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Abstract: In this work, we focus on the popular keyframe-based approach for video summarization. Keyframes repre-
sent important and diverse content of an input video and a summary is generated by temporally expanding the
keyframes to key shots which are merged to a continuous dynamic video summary. In our approach, keyframes
are selected from scenes that represent semantically similar content. For scene detection, we propose a simple
yet effective dynamic extension of a video Bag-of-Words (BoW) method which provides over segmentation
(high recall) for keyframe selection. For keyframe selection, we investigate two effective approaches: local
region descriptors (visual content) and optical flow descriptors (motion content). We provide several inter-
esting findings. 1) While scenes (visually similar content) can be effectively detected by region descriptors,
optical flow (motion changes) provides better keyframes. 2) However, the suitable parameters of the motion
descriptor based keyframe selection vary from one video to another and average performances remain low.
To avoid more complex processing, we introduce a human-in-the-loop step where user selects keyframes pro-
duced by the three best methods. 3) Our human assisted and learning-free method achieves superior accuracy
to learning-based methods and for many videos is on par with average human accuracy.

1 INTRODUCTION

Video summarization is a key technology to manu-
ally browse through multiple long videos – a user can
quickly decide whether a video is interesting or not
by viewing its summary. Summaries may also have
a more predominant role beyond retrieval since many
users have started to produce video data of their ev-
eryday life, hobbies and even for semi-professional
purposes (e.g., “How to change a tire”). In the light
of this, the original idea of informative summary must
be expanded to more generic summaries that are vi-
sually plausible and entertaining as such. The main
challenge is how to retain necessary visual and tem-
poral structure to “tell the original story” within the
requested duration (Figure 1).

There have been many video summarization ap-
proaches with various objectives (see the Truong et
al. survey (Truong and Venkatesh, 2007)), but their
evaluation or comparison is difficult as users have var-
ious subjective preferences depending on their back-
ground, personal relation to the content, age, gen-
der etc. Most of the works report only qualita-
tive results or interview results from committees who
have graded or ranked the generated summaries. Re-
cently, Gygli et al. (Gygli et al., 2014) introduced the
SumMe dataset of three different types of YouTube

Figure 1: A static storyboard summary of the opening scene
of Star Wars which can be converted to dynamic video sum-
mary by temporally expanding the static keyframes.

uploaded user videos (egocentric camera, moving
camera, static camera) and asked several authors to
summarize the videos manually to establish quantita-
tive ground truth.

In this work, we adopt the popular keyframe-
based approach to video summarization (Guan et al.,
2013; Ma et al., 2005), and with the help of the
SumMe benchmark experimentally evaluate impor-
tant parts of the keyframe summarization pipeline.
We investigate the basic workflow and introduce its
human-in-the-loop variant to understand the semantic
gap between unsupervised summarization and super-
vised manual summarization. Local features gener-
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ally perform well in detecting important scenes, but
motion analysis provides complementary cue provid-
ing better keyframes. Weak supervision in the form
of user-selected keyframes provides substantial per-
formance improvement with minimal manual work.
Our findings indicate that the both unsupervised and
human assisted approaches are needed as the first can
provide automatic summaries online and the latter can
serve users who wish to convey their personal prefer-
ences or artistic view.

2 RELATED WORK

Figure 2: Temporal hierarchy of keyframe-based video
summarization: from whole video (top) to single frames.

The starting point of many summarization methods
is the hierarchical video structure illustrated in Fig-
ure 2 - still frames merge to continuous shots, shots
merge to scenes and scenes merge to a full video. A
popular approach to summarization is the keyframe-
based summarization (Guan et al., 2013; Ma et al.,
2005) where important keyframes are automatically
detected from the input video and then a summary
is constructed by temporally expanding keyframes to
“key shots”. The simplest method is to uniformly
assign keyframes, but that will over-emphasize long
shots that are not necessarily interesting. There-
fore the higher level information pieces, shots and
scenes (Figure 2), are more preferred starting points
for keyframe detection, e.g., the middle frame of each
shot/scene. Surveys for shot (Smeaton et al., 2010;
Duan et al., 2013) and scene detection (Fabro and
Böszörmenyi, 2013) provide overviews of the avail-
able methods. The definition of a video shot is more
technical (Smeaton et al., 2010) and therefore video
scenes that describe semantically and temporally co-
herent content are more meaningful data pieces for
summarization. There are many video applications
with similar objectives to summarization, for exam-
ple, video thumbnail generation (Liu et al., 2015),
video synopsis (temporal and spatial mixture) (Rav-
Acha et al., 2006), video-to-comics (Hong et al.,
2010; Herranz et al., 2012), and video-to-animated-
gif (Gygli et al., 2016), but we consider only the re-
cent video summarization and video scene detection
methods. We also omit the methods that utilize meta-

