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Abstract: Spatial heterogeneity of urban expansion and macro-scale influence of socioeconomic development are the 

two main problems in urban-expansion modelling. In this study, we used the SLEUTH-3r model to simulate 

urban expansion at a fine scale (30 m) for a large urban agglomeration (22000 km2) in north-western China. 

Multiple spatial constraint factors were integrated into the model through Ordinary Least Regression and 

Binary Logistic Regression to simulate the spatial heterogeneity in urban expansion. A critical 

parameter—the diffusion multiplier (DM)—was used to simulate the macro-scale influence of socioeconomic 

development in the urban model. These two methods have greatly enhanced the ability of the SLEUTH-3r 

model to simulate urban expansion with high heterogeneity, and adapt to urban growth driven by 

socioeconomic development and government policy. 

1 INTRODUCTION 

Urbanization, an unprecedented global phenomenon, 

has significantly altered natural landscapes and 

human lives (Zhang et al., 2012). Urban expansion, 

a significant performance of urbanization, has 

brought numerous threats to ecosystem, such as loss 

of natural resources (Delphin et al., 2016), climate 

change (Singh et al., 2017), and biodiversity 

decrease (Haase et al., 2012). Therefore, it is critical 

to predict urban expansion patterns for sustainable 

development, especially in metropolitan areas, 

which form the basic unit in future socioeconomic 

development (Poyil and Misra, 2015). 

Urbanization is a dynamic process influenced by 

geophysical, environmental, demographic, and 

social factors at multiple scales (Akın et al., 2014). 

Complicated interactions between these factors, and 

associated temporal changes lead to spatial and 

temporal heterogeneity in urban expansion (Li et al., 

2017). A number of techniques have been developed 

to simulate urban expansion, ranging from static 

models based on gravity theory and optimization 

mathematics to dynamic models (Berling-Wolff and 

Wu, 2004). In particular, the cellular automata (CA) 

model is widely used in urban simulation for its 

simplicity, flexibility, intuitiveness, and transparency 

in modeling complex systems (Santé et al., 2010). 

However, the CA model often fails to capture the 

change magnitude of urban expansion driven by 

political and economic strategies (Qi et al., 2004). 

Despite its successful application in many cities, the 

SLEUTH model is also a CA model that fails to 

consider the macro-scale driving influence of 

socioeconomic development (Berberoğlu et al., 2016, 

Chaudhuri and Clarke, 2013). Since urbanization in 

China is highly driven by government policies, it is 

essential to integrate these macro-scale control 

factors into urban model. 

The SLEUTH model has been always used to 

simulate urban land distribution in a single city at 

coarse resolution (Chaudhuri and Clarke, 2013), but 

not for large urban agglomerations consisting of 

several cities with high spatial heterogeneity (Jat et 

al., 2017). Several approaches have been developed 

to evaluate the effects of driving forces on urban 

expansion, such as binary (Haregeweyn et al., 2012), 

multiple linear (Gao and Li, 2011), and 

geographically-weighted regressions (Su et al., 

2012), analytic hierarchy process (Thapa and 

Murayama, 2012), and logistic regression (Long et 

al., 2012). Among them, multiple linear and binary 
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regression, both reliable and easy to manipulate, 

were selected to integrate multiple factors into the 

SLEUTH model to simulate urban spatial expansion 

with high heterogeneity (Liu et al., 2014). 

To date, most of urban studies in China focused 

on fast-growing coastal and major interior cities; 

however, urban growth in inner northwestern China, 

especially in large urban agglomerations, has not 

been well described. Our study will help to bridge 

the gap, as the study area is a large city belt in 

northwestern China. The main objectives of our 

study were to: (1) identify factors that control urban 

expansion, and quantify their impacts, (2) simulate 

urban expansion with high spatial heterogeneity, and 

(3) integrate the macro-scale driving influence of 

socioeconomic development into model to simulate 

urban expansion with proper magnitude. 

