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Abstract: Tone mapping operators (TMOs) are used to convert high dynamic range (HDR) images to their low dynamic
range (LDR) versions mostly to display them on standard display devices. The problem with many TMOs
that produce high-quality results is that they are too slow to be used in real-time applications. In this paper, a
new TMO is proposed whose steps are primarily designed to achieve high speed and to be practically imple-
mentable. Under this constraint the secondary goal is to produce low dynamic range images of high quality.
The proposed TMO is based on Naka-Rushton equation used in combination with additional improvements
and it has O(1) per-pixel complexity. The presented and discussed results show that, beside being faster and
more practical, the proposed TMO outperforms many state-of-the-art TMOs in terms of resulting LDR image
quality. To further demonstrate its practicality, the source code written in C++, Matlab, Python, Java, and
HTML+JavaScript is available at http://www.fer.unizg.hr/ipg/resources/color constancy/.

1 INTRODUCTION

The dynamic range of an image is the ratio between its
largest and smallest non-zero intensity. Even though
high dynamic range (HDR) images are used ever
more frequently (Reinhard et al., 2010), most display
devices are currently limited to show only low dyna-
mic range (LDR) images. To display an HDR image
on such devices, its dynamic range has to be com-
pressed in the process called tone mapping by means
of methods called tone mapping operators (TMOs).
Tone mapping usually processes the image luminance
channel, often calculated as the Y channel of the YUV
colorspace. For a pixel with a given RGB representa-
tion p = (R,G,B)T the value of Y is (Koschan and
Abidi, 2008):

Y = 0.299R+0.587G+0.114B. (1)

Alternative luminance channels are found in HSV ,
HSL, and Lab colorspaces or custom definiti-
ons (Banić and Lončarić, 2014b; Nguyen and Brown,
2017). If the luminance value L of p is tone mapped
to L′, then p is changed to

p′ =
L′

L
p =

(
L′

L
R,

L′

L
G,

L′

L
B
)T

. (2)

If a TMO processes intensities based only on
their value and regardless of their location, then it
is a global TMO, otherwise it is a local one. Ex-
amples of global TMOs include application of Ste-
ven’s law (Tumblin and Rushmeier, 1993; Chiu et al.,
1993; Ward, 1994), imitation of human response to
light (Schlick, 1995; Pattanaik et al., 2000; Drago
et al., 2003; Reinhard and Devlin, 2005), histogram
adjustment (Larson et al., 1997), and sigmoidal con-
trast enhancement (Braun and Fairchild, 1999). For
local TMOs examples include application of aniso-
tropic diffusion (Tumblin and Turk, 1999), bilateral
filtering of the image base layer (Durand and Dorsey,
2002), photographic practice (Reinhard et al., 2002),
luminance gradient field manipulation (Fattal et al.,
2002; Mantiuk et al., 2006), Retinex theory (Mey-
lan and Susstrunk, 2006; Banić and Lončarić, 2014a;
Banić and Lončarić, 2016). Global TMOs are fas-
ter and usually simpler, but local TMOs tend to give
results of higher quality (Kuang et al., 2004; Kuang
et al., 2007; Urbano et al., 2010). The problem with
many TMOs that produce high-quality results is that
they are too slow to be used in real-time applications.
In this paper a new TMO is proposed whose steps
are primarily designed to achieve high speed and to
be practically implementable. Under this constraint
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the secondary goal is to produce low dynamic range
(LDR) images of high quality. The proposed TMO
is based on Naka-Rushton equation used in combi-
nation with additional improvements and it has O(1)
per-pixel complexity. The presented and discussed re-
sults show that, beside being faster and more practi-
cal, the proposed TMO outperforms many state-of-
the-art TMOs in terms of resulting LDR image qua-
lity. To further demonstrate its practicality and sim-
plify its usage by interested parties, the publicly avai-
lable source code of the proposed TMO is written in
several programming languages including JavaScript
with an HTML interface so that it can be used even
with only a browser.

The paper is structured as follows: in Section 2
the foundations for the new TMO are laid, in Secti-
ons 3 the TMO is extended to a local one, in Section 4
experimental results are presented and discussed, and
Section 5 concludes the paper.