data in summarization (Wang et al., 2012; Zhu et al.,
2013; Bian et al., 2015).

Video Scene Detection – Video scene detection
methods analyze both temporal and spatial structures
to identify video scenes that are semantically and/or
temporarily coherent. Unsupervised scene detection
exploits standard unsupervised techniques such as
clustering (Gatica-Perez et al., 2003; Odobez et al.,
2003), Markov models (Shai and Shah, 2006) and
graphs (Gu et al., 2007; Ngo et al., 2005), and
can combine audio and video (Kyperountas et al.,
2007). Early scene detection methods were re-
viewed in the video summarization survey by Truong
and Venkatesh 2007 (Truong and Venkatesh, 2007).
These methods were based on various imagery fea-
tures and suitable for offline processing since they
process the whole input video at once. Offline scene
detection can be formulated as a structure optimiza-
tion problem (Gu et al., 2007; Ngo et al., 2005; Han
and Wu, 2011) and online detection as a reconstruc-
tion problem (Zhao and Xing, 2014) where a thresh-
old defines whether a current scene can be recon-
structed using the previous scenes.

Video Summarization – The early attempts of video
summarization are surveyed in Truong and Venkatesh
2007 (Truong and Venkatesh, 2007) and these meth-
ods often use simple rules for keyframe selection and
skimming. More recently, Shroff et al. (Shroff et al.,
2010) optimize trade-off between coverage and diver-
sity. Han et al. (Han et al., 2010) proposed an assisted
approach similar to our work, but in their system user
needs to browse through the original video and man-
ually select keyframes.

SIFT descriptors have been used in (Lu et al.,
2014) where the descriptors are weighted based on
their “importance” (a Bag-of-Importance model) and
importance mapping is learned from data. One of the
few online methods is by Zhao and Xing (Zhao and
Xing, 2014) who dynamically construct a codebook
from local image and optical flow features similar to
us. However, their method selects keyframes using
the rule of whether new scene can be reconstructed
using codes of all previous scenes - that works for
informative summaries rather than for entertaining
home video summaries. Lee and Graugman (Lee and
Grauman, 2015) proposed a summarization for ego-
centric camera that optimizes summarization based
on visual content and metadata (location and time).
Meng et al. (Meng et al., 2016) replace keyframes
with “key objects” which are found by first selecting
object region proposals and then clustering these into
key objects that then help to select keyframes. Gong
et al. (Gong et al., 2014) and Zhang et al. (Zhang
et al., 2016) introduce summarization as a supervised
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problem where human made summary in the train-
ing set is transferred to unseen video. Potapov et
al. (Potapov et al., 2014) use a supervised approach
where user needs to define one of the pre-defined
video categories and category specific summarization
is then executed.

Gygli et al. (Gygli et al., 2014; Gygli et al., 2015)
introduced a new video summarization benchmark
SumMe and a learning based method for unsuper-
vised summarization. Their method is based on detec-
tion of “superframes” which are similar to key shots
constructed by keyframe expansion in our work and
merging of the superframes by optimizing various
motion and visual content based features.

Contributions – Our main contributions are:
• We propose a learning free method for video

summarization using local feature (SIFT) based
scene detection and motion feature (HOOF) based
keyframe selection. In the human-in-the-loop set-
ting suitable keyframes are selected by users.

• We introduce a high recall scene detection method
by extending our previous static video Bag-of-
Word (BoW) (Lankinen and Kämäräinen, 2013)
to dynamic video BoW that is an online method
and provides over segmentation to scenes.