2 STUDY AREA AND METHODS 

2.1 Study Area 

The City Belt along the Yellow River in Ningxia 

(CBYN), located in northwestern China, is a large 

urban agglomeration consisting of four cities: 

Shizuishan, Yinchuan,  Wuzhong and  Zhongwei 

(Fig. 1). The study area, with Tengger desert in the 

west, the Maowusu desert in the east, and the Ulan 

Buh desert in the north, is one of the core areas of 

the west Longhair-Lanxin xian economic belt. Since 

2000, socioeconomic development in this area has 

been deliberately enhanced by the government 

through West Development Project. Gross Domestic 

Product (GDP) increased from 5045.93 million Yuan 

in 1990 to 223,550.29 million Yuan in 2013, with an 

annual growth rate of 188.27%, while population 

increased at an annual rate of 2.75 %. (Ningxia 

Statistical Yearbook, 1990-2014). Growing industry 

and commerce in the urbanized areas provide more 

work opportunities, and attract population from the 

rural areas, further promoting urbanization.  

2.2 Data Collection and Processing 

Twelve scenes of Landsat MSS/TM/ETM+/OLI 

images, covering the study area in 1989, 1999, 2006 

and 2016, were used as the primary resource data 

(involving path/row of 129/33, 129/34 and 130/34). 

Images were preprocessed in ENVI 5.3, including 

geographical registration, radiometric calibration 

and atmospheric correction, and then were 

exportedinto eCognition 8.7 for an object-based 

classification. Reference samples  were  identified 

in  Google  Earth  and  field survey to examine 

classification accuracy.  The  Kappa  coefficients 

 

Figure 1: Location and administrative division of the study area—Shizuishan, Yinchuan, Wuzhong and Zhongwei:a) the 

study area in China; b) the study area in Ningxia Hui Autonomous Region; c) topography and the city center of Shizuishan, 

Yinchuan, Wuzhong and Zhongwei. 
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(consistency test between classification results and 

reference samples) reached 0.93, 0.89, 0.91 and 0.87 

in 1989, 1999, 2006 and 2016, respectively, thus the 

results were reliable. 

The ASTER DEM data (version 4.1) 

(https://search.earthdata.nasa.gov/) was resampled to 

30 m in ArcGIS 10.3, and used to generate slope and 

hillshade layers. Transportation layers were 

extracted from satellite images and by visual 

interpretation using Google Earth. All the input 

layers were resampled for 30 m in ArcGIS 10.3, and 

then imported into Photoshop CS6 to be exported in 

GIF format. Socioeconomic data, such as population 

and GDP, was obtained from Ningxia Statistical 

Yearbook (1990-2014), compiled by the statistical 

bureau of Ningxia Hui Autonomous Region and 

Ningxia Survey Office of National Statistical Bureau, 

and published by China Statistics Press. 

2.3 Overview of the SLEUTH Model 

The SLEUTH model (Clarke et al., 1997) is 

designed to simulate urban growth and land use 

change. The name includes the first letters of the 

input layers: slope, land cover, excluded, urban, 

transportation, and hillshade. The model simulates 

urban expansion with four rules: spontaneous 

growth that simulates the random urbanization, new 

spreading center growth that establishes new urban 

centers, edge growth and road influenced growth. 

The model behavior are controlled by five growth 

coefficients (diffusion, breed, spread, road gravity, 

and slope) that range from 0 to 100, indicating the 

relative contribution of each growth types for whole 

urban growth. Moreover, self-modification is applied 

to better predict rapid or depressed urban growth. 

Model calibration allows users to obtain parameters 

describing past urban expansion, while prediction 

helps forecast urban growth and land use change 

under different scenarios. 

Due to the large amounts of input data, we 

selected the 3r-version of the SLEUTH model 

(SLEUTH-3r) for our study; it has more efficient 

utility of computer memory and higher simulation 

accuracy of dispersed settlements (Jantz et al., 2010). 

Two new accuracy parameters—area fractional 

difference (AFD) and clusters fractional difference 

(CFD)—were designed in SLEUTH-3r model to 

compare urban pixels and clusters between 

simulated and real maps. Besides that, Lee-Sallee 

metric, the shape index of spatial fit between actual 

urban map and predicted one, has also been used in 

our study to examine the simulation accuracy. 