2 FLASH - STARTING
GLOBALLY

2.1 Initial Tone Compression

Recently a high quality two-phase TMO called Puma
with O(1) per-pixel complexity has been propo-
sed (Banić and Lončarić, 2016). During its first phase
the actual tone compression is performed globally by
means of a method called Flash. It is fast and ef-
ficient since it uses a simple to calculate curve, but
the resulting LDR image is crude and of low quality.
The second phase consists of enhancing this image by
applying Smart Light Random Memory Sprays Re-
tinex (SLRMSR) (Banić and Lončarić, 2015; Banić
and Lončarić, 2017), a brightness adjustment method,
whose parameters are set to specifically chosen values
for this purpose. SLRMSR produces the final high
quality LDR image and it has O(1) per-pixel com-
plexity. Despite good overall theoretical complexity,
Puma is not especially fast due to a large constant
number of steps per pixel used in SLRMSR. Additio-
nally, SLRMSR has several parameters that need to be
tuned for various tone mapping effects. Hence, Puma
does not fully abide by the constraints laid out in the
introduction. Nevertheless, if SLRMSR is left out,
Flash can still be used as a good foundation for a de-
sired new TMO because of its effectiveness, while for
the enhancement of its results a more efficient met-
hod has to be found. The core of Flash is the Naka-
Rushton equation (Shapley and Enroth-Cugell, 1984)
given in the form

L′ =
L

Lw
L

Lw
+a

=
L

L+aLw
(3)

where L is the initial luminance, a is a scaling pa-
rameter, and Lw is the image key, which is usually
approximated by calculating the geometric luminance
mean (Ward, 1994; Reinhard et al., 2002)

Lw = exp

(
1
N ∑

i
ln(L(i)+ ε)

)
(4)

where N is the number of pixels, L(i) is the i-th pixel
luminance, and ε is a small value to avoid logarithm of
zero. By being a special case of the perceptually ba-
sed Michaelis-Menten equation (Dowling, 1987), the
Naka-Rushton equation is to some degree inherently
also perceptually based, which makes Flash theoreti-
cally sound and even more attractive. To obtain high
quality results, Flash uses the V channel of the HSV
colorspace as the luminance channel where V is cal-
culated as V = max{R,G,B}. Flasha denotes the ap-
plication of Flash for a given value of a.

2.2 Leap - Simple Image Enhancement

The next step is to enhance the crude results of Flash
in a way that abides by the constraints laid out in
the introduction. A good starting point in designing
such an enhancement procedure partially motivated
by (Huang and Mumford, 1999) is to look for simple
properties common to many tone mapped LDR ima-
ges of high quality. Once some of these properties
are found, their incorporation into the results of Flash
should hopefully increase their quality.

The set of high quality tone mapped LDR ima-
ges needed to look for such properties was created
by turning the HDR images available at (NTUST,
2015) and (Fairchild, 2015) into LDR images by
using the procedure described in (Ma et al., 2015).
This procedure takes an initial LDR version of a gi-
ven HDR image and changes it iteratively in order to
increase the value of TMQI-II (Ma et al., 2015), an
adapted version of Tone Mapped image Quality In-
dex (TMQI) (Yeganeh and Zhou, 2013) that evaluates
structural fidelity and statistical naturalness of a tone
mapped image by using the initial HDR image as a
reference. Although the procedure is far too slow to
be used in practical real-time systems, its final results
are by definition of high quality. The procedure was
iteratively applied to HDR images until the TMQI-II
value of an image was very close to the maximum of
1 or the number of iterations reached 500.

The analysis of different properties across all of
the obtained high quality LDR images has shown that
the arithmetic mean of the grayscale image values is
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a stable property with a low standard deviation over
the images. For the first dataset (NTUST, 2015) the
mean of the images’ grayscale means was 100.57 with
a standard deviation 3.85 and for the second data-
set (Fairchild, 2015) these values were 100.04 and
5.12, respectively. This suggests that an appropriate
mean grayscale value could also assure a higher qua-
lity. One of the simplest ways to achieve this is to
multiply a given image by a scalar in order to obtain
a desired mean grayscale value i.e. to jump from the
initial mean grayscale to a given one. In Section 4.2
it is shown that such a procedure may indeed signi-
ficantly increase the image quality of a given LDR
image. For easier notation this procedure is named
Leapg with g being the target mean grayscale. For
some low key images their high intensity pixels may
appear ”burned” after increasing their brightness even
further by applying Leap, but as explained in (Rein-
hard et al., 2002), this can actually be desirable. As a
matter of fact, in (Reinhard et al., 2002) an extension
of Eq. (3) has been proposed for exactly that purpose.
The pseudocode for Leap is given in Algorithm 1. In
the Section 4.2 it is shown that Flash combined with
Leap is a fast and high quality global TMO.

After carrying out subjective assessment of a large
number of LDR images obtained by applying Flash
and Leap, it was concluded that round default values
for a and g that already produce visually appealing
results are 10 and 110, respectively.

Algorithm 1: Leap.