• We quantitatively evaluate variants of SIFT local
regions (Lowe, 2004) and HOOF motion descrip-
tors (Chaudhry et al., 2009) in keyframe selection
for keyframe-based summarization.

3 OUR METHOD

input video

Scene boundary detection

Keyframe detection

Keyframe selection

Skimming

Scene SceneScene Scene Scene

Detected keyframes Detected keyframes

Selected keyframes Selected keyframes

Video summary

Keyframe expansion

Figure 3: The summarization workflow used in this work.

The overall workflow of our method is illustrated in
Figure 3. At the first stage, video scenes are detected
by our dynamic video Bag-of-Words (Section 3.1).

At the second stage, keyframes for each scene are se-
lected using either local feature or motion cues (Sec-
tion 3.2). In the unsupervised mode the detected
keyframes are expanded to key shots proportional to
the scene length (Section 3.4) and combined to form
a final summary. In the human-in-the-loop mode
the keyframes are presented to a user (Section 3.3)
who selects the final keyframes for the summariza-
tion. Otherwise the two modes are identical.

3.1 Dynamic Video BoW

We extend our previous static video BoW (Lankinen
and Kämäräinen, 2013) to dynamic video BoW. The
static version uses a fixed BoW codebook for a whole
input video while our dynamic video BoW constructs
a new codebook for every detected scene. A static
codebook can be global (fixed globally) or video spe-
cific (codes computed from an input video). Video
specific codebooks were clearly superior in (Lanki-
nen and Kämäräinen, 2013), but they require offline
processing while our algorithm is online (video can
be processed simultaneously with uploading). More-
over, in our experiments our dynamic BoW performs
better in the high-recall region (recall ≥ 0.90) of the
precision-recall curve.

Our descriptor of choice is the dense SIFT that
performed well in video event detection (Tamrakar
et al., 2012), but can be replaced with any local fea-
ture detector-descriptor pair in OpenCV with negligi-
ble loss in accuracy. We process the input video V
as frames V = {Fi}i=0,...,N where N together with the
frame rate (fps) define the video length in wall time.
We further divide the frames into non-overlapping
blocks (short processing windows Wj) of NW frames
each Wj =

{
Fj∗NW ,Fj∗NW+1, . . . ,Fj∗NW+NW−1

}
where

the number of frames |Wj| = NW corresponds to one
second. Our dynamic video BoW processes the win-
dows and either merges them together to a single
scene or assigns a scene boundary.

Each frame is rescaled to 300× 300 image and
dense SIFT descriptors of the size 20 pixels with
10 pixels spacing are extracted. In the initial stage
and after each scene boundary detection a new BoW
codebook of 100 codes is generated using the stan-
dard c-means algorithm. A BoW histogram H(Wc)
is computed for the current window Wc using the
codes from all frames. Then processing advances to
the next window Wc+1 for which the BoW histogram
H(Wc+1) is computed and compared to H(Wc). For
histograms we adopt the L1-normalization and for
histogram comparison we use the L2 distance. If
the distance is ≥ τBoW then a scene boundary is de-
tected, otherwise the windows are merged into the
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same continuous scene and the method jumps to the
next window (Wc+1). Whenever a scene boundary
is detected the codebook is recomputed and the pro-
cess continues until the whole video has been pro-
cessed. In our experiments we fixed the threshold
to τBoW = 0.76 that was found to provide high re-
call with the TRECVid 2007 dataset used in (Lank-
inen and Kämäräinen, 2013).

3.2 Keyframe Detection

The output of the previous step in Section 3.1
is a set of adjacent scenes {Sk} that consist of
one or multiple windows which again consist of
NW frames each, i.e. Sk =

{
Wj,Wj+1, . . .

}
={

Fj∗NW ,Fj∗NW+1, . . . ,F( j+1)∗NW , . . .
}

. The goal of this
step is to select one or multiple “keyframes” for each
scene, FSk,1,FSk,2, . . . ,FSk,i, that describe the spatio-
temporal content of the scene Sk (Figure 1).

