.

Zheng, Y. and Taylor, R. N. (2012). Enhancing architecture-
implementation conformance with change manage-
ment and support for behavioral mapping. InProceed-
ings of the 34th International Conference on Software
Engineering (ICSE 2012), pp.628-638.

Can Abstraction Be Taught? Refactoring-based Abstraction Learning

437