Input: image I, target mean grayscale g, upper
bound U

1: m =CalculateMeanGrayscale(I)
2: for all pixel i in I do
3: p = I(i)
4: p′R = max

( g
m pR,U

)

5: p′G = max
( g

m pG,U
)

6: p′B = max
( g

m pB,U
)

7: R(i) = p′
8: end for

Output: image R

3 STORM - CONTINUING
LOCALLY

3.1 Extension to a Local TMO

Global TMOs are fast, but for results of the highest
quality local TMOs are used (Kuang et al., 2004; Ku-
ang et al., 2007). Hence a natural direction of further
Flash improvement is to extend it to a local version.

One of the common approaches for such an extension
is to perform tone mapping with pixel-based parame-
ters, which are determined by looking only at the local
area surrounding a given pixel instead of at the whole
image (Reinhard et al., 2010). There is evidence that
early stages of visual processing can be modelled by
filtering of retinal image using filters of different sca-
les (Wilson, 1991) and similar approaches have been
used in various tone mapping and image enhancement
methods (Peli, 1990; Jobson et al., 1997; Pattanaik
et al., 1998). Thus the local extension of Flash propo-
sed here does the same thing. If R and C are the num-
ber of image rows and columns, respectively, then let
d be the smaller of these two i.e. d = min{R,C}. For
a pixel i Flash is applied to M squares of size s jd×s jd
with pixel i in their center where s j is the scaling fac-
tor for the j-th square. If k j is the j-th square and

F
(k j)
a (i) the value of luminance of pixel i after ap-

plying Flasha to k j with i in its center, then the final
luminance value for i is obtained as

S(i) =
1
M

M

∑
j=1

F
(k j)
a (i). (5)

The main computation cost of Eq. (5) is in calcula-
ting Eq. (4) for each i and k j, which is effectively
done by means of convolution over the luminance lo-
garithms. Such an approach was motivated by the
multiscale Retinex (MSR) algorithm (Jobson et al.,
1997), but there are two differences. First, while
MSR uses Gaussian kernels, having square kernels in
Eq. (5) allows faster filtering by using a single inte-
gral image (Crow, 1984), which also brings the per-
pixel complexity of Eq. (5) to O(M). Second, unlike
in MSR, there are no weights in Eq. (5) for individual
kernels because using them has shown no significant
benefit in terms of quality. The contribution of vari-
ous kernels is shown in Fig 1. Like with Flash, higher
values of a for Storm give better contrast in the final
image as it is shown in Fig. 2. Since the proposed
local TMO applies Flash multiple times and multiple
flashes often occur during storms, it is named Storm
for easier notation, while its application with n speci-
fied scaling factors and value of a for the underlying
Flash is denoted Storm(s1,...,sn)

a . The pseudocode for
Storm is given in Algorithm 2.

3.2 Properties

Fig. 1 shows how more kernels make more details vi-
sible. With well chosen kernels Storm outperforms
Flash in terms of quality, but at the cost of the additi-
onal memory that is needed for the integral image.

In terms of complexity, Storm is also more com-
plex than Flash. Firstly, Storm calculates the integral
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(a) (b) (c) (d) (e)

Figure 1: Applications of Storm with different kernels followed by and Leap110 and gamma correction: (a) Storm(1)
20 ,

(b) Storm(1, 1
4 )

20 , (c) Storm(1, 1
4 ,

1
16 )

20 , (d) Storm(1, 1
4 ,

1
16 ,

1
64 )

20 , and (e) Storm(1, 1
4 ,

1
16 ,

1
64 ,

1
256 )

20 .

(a) (b)

Figure 2: Results of application of (a) Storm(1, 1
4 ,

1
16 )

1 and (b)

Storm(1, 1
4 ,

1
16 )

20 to the same image.

Algorithm 2: Storm.

Input: image I, brightening parameter a, M kernel
sizes s j, upper bound U

1: for all pixel i in I do
2: p = I(i)
3: L = max{pR, pG, pB}
4: L′ = 0
5: for j = 1 to M do

6: L′ = L′+F
(k j)
a (i)

7: end for
8: R(i) = L′

L p
9: end for

10: R =U ·R/max(R(:))
Output: image R

image in O(1) per-pixel complexity. Next, to each
pixel Eq. (3) is applied M times and each time in O(1)
per-pixel complexity by using the integral image. To-
gether this gives O(M) per-pixel complexity, which

seemingly violates the constraint set up in the intro-
duction. However, M is supposed to be very small
because already for M ∈ {2,3,4} the results are of
high quality. Additionally, since M can be considered
a hyperparameter, once its value is chosen, it does not
change that often so it is effectively a constant. Thus,
taking all this into account, Storm can also be regar-
ded as having O(1) per-pixel complexity. Speed tests
in Section 4.2 also corroborate such reasoning.

After carrying out subjective assessment of a large
number of LDR images obtained by applying Storm
and Leap, it was concluded that the combination with
round default values that already produce visually
appealing results without showing unrealistically too

much details is Storm(1, 1
4 ,

1
16 )

20 +Leap110.