The keyframe detection serves two purposes;
Finding the frame which best describes the content
of the scene and finding the temporal location around
which the most interesting things in the scene happen.
We tested several techniques to detect these frames.
In its simplest form, “baseline”, we picked the mid-
dle frame from each scene. In order to better analyze
the video content we experiment dissimilarity given
by local region descriptors (SIFT) during scene de-
tection or optical flow based motion analysis (HOOF
motion descriptors (Chaudhry et al., 2009)).

The dense SIFT performed well in scene detec-
tion and since the descriptors are available from that
stage it is justified to adopt them for keyframe selec-
tion as well. We can compute a scene BoW histogram
using various methods (average, median) and com-
pare each window histogram to that. For keyframe
selection also various strategies exist: the most simi-
lar window to the scene histogram or the least similar
(Figure 4). In the experimental part, we tested these
variants and effect of the frame rate (15 fps, 24 fps
and original fps).

Figure 4: Video BoW dissimilarity within a scene.

Motion Analysis – We based our motion analysis on
the popular Farnebäck’s (Farnebäck, 2003) dense op-
tical flow (Figure 5). We tested four global criteria

in keyframe selection: frame with the minimum flow,
the maximum flow and the frames having the amount
of flow nearest to the average and the median flow
of the scene. Moreover, to account for the direction
of the motion, we also used motion histograms (Fig-
ure 5 bottom). We computed motion histograms by
assigning the optical flow vectors to 8 discrete bins
according to their direction and summing up the mag-
nitudes within each bin (Chaudhry et al., 2009). The
use of the motion histograms enabled us to find the
frames that most or least resemble the average motion
of a scene.

Figure 5: Computed optical flow vectors in a frame and the
corresponding optical flow histogram (below).

We experimented with several histogram dis-
tance functions (1)-(5). For example, chi-square
is weighted so that distance is relational to the
overall magnitude and the amount of difference is
considered more meaningful when magnitudes are
low. Bhattacharyya as well weights distances, but
it is done based on the mean value of all his-
togram bins rather than per bin basis. Alternatively,
correlation and intersection distances compare the
shapes of the histograms disregarding the magnitudes.

d(Ha,H f ) =

√
N

∑
n=1

(Ha(n)−H f (n))2 L2 (1)

d(Ha,H f ) =
N

∑
n=1

(Ha(n)−H f (n))2

Ha(n)
chi-square (2)

d(Ha,H f ) =

√
1− 1√

H̄aH̄ f

N

∑
n=1

√
Ha(n)H f (n) Bhattacharyya (3)

d(Ha,H f ) =

N
∑

n=1
(Ha(n)− H̄a)(H f (n)− H̄ f )

√
N
∑

n=1
(Ha(n)− H̄a)2

N
∑

n=1
(H f (n)− H̄ f )2

correlation (4)

d(Ha,H f ) =
N

∑
n=1

min(
Ha(n)
|Ha|1

,
H f (n)
|H f |1

) intersection (5)
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3.3 Keyframe Selection

Figure 6: Screenshot of our GIU for keyframe selection in
human-in-the-loop video summarization.

For human-in-the-loop video summarization, we
chose the three best performing unsupervised
keyframe detection methods (one for each video type
in SumMe). One to three (removing replicates)
keyframes were presented to test subjects with a sim-
ple graphical user interface (Figure 6) that resembles
a static storyboard. Users were able to see a larger
preview of a keyframe by clicking the frame. Test
subjects selected their preferred keyframes by double-
clicking them (highlighted with green borders in Fig-
ure 6). A timeline of the original video and the sum-
mary based on the keyframe selections were shown at
the bottom of the user interface window.

3.4 Expansion of Keyframes

We expanded the selected keyframes into key shots
by taking video content around them. We divided the
target duration into each scene that had at least one
keyframe selected. The duration allocated to each
scene was proportional to the duration of the scene.
We distributed the allocated duration of each scene
uniformly to the selected keyframes forming shots
around each keyframe. We then shifted and combined
the acquired shots as necessary to avoid overlapping
and to ensure each shot stays within the boundaries of
the originally detected scene. Finally, we combined
the shots to create a dynamic summary (Figure 7).