2.4 Simulating Spatial Heterogeneity 

To address spatial heterogeneity in urban expansion, 

we first established a suitability system of factors 

driving urban growth from past studies (details in 

2.4.1 below). Second, we detected the spatial 

relationships between factors and urban expansion 

through the Ordinary Least Square (OLS) regression 

model in ArcGIS 10.3 (details in 2.4.2 below). 

Finally, suitability for urban expansion was 

calculated and mapped through Binary Logistic 

Regression with weighted factors derived from the 

former step (details in 2.4.3 below). Then the 

suitability map was transformed into the excluded 

layer for the SLEUTH-3r model. 

2.4.1 Suitability-Factor System 

Different types of explanatory variables have been 

identified (Gao and Li, 2011, Su et al., 2012), and 

categorized based on physical conditions, ecological 

protection, and socio-economic development (Table 

1). Ecological factors are protected from urban 

expansion and are assigned value of 100 in the 

excluded layer. Slope factor is not included in the 

system, as it is already in SLEUTH-3r model. All 

variables were first normalized into the range of 0-1 

to eliminate the effect of magnitude. Based on 

correlation analysis, multicollinearity did not exist 

among the explanatory variables in the subsequent 

regression analysis. 

Table 1: Factors influencing urban development. 

Type Factor  Code 

Physical  Elevation  XE 

Geomorphic type XM 

Ecological Water areas XW 

National natural reserves XN 

Socio-economic Growth rate of GDP XG 

Growth rate of population XP 

Distance to city centers XD1 

Distance to county centers XD2 

2.4.2 Weights Estimation  

OLS, which could minimize the sum of squared 

vertical distance between observed variables and 

simulation values (Gao and Li, 2011), was used to 

explore the relationships between urban expansion 

and its driving factors, as follows: 
 

Z=C+ ∑ wiXin +er  (1) 
 

Where Z was the dependent variable, C was the 

constant parameter; wi was the parameter of 

independent variable Xi; er was the error term. 
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Because non-urbanized area greatly surpassed 

urbanized area in CBYN, we randomly selected 

5,000 points in each area, with a distance between 

each point > 300 m to minimize the impacts of 

spatial autocorrelation. The “extract multi values to 

points” tool in ArcGIS 10.3 was used to obtain the 

values of driving parameters and urban expansion (0 

for non-urbanized area and 1 for urbanized area) at 

each point. They were then used to establish the 

OLS model in ArcGIS 10.3. 

2.4.3 Generating Suitability Maps  

If the probability of a cell suitable for urbanization 

followed the logistic curve described in Eq. (2), the 

possibility of a cell being urbanized was estimated 

with Eq. (3): 
 

ln
pi

1-pi

=C+ ∑ wiXi
n
i=1   

 

(2) 

p
i
=

1

1+exp(-C- ∑ wiXin )
  (3) 

 

Where pi was the probability of a cell becoming 

urbanized, Xi was the driving factor for urban 

expansion, wi was the coefficient of each factor 

derived from OLS, and C was a constant. 

2.5 Socioeconomic Factors in the Model 

In SLEUTH-3r model, spontaneous urban growth 

was the foundation of other growth types, and 

mainly determined by a diffusion multiplier (DM), 

diffusion coefficient (DC), and the size of input 

images (Jantz et al., 2010). Thus DM could generally 

determine the simulation magnitude of urban growth 

in model, and allowed the integration of 

socioeconomic development into the model.  

The DM value was 0.005 in the original version, 

and 0.015 in the 3r version of the SLEUTH model, 

and neither could generate enough urban growth 

(AFD ranging from -0.847 to -0.06). Thus, the first 

problem was obtaining an appropriate DM. As 

discussed above, DM was related to simulation 

magnitude, so we explored the relationship between 

DM and simulation magnitude of urban area and 

cluster (AFD and CFD) to find appropriate DM. 

We selected the annual growth rates of GDP and 

population as the representatives for socioeconomic 

development, and generated an indicator (SE) using 

factor analysis in SPSS 22.0. Then we explored the 

relationship between SE and DM through regression 

analysis in SPSS 22.0, to use DM representing 

different socioeconomic development conditions. 