4 EXPERIMENTAL RESULTS

4.1 Image Quality Metrics

The best way to the assess the quality of tone map-
ped images would be to carry out subjective percep-
tual studies. However, such studies were omitted here
because they are time-consuming, they require spe-
cial environment and carefully calibrated equipment,
and they are not easy to reproduce. Instead, two
objective measures are used: Feature Similarity In-
dex For Tone-Mapped images (FSITM) (Ziaei Naf-
chi et al., 2015) and the already mentioned TMQI.
TMQI-II was not used here because while images
with a high TMQI-II are usually of high quality, a
lot of images with a low TMQI-II are actually of
high quality as well. This is because TMQI-II is
too susceptible to mean grayscale value as shown
in (Banić and Lončarić, 2016). FSITM is based on
local phase information of images and it was shown
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(a) (b) (c)
Figure 3: Pairwise comparison between the results of Reinhard’s local TMO (Reinhard et al., 2002) on the left and
Storm+Leap on the right; for Reinhard’s TMO its Luminance HDR implementation with default parameter values was used.

Table 1: Mean TMQI and FSITMG TMQI obtained on images from (Ward, 2015) with cumulative execution time.

TMO TMQI FSITMG TMQI t(s)
Ashikhmin (Ashikhmin, 2002) 0.6620 0.7338 225.23

Drago (Drago et al., 2003) 0.7719 0.8158 30.69
Durand (Durand and Dorsey, 2002) 0.8354 0.8405 225.14

Fattal (Fattal et al., 2002) 0.7198 0.7810 64.78
Mantiuk (Mantiuk et al., 2006) 0.8225 0.8266 88.03
Mantiuk (Mantiuk et al., 2008) 0.8443 0.8494 36.20

Pattanaik (Pattanaik et al., 2000) 0.6813 0.7635 46.91
Reinhard (Reinhard et al., 2002) 0.8695 0.8581 33.41

Reinhard (Reinhard and Devlin, 2005) 0.6968 0.7679 30.01
Flash10 0.8072 0.8315 21.19

Flash10+Leap110 0.8755 0.8625 21.26

Storm(1, 1
4 ,

1
16 )

20 0.7675 0.8004 24.35

Storm(1, 1
4 ,

1
16 )

20 +Leap110 0.8782 0.8551 24.59

to give better results than TMQI. If combined with
TMQI, it performs a better assessment than both
TMQI and TMQI-II and this combination is deno-
ted as FSITMC TMQI where C is a color channel. In
this paper the green (G) color channel is used since it
was shown to give good results (Ziaei Nafchi et al.,
2015). All these measures are in range [0,1] with a
higher number meaning higher quality. These metrics
are well established, easily reproducible, they have a
sound theoretical background, their values can be cal-
culated fast and automatically, and, all of them were
shown to be well correlated with subjective measures.

4.2 Tone Mapping Quality and Speed

The quality of the results of the proposed TMO was
evaluated by applying them to images in the HDR da-
taset given at (Ward, 2015). For TMOs with fixed
parameters this dataset is challenging since it con-
tains HDR images from different sources including
artificially generated ones. Table 1 shows the obtai-
ned values of objective quality measures for the pro-
posed and existing TMOs with default parameter va-
lues. For results of other TMOs the open source Lu-

minance HDR software was used like in (Ma et al.,
2015). This was also an opportunity to compare the
proposed TMOs to easily available implementations
of other well-known TMOs. The results for Flash dif-
fer from the ones given in (Banić and Lončarić, 2016)
because here the gamma correction was carried out
after tone mapping as it is supposed to be done. The
values of objective metrics are higher for Flash and
Storm than for all other tested TMOs and although
the differences are small, they still demonstrate the
quality of the proposed TMOs. Since Reinhard’s lo-
cal TMO (Reinhard et al., 2002) is considered to be
among the best, in Fig. 3 its results are compared to
the results of Storm.

Table 1 also shows that Flash and Storm are faster
than other TMOs, which makes them good candidates
for real-time applications.

5 CONCLUSIONS

A new TMO has been proposed in a global and local
variant under the constraints of O(1) per-pixel com-
plexity and a practical design. Both variants were
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shown to outperform state-of-the-art TMOs in terms
of resulting LDR image quality even though obtaining
high quality was only their secondary goal. Another
important fact is that the proposed TMO was shown
to be significantly faster than other TMOs. Its success
demonstrates how having implementation constraints
during the design phase of a TMO can nevertheless
lead to fast and practical TMOs that also produce re-
sults of the highest quality. Additionally, the steps
of the proposed TMO have their roots in the results
of perceptual experiments. Future work will consider
solutions that are less dependant on structures such as
integral images in order to decrease TMO’s memory
consumption and to make it more hardware-friendly.
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