Selected
keyframes

Selected
keyframes

Overlapping frames

Initial shots
around

keyframes

Adjusted shot

Overlap
adjustment

Figure 7: Overlapping shots around the keyframes are com-
bined into a single shot in the keyframe expansion.

4 EXPERIMENTS

4.1 Data and Performance Measures

There are many benchmark datasets available for
video processing and analysis tasks, for example,
Open Video Project (OVP, open-video.org), Kodak
Consumer Video (Kodak (Yanagawa et al., 2008)),
Youtube (de Avila et al., 2011a), CUS (Comparison of
User Summaries (de Avila et al., 2011b)), Columbia
Consumer Video (CCV (Jiang et al., 2011), an ex-
tension of Kodak), TRECVid (Over et al., 2015) and
SumMe (Gygli et al., 2014). OVP, Kodak, Youtube
and CUS provide user-selected keyframes as ground
truth and can be used in benchmarking static sto-
ryboard summarization methods (Luo et al., 2009;
Gong et al., 2014). Potapov et al. (Potapov et al.,
2014) constructed a MED-summaries dataset from
TRECVid 2011 where importance scores were intro-
duced for different video events (e.g., a kid blowing
birthday cake candles has high importance score in
the birthdays category) and used it in the evaluation
of dynamic summaries. Only the SumMe dataset by
Gygli et al. provides user made video summaries as
ground truth and therefore we selected SumMe for
our experiments. Moreover, since multiple (10-15)
summaries are provided for each video this allows
also to investigate the effect of subjective variance.

SumMe contains 25 user videos with little or no
editing. The durations of the videos range from 30
to 240 seconds totaling 1 hour, 6 minutes and 18 sec-
onds. 4 of the videos are recorded using egocentric, 4
using static and 17 using moving cameras. Each video
has 15 to 18 ground truth summaries with lengths of
5% to 15% of the original duration. The ground truth
summaries were manually created by human test sub-
jects in a controlled psychological experiment. The
dataset is used to evaluate the quality of a summary
by computing per-frame pairwise f-measure

Fs =
1
N

N

∑
i=1

2
pisris

pis + ris
, (6)

where N is the number of ground truth summaries, p
is the precision and r the recall of the summary s being
evaluated. The precision p is computed according to

p =
|ngt ∩ns|
|ns|

(7)

and recall r is computed as

r =
|ngt ∩ns|
|ngt |

, (8)

where ngt is the number of frames in the ground truth
summary and ns the number of frames in the summary
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Table 1: Comparison of approaches for video summarization using SumMe videos (per-frame pairwise f-measure performance
in (6)): average human performance computed against the SumMe ground truth, Gygli et al., random frame selection, and our
keyframe-based summarization (Section 3.2). We also mark the set of parameters for which the best result was achieved.

a(Gygli et al., 2014)
Video Human-avg Gyglia Rand Our Motion SIFT Dist Hist Crit fps

Egocentric Base jumping 0.646 0.304 0.362 0.729 X L2 - med orig
Bike polo 0.640 0.708 0.266 0.553 X Int avg min 24
Scuba 0.561 0.475 0.357 0.651 X corr med max orig
Valparaiso downhill 0.637 0.567 0.333 0.698 X Int avg max orig

Moving Bearpark climbing 0.630 0.358 0.445 0.818 X Int med max orig
Bus in Rock Tunnel 0.552 0.376 0.376 0.588 X Bhat med max 15
Car railcrossing 0.693 0.703 0.272 0.553 X L2 - avg orig
Cockpit Landing 0.630 0.388 0.307 0.596 X L2 avg min 24
Cooking 0.718 0.608 0.275 0.602 X χ avg max orig
Eiffel Tower 0.668 0.632 0.278 0.561 X L2 avg min orig
Excavators river crossing 0.737 0.460 0.350 0.450 X L2 - med orig
Jumps 0.791 0.699 0.244 0.429 X L2 med min 15
Kids playing in leaves 0.734 0.226 0.353 1.000 X corr avg max 15
Playing on water slide 0.574 0.588 0.394 0.668 X χ avg min 15
Saving dolphines 0.601 0.463 0.460 0.930 X Int avg max orig
St Maarten Landing 0.795 0.502 0.229 0.537 X Int avg min orig
Statue of Liberty 0.554 0.578 0.367 0.572 X Int avg max 24
Uncut Evening Flight 0.692 0.536 0.259 0.573 X Int avg max 24
paluma jump 0.769 0.273 0.210 0.648 X χ med min 15
playing ball 0.672 0.432 0.360 0.779 X L2 avg max 15
Notre Dame 0.642 0.653 0.381 0.528 X L2 med med orig