 

3 RESULTS 

3.1 Urban Expansion Suitability Map 

Multiple linear regression analysis processed in 

SPSS 22.0 had the same results as OLS in ArcGIS 

10.2 (Eq. (4)). The six factors had different effects 

on urban expansion, indicated by the coefficients of 

each factor. And the influence of geophysical factors 

was greater than that of socioeconomic factors. The 

regression model was as follows (Eq. (4)): 
 

ln (
p

i

1-p
i

) =1.53-1.32×XE-0.4×XM-0.51× 

XD1-0.53×XD2+0.05×XG+0.02×XP  

(4) 

 

Where pi was the urbanization probability of each 

cell. 

Based on binary logistic regression, a probability 

map for urban suitability was generated (Fig. 2a). 

Then, we converted it to an excluded layer that 

contained areas ranging from unsuitable for 

urbanized (value=100) to suitable (value=0) in 

SLEUTH-3r model using the “map algebra” tool in 

ArcGIS 10.3 (Fig. 2b). The transformation equation 

was as follows (Eq. (8)): 
 

RE=(
MAX(Rsuit)-Rsuit

MAX(Rsuit)-MIN(Rsuit)
)×100] (5) 

 

Where RE and Rsuit were the raster maps of excluded 

layer and suitability map, respectively. 

 

Figure 2: Suitability map for urbanization probability (a) 

and excluded map for SLEUTH-3r model (b). 

3.2 Determination of DM 

We explored the relationships between AFD/CFD 

and DM in the calibration mode of the model with 

the five growth coefficients ranging from 0 to 100 
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and an increment of 50. We found that the minimum 

values of AFD and CFD were almost the same 

(-0.847 and -0.73) under different DM, while the 

maximum value increased with an increase in DM. 

The relationships between the maximum values of 

AFD/CFD and DM were established through 

regression analysis in SPSS 22.0. The equations and 

simulated curves were as follows (Eq (6) with R2 of 

0.975, Eq (7) with R2 of 0.997, and Fig. 3)): 

AFDmax=3.323+0.79×ln(DM) (6) 

      CFDmax=2.69+202.67×DM-188.45×DM
2  

                       +71.49×DM
3  

(7) 

 

Figure 3: Maximum and minimum values of AFD and 

CFD over increasing DM. 

From the testing data shown in figure 3, three 

values of DM—0.03/0.04/0.05—were considered to 

have the largest opportunity to simulate sufficient 

amount of urban area with fewer clusters. We 

calibrated the model with the three DM values (Table 

2), and 0.04 was the most suitable value for DM in 

our study. Under DM of 0.04, the maximum value of 

AFD was 0.783. As discussed in Section 2.5, 0.783 

of the maximum value of AFD was appropriate for 

DM determination. 

Table 2: Coarse calibration performance of the model under 

different DM. 

DM AFD CFD Lee-Sallee 

0.03 0.002 6.9 0.301 

0.04 0.001 5.162 0.351 

0.05 0.001 6.283 0.309 

3.3 The Socioeconomic Factor 

The socioeconomic development indicator (SE) was 

generated with the following equation (Eq. (8), 

Section 2.5):  
 

     SE=8.23×10-7×GDPS+2.74×10-5×PS-0.94  (8) 
 

We obtained 30 values of DM through the method 

discussed in Section 3.2 for the five different areas 

(4 cities and the whole region) in the six periods 

(1989-1999, 1999-2006, 2006-2016, 1989-2006, 

1999-2016, and 1989-2016). The relationship 

between DM and SE was estimated with regression 

analysis in SPSS 22.0 (Eq. 9) with a R2 of 0.981). 

Therefore, SLEUTH-3r model could predict urban 

expansion driven by different socioeconomic 

development conditions by setting the DM value. 
 

   DM=0.083×SE+0.043×SE2-0.011×SE3+0.056  (9) 

3.4 Simulation Accuracy of the Model 

The SLEUTH-3r model was calibrated to find a 

combination of coefficients that best simulated 

historical urban expansion through the “brute-force” 

method (Silva and Clarke, 2002). The selection 

criterion used the minimum absolute value of CFD 

and AFD of < 0.05. Then the model was initialized 

in 1989 and ran in predict mode to 2016, with the 

coefficients derived from calibration. In the 

prediction mode, we utilized two scenarios, in which 

one (S1) came from the suitability map, and the other 

(S2) coded water with 100 and other land with 50 as 

comparison. 