Static Air Force One 0.678 0.649 0.294 0.755 X L2 avg max orig
Fire domino 0.767 0.253 0.282 0.527 X L2 avg max orig
car over camera 0.706 0.759 0.273 0.563 X L2 - max orig
Paintball 0.725 0.582 0.231 0.527 X L2 - avg orig

being evaluated. The higher f-measure values imply
better performance in comparison to human annota-
tion based ground truth summaries.

4.2 Unsupervised Summarization

In the first experiment, we executed our scene de-
tection (Section 3.1) to all SumMe video clips and
then tested variants of the SIFT and motion analy-
sis based keyframe selection (Section 3.2). The re-
sults for the clips are collected into Table 1. The
first finding is that our simple keyframe detection and
video expansion perform surprisingly well being on
par to average human and outperforming the state-of-
the-art learning based method by Gygli et al. (Gygli
et al., 2014). However, it is noteworthy that the best
keyframe selection method varies from one video to
another and their average performances remain be-
tween the random and state-of-the-art learning-based
methods (Figure 8). The second and more impor-
tant finding is that motion features generally per-
form better than region features - motion features pro-
vide the best result for 21 out of 25 clips. The lo-
cal feature based keyframes were better for the fol-
lowing four videos: Bike polo (0.553), St Maarden
Landing (0.537), Statue of Liberty (0.572) and Un-
cut evening flight (0.573), but the best motion based
keyframes achieved similar accuracies: 0.495 (10%
worse), 0.460 (14% worse), 0.563 (2% worse) and

0.555 (3% worse), respectively.
The average performances over all videos for the

local feature and motion based keyframes are compa-
rable except for egocentric camera and static camera
cases for which motion analysis is clearly better (see
Figure 8). However, the average results indicate that
no single keyframe selection method can succeed and
therefore we need to use multiple of them.

4.3 Motion based Keyframe Selection

From the previous experiment, we found that the mo-
tion analysis based keyframes provide better results,
which can be explained by their complementary cue

Table 2: Highest ranked methods for videos recorded with
different types of cameras when using various frame rates.

Camera type
fps egosentric moving static

15 min corre-
lation with
median
histogram

min flow min. L2 dis-
tance to avg
histogram

24 min in-
tersection
with median
histogram

min corre-
lation with
median
histogram

max L2
distance
to median
histogram

orig. min Bhat-
tacharyya
distance
to mean
histogram

min. flow max L2
distance
to median
histogram
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Figure 8: Overall performance using variants of (a) local feature (SIFT) and (b) motion based keyframe selection.
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Figure 9: Comparison of the best motion based keyframes
for the different video types and frame rates.

(motion) to the local regions that were used in scene
detection. From the results in the previous experi-
ment (Table 1, Figure 8) we selected the best motion
analysis methods from each action type: egocentric,
moving and static camera. The best methods with dif-
ferent parameter settings are shown in Table 2 and a
comparison between the highest ranking methods in
Figure 9. Using different frame rates did not yield
significant differences in the results and therefore us-
ing the original frame rate of each video was used in
the remaining experiments as it simplifies the prepro-
cessing step and the composition of the final skim.