To evaluate the simulation accuracy, we 

calculated the Kappa metric and spatial topology for 

the predicted maps (Table 3). The Kappa metric 

(consistency between predicted and real maps) in 

2016 under S1 reached 0.77, while the one under S2 

was 0.56, indicating that S1 could significantly 

improve model accuracy. Urban spatial topology can 

further describe the simulation accuracy 

(Kantakumar et al., 2016), and was classified based 

on proportion of built-up area (using 30% and 50% 

as a boundary) within the neighborhood of 3×3 cells 

through “block statistics” tool in ArcGIS 10.3. 

Prediction under S1 accurately simulated the area of 

the urban core, 74.82% of the real urban fringe, but 

172.86% of the scattered settlement; this indicated 

that most of the simulation error occurred in 

scattered settlements. Under S2, the main error 

occurred in simulating the urban core (at 78.29%) 

and urban fringe (at 62.38%). Overall, integrating the 

effects of multiple drivers into the model can greatly 

enhance the ability to simulate urban expansion with 

high spatial heterogeneity. 

Table 3: Urban spatial pattern predicted in 2016 under 

different scenarios. 

 Urban 

area 

(km2) 

Kappa Urban topology type 

Urban 

core 

(km2) 

Urban 

fringe 

(km2) 

Scatter 

settlement 

(km2) 

S1 1205.81 0.77 1165.67 146.25 349.05 

S2 931.51 0.56 911.66 121.94 212.81 

Real 1182.123 — 1164.51 195.48 201.93 
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4 DISCUSSION 

Documentation and source code of the SLEUTH 

model have been publicly available, thus interested 

researchers were able to modify and improve it. 

Several successful efforts reduced computation time 

and increased model efficiency, including OSM 

(Charles Dietzel, 2007), pSLEUTH (Guan and 

Clarke, 2010), SLEUTH-3r (Jantz et al., 2010), and 

SLEUTH-GA (Shan et al., 2008), among others. 

These modifications helped to overcome some of the 

limitations, enhance model applicability, and provide 

suggestions for more accurate simulation (Chaudhuri 

and Clarke, 2013). Using the SLEUTH-3r model, we 

simulated urban expansion in CBYN during 

1989-2016. We confronted three main problems. 

First, the determination methods for DM were not 

appropriate for our study as they could not generate 

sufficient urban growth area. Second, urban growth 

in China, largely driven by socioeconomic 

development at macro-scale, could not be effectively 

expressed in this model. Third, spatial heterogeneity 

in urban growth, such as city and villages in a large 

urban agglomeration, was an important source of 

simulation error that needed to be addressed. 

4.1 Parameters Driving Urban Growth 

Similar to most studies that analysed urban 

expansion, the factor system we built in this study 

was incomplete, due to lack of data and the presence 

of unknown urban-growth driving factors (Hietel et 

al., 2007). For example, urban planning has been 

shown to greatly affect urban expansion (Long et al., 

2012), however, it has not been included in this 

study due to lack of data. The incomplete picture of 

the factors driving urbanization was one source of 

simulation error.  

In 1989-2016, physical factors impacted urban 

expansion more than socioeconomic conditions did 

at spatial scale. Elevation and morphology exhibited 

significantly negative effects on urban expansion in 

CBYN, while low elevation and flat areas were more 

suitable for urban growth. Previous studies 

suggested that the effects of elevation on urban 

expansion depended on the topography (Li et al., 

2013). Positive effects of elevation on urban 

expansion have been shown in Lagos and Nigeria, 

where low elevation areas necessitated drainage, 

possibly increasing the cost of building construction 

(Dewan and Yamaguchi, 2009). In CBYN, areas of 

high elevation were more likely to be situated in the 

mountains, where costs of development were higher 

than at low elevations.  