4.4 Human-in-the-loop

The previous experiments verified that dynamic video
BoW based scene detection and motion analysis
based keyframe selection provide a powerful process-
ing pipeline for video summarization and they can be
run in online mode. However, the best motion based
keyframes varied from one video to another and there-
fore the online method needs to be run using several
best of them. We selected the three best methods pro-
viding 1-3 keyframes for each scene (less than three

Figure 10: Our weakly supervised and all learning-based
methods fail to detect the subtle movement of the diver clut-
tered by the water fall motion field.

if two or more detect the same frame). By the sim-
ple selection GUI in Section 3.3 users can quickly
select their preferred keyframes. In this experiment,
we tested how well this assisted setting works. We
collected annotations from 5 independent annotators
and report the results in Table 3. It is noteworthy,
that the best human annotator is comparable to the
average human annotator in the SumMe groundtruth
where annotators carefully watched the whole video
and dedicatedly selected parts of the full video to
be included to the final summary. Their supervised
summarization was significantly more time consum-
ing (hours) than ours (from seconds to minutes).

Assisted summarization is clearly superior to the
state-of-the-art learning-based methods by Gygli et
al. (Gygli et al., 2014) and Ejaz et al. (Ejaz et al.,
2013). The average performance of Ejaz et al. is
clearly inferior to ours and SumMe. There was
only one video for which all methods are clearly be-
low average human performance, Paluma jump, and
only one additional video for which our method is
clearly worse than SumMe Uncut Evening Flight.
The main reason for lower performance is obvious -
static keyframes cannot represent dynamic contents
and, in particular, subtle “motion inside motion” that
happens in Paluma jump where there is a large mo-
tion field (water fall) and a distant person jumping
along the water fall (Figure 10). For the evening flight
scene our annotators reported that “the whole video is
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Table 3: Weakly supervised keyframe-based video summarization results including average time used for keyframe selection.
Avg human corresponds to average performance of all SumMe annotators (ideal performance), ours (best) is the best summary
achieved by one of our annotators and ours (avg) is average performance of our annotators.

a(Gygli et al., 2014), b(Ejaz et al., 2013)
Video Avg Human Gyglia Ejazb Rand Our (best) Our (avg) Avg time

Egocentric Base jumping 0.646 0.304 0.487 0.362 0.505 0.413 01:27
Bike polo 0.640 0.708 0.151 0.266 0.594 0.278 01:10
Scuba 0.561 0.475 0.517 0.357 0.403 0.318 00:47
Valparaiso downhill 0.637 0.567 0.541 0.333 0.677 0.492 00:18

Moving Bearpark climbing 0.630 0.358 0.688 0.445 0.630 0.571 00:28
Bus in Rock Tunnel 0.552 0.376 0.312 0.376 0.613 0.451 00:54
Car railcrossing 0.693 0.703 0.124 0.272 0.596 0.339 00:55
Cockpit Landing 0.630 0.388 0.262 0.307 0.779 0.493 01:12
Cooking 0.718 0.608 0.223 0.275 0.705 0.348 00:26
Eiffel Tower 0.668 0.632 0.291 0.278 0.606 0.400 00:55
Excavators river crossing 0.737 0.460 0.100 0.350 0.937 0.546 01:46
Jumps 0.791 0.699 0.398 0.244 0.791 0.351 00:27
Kids playing in leaves 0.734 0.226 0.213 0.353 0.876 0.628 00:18
Playing on water slide 0.574 0.588 0.365 0.394 0.515 0.486 00:37
Saving dolphines 0.601 0.463 0.492 0.460 0.530 0.467 00:16
St Maarten Landing 0.795 0.502 0.671 0.229 0.651 0.346 00:20
Statue of Liberty 0.554 0.578 0.250 0.367 0.467 0.386 00:56
Uncut Evening Flight 0.692 0.536 0.591 0.259 0.249 0.228 00:34
paluma jump 0.769 0.273 0.042 0.210 0.231 0.121 00:09
playing ball 0.672 0.432 0.347 0.360 0.479 0.382 00:37
Notre Dame 0.642 0.653 0.383 0.381 0.533 0.431 01:13

Static Air Force One 0.678 0.649 0.439 0.294 0.755 0.704 00:19
Fire domino 0.767 0.253 0.490 0.282 0.687 0.342 00:22
car over camera 0.706 0.759 0.410 0.273 0.824 0.656 00:34
Paintball 0.725 0.582 0.511 0.231 0.589 0.419 00:35