The significant relationships between urban 

expansion and social factors of proximity to urban 

centers (negatively correlated), and growth rate of 

GDP and population (positively correlated) were 

consistent with previous findings (Luo and Wei, 

2009, Poelmans and Rompacy, 2009). Moreover, the 

effects of proximity exceeded those of economic 

development and population growth. This was 

mainly due to the coarser resolution of census data 

compared with other factors. The spatial 

heterogeneity of urban and suburban areas could not 

be expressed by GDP or population data, indicating 

that data at finer-scales were needed.   

Previous studies on megacities in China and 

USA have shown that positive relationships existed 

between socioeconomic development and urban 

expansion, especially in developing countries 

(Kuang et al., 2014), and that the socioeconomic 

factors would play an increasingly important role in 

urbanization. For example, studies in Beijing (Liu et 

al., 2014) suggested that the importance of 

urbanization drivers varied over time, and the effects 

of physical and neighborhood factors decreased with 

increasing socioeconomic factors. Compared with 

Beijing, CBYN developed at a slower pace in the 

past thirty years, as indicated by urban population 

rate of 67.56% in CBYN in 2015, and 86% in 

Beijing in 2010 (Liu et al., 2014). As a result, the 

impacts of socioeconomic development were less 

important than those of geophysical conditions, but 

would increase in the future. 

4.2 Implications of Model Simulation 

Chinese megacities are in a stage of development at 

which population growth, economic development, 

and policy significantly influence urban expansion 

patterns and rates. This is unlike megacities in 

developed countries where population and economic 

conditions are not important forces of urban growth 

(Kuang et al., 2014). The effects of socioeconomic 

development on urban expansion were classified in 

this study into two categories: spatial heterogeneity 

and temporal dynamics; the former was expressed in 

the excluded layer from the suitability map, and the 

latter was reflected in the changing value of DM.  

Spatial differences in physical conditions, 

cultural background, socioeconomic development, 

and human preferences were responsible for the high 

heterogeneity in urban distribution and expansion 

(Lin et al., 2014); this was also reflected in DM with 

value ranging from 0.008 to 0.38 among different 

cities. This heterogeneity improved the difficulty in 

precise urban simulation, and can be an important 
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source of simulation error. Linear or logistic 

regression-based models cannot calculate 

heterogeneous urban expansion due to their 

dependability on weights (Hu and Lo, 2007). 

Artificial neural network models also have limited 

capacity for accurate modeling of spatial 

heterogeneity (Almeida et al., 2008).  

The SLEUTH model can simulate urban growth 

at coarse resolution well, and has been successfully 

applied to cities all over the world (Akın et al., 2014, 

Al-shalabi et al., 2012, Bihamta et al., 2014). 

However, the SLEUTH model is still inadequate for 

simulating urban growth with high heterogeneity, or 

at high resolution at large-scales (Jat et al., 2017). In 

our study, integrating various spatial factors into the 

model greatly enhanced the simulation accuracy in 

an urban agglomeration. The influence of 

socioeconomic growth on urban expansion, and the 

fundamental function of DM in controlling the 

magnitude of urbanization (suggested by Eq. (9)), 

allowed DM to exert temporal influence in the model. 

The high correlation between DM and SE further 

supports this conclusion. Future research needs to 

focus on predicting urban expansion under different 

socioeconomic growth scenarios, and on  

comparing the effects of government policies on 

urbanization. 

5 CONCLUSIONS 

Urban expansion is unavoidable and has significant 

impacts on ecosystem services and functions. The 

successful application of the SLEUTH-3r model in 

the City Belt along the Yellow River in Ningxia at a 

resolution of 30 m has shown its utility in simulating 

urban expansion in a large area with high precision.  

In the past 27 years, the effects of elevation and 

geomorphology on urban expansion exceeded those 

of socioeconomic development. We quantitatively 

integrated these factors into the model to simulate 

urban expansion with high heterogeneity across a 

large area with high accuracy.  

The influence of socioeconomic development 

was introduced into model with DM, which can be 

set interactively. Both of these actions improve 

model accuracy in simulating urban expansion in 

urban agglomerations. However, the excessive 

amounts of scatter settlements in the simulation 

indicated the need for further research. 
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