Figure 11: Keyframes-based summarization cannot prop-
erly capture temporal saliency that might play more crucial
role in videos that are “boring to watch” for users without
personal interest to the content.

boring”, and since no visual cues exist, the tempo-
ral saliency perhaps plays a more important role (Fig-
ure 11). The average results are shown in Figure 12
where single person performance is always superior
to Ejaz et al. and comparable or better to Gygli et al.
- the best human-in-the-loop summary is always su-
perior to all other methods indicating that there is still
significant subjective variation between users.

egocentric moving static all
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Figure 12: The average performances of state-of-the-art
learning-based methods, various variants of our unsuper-
vised and weakly supervised methods and average human
video summaries for SumMe dataset. Our (best single) cor-
responds to the best single user performance.

5 CONCLUSIONS

In this work we evaluated the contribution of each
processing stage in keyframe-based video summa-
rization: scene detection, keyframe selection and
human supervision in selecting the best keyframes.
For scene detection we proposed a dynamic video
BoW method which provides high recall and there-
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fore over segmentation to scenes that capture subtle
changes in the visual content. For keyframe selec-
tion, we found that motion descriptors are superior
over region features used in scene detection which
can be explained by their complementary informa-
tion. However, we also found that average perfor-
mance of keyframe selection methods is substantially
lower than with learning-based state-of-the-arts. We
also found that original frame rate provides good re-
sults. We introduced a GUI for fast (from 9 seconds to
less than two minutes) human-in-the-loop keyframe
selection which provides superior/on par performance
to state-of-the-art learning-based methods while re-
taining user control over personal preferences.
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Farnebäck, G. (2003). Two-frame motion estimation based
on polynomial expansion. In Proceedings of the 13th
Scandinavian Conference on Image Analysis (SCIA).

Gatica-Perez, D., Loui, A., and Sun, M.-T. (2003). Finding
structure in home videos by probabilistic hierarchical
clustering. IEEE Trans. on Circuits and Systems for
Video Technology, 13(6).

Gong, B., Chao, W.-L., Grauman, K., and Sha, F. (2014).
Diverse sequential subset selection for supervised
video summarization. In Conference on Neural In-
formation Processing Systems (NIPS).

Gu, Z., Mei, T., Hua, X.-S., Wu, X., and Li, S. (2007). Ems:

Energy minimization based video scene segmentation.
In ICME.

Guan, G., Wang, Z., Liu, S., Deng, J. D., and Feng, D.
(2013). Keypoint-based keyframe selection. IEEE
Trans. on Circuits and Systems for Video Technology,
24(4).

Gygli, M., Grabner, H., Riemenschneider, H., and
Van Gool, L. (2014). Creating summaries from user
videos. In European Conference on Computer Vision
(ECCV).

Gygli, M., Grabner, H., and Van Gool, L. (2015). Video
summarization by learning submodular mixtures of
objectives. In The IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR).

Gygli, M., Song, Y., and Cao, L. (2016). Video2gif: Au-
tomatic generation of animated gifs from video. In
The IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR).

Han, B., Hamm, J., and Sim, J. (2010). Personalized video
summarization with human in the loop. In IEEE Work-
shop on Applications of Computer Vision(WACV).

Han, B. and Wu, W. (2011). Video scene segmentation us-
ing a novel boundary evaluation criterion and dynamic
programming. In ICME.

Herranz, L., Calic, J., Martinez, J., and Mrak, M. (2012).
Scalable comic-like video summaries and layout dis-
turbance. IEEE Trans. on Multimedia, 14(4).

Hong, R., Yuan, X.-T., Xu, M., and Wang, M. (2010).
Movie2comics: A feast of multimedia artwork. In
ACM Multimedia (ACMMM).

Jiang, Y.-G., Ye, G., Chang, S.-F., Ellis, D., and Loui, A.
(2011). Consumer video understanding: A benchmark
database and an evaluation of human and machine per-
formance. In ACM International Conference on Mul-
timedia Retrieval (ICMR).

Kyperountas, M., Kotropoulos, C., and Pitas, I. (2007).
Enhanced eigen-audioframes for audiovisual scene
change detection. IEEE Trans. on Multimedia, 9(4).
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