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Abstract: In this work, we propose a new segmentation algorithm for images containing convex objects present in
multiple shapes with a high degree of overlap. The proposed algorithm is carried out in two steps, first we
identify the visible contours, segment them using concave points and finally group the segments belonging to
the same object. The next step is to assign a shape identity to these grouped contour segments. For images
containing objects in multiple shapes we begin first by identifying shape classes of the contours followed by
assigning a shape entity to these classes. We provide a comprehensive experimentation of our algorithm on
two crystal image datasets. One dataset comprises of images containing objects in multiple shapes overlapping
each other and the other dataset contains standard images with objects present in a single shape. We test our
algorithm against two baselines, with our proposed algorithm outperforming both the baselines.

1 INTRODUCTION

A number of vision applications like Medical Imag-
ing, Recognition Tasks, Object Detection, etc. require
segmentation of objects in images. Overlapping ob-
jects in such images pose a major challenge in this
task. Identifying hidden boundaries, grouping con-
tours belonging to same objects and efficiently es-
timating the dimensions of partially visible objects
are some of the complexities that overlap introduces.
Further regions of high concentration of objects with
a high degree of overlap introduces computational
challenges for segmenting such images. In our work
we introduce a method for tackling these issues for
heterogeneous and homogeneous images. Heteroge-
neous images are defined as images containing multi-
shaped overlapping objects, eg. a rod over a sphere.
Homogeneous images are defined as images with sim-
ilarly shaped overlapping objects. Segmentation is
particularly challenging for a heterogeneous image
because assigning a single shape entity to all the ob-
jects is bound to create inaccuracies. We test our work
on two Datasets, Dataset-I (Fig.1.a) is a representa-
tive of the heterogeneous group of images, whereas
Dataset-II (Fig.1.b) is a standard dataset containing
homogeneous images.

To tackle the discussed challenges we break down
the problem statement into the following three

† denotes equal contribution

sub-problems: (1) Contour extraction, this corre-
sponds to identifying the visible and hidden contours
(2) Contour mapping, this is for grouping the iden-
tified contours which belong to the same object and
mapping them to it (3) Shape identification for fitting
a shape entity to the grouped contour segments, this
step implicitly estimates the hidden parts.

To address these issues we propose a two step al-
gorithm. First, we identify the contours and break
them into segments. This cleaving happens at all
points where contours of two different objects inter-
sect. These cleave points are identified using a pro-
cedure called concave point extraction described in
Sec.3.2. Next we stitch the broken segments together
which belong to the same objects. This is done by
fitting an ellipse over all the broken segments, and
stitching them together depending on their proxim-
ity and orientation. This concludes the first step and
solves the first two sub-problems. The next step of the
algorithm is to assign a shape entity to the mapped
contours. This can be easily done for homogeneous
images, a single shape entity like an ellipse fits all. It
becomes tricky for heterogeneous image. The intu-
ition of our work is that we need to treat each contour
based on its shape class. So, first we define shape
classes for the dataset. Followed by defining a spe-
cific shape entity for each class which can be applied
to a contour that falls in it. The images in Dataset-I
contains two kinds of objects, needle(or rod) shaped
and spherical shaped, overlapping each other. We use
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these two shapes as the defined classes for assigning
a shape entity. We fit an ellipse over the mapped seg-
ments and use its aspect ratio to determine the class to
which the segment belongs to. Once classified each
segment is treated according to the defined heuristic
for the class. This step solves the third sub-problem
and is followed by a post-processing step to reject the
wrongly segmented objects.

We summarize our major contributions as follows:

• We propose a new algorithm to segment heteroge-
neous images with regions of high object concen-
tration and a high degree of overlap.

• We test our work on both heterogeneous and
homogeneous datasets, beating the baselines for
both, demonstrating the general applicability of
our work.

(a) Dataset-I Crystal. (b) Dataset-II Crystal.
Figure 1: Overlapping Crystals Image.

2 RELATED WORK

Image segmentation has been in the research domain
for a while, but the nature of problem is such that no
approach generalizes well for a wide range of image
datasets. Certain approaches extract edge informa-
tion using the sharp changes in the pixel intensities
in images (Pal and Pal, 1993; Rastgarpour and Shan-
behzadeh, 2011). Object boundaries tend to intro-
duce peaks in gradients of pixel intensity, thus these
methods are effective in identifying the edges. Multi-
scale analysis (Gudla et al., 2008) is one of the edge
based methods which is robust enough to handle weak
edges. Others use heuristic based grouping of pixels
for identifying regions with similar properties in im-
ages. Region Growing (Adams and Bischof, 1994)
and Region Splitting-Merging (Haralick and Shapiro,
1985) are two of the common approaches applied in
these set of methods. However, these approaches
don’t segment images with overlapping objects. Such
images lack crucial edge and pixel information for the
hidden parts which is required for the effectiveness of
these approaches.

Certain approaches use dynamic programming for
the task (Baggett et al., 2005), they determine the
most optimal boundaries for the hidden objects by
defining a path of the highest average intensity along
boundaries. Graph-cut methods segment objects by
creating a graph out of pixels treated as nodes and
difference between their intensities as a weight for
edges, followed by finding the minimum cut for the
graph (Shi and Malik, 2000; Felzenszwalb and Hut-
tenlocher, 2004). Both of these approaches require
prominent gradients at boundaries to be effective in
segmenting objects.

One of the popular approaches for segmenta-
tion of overlapping objects is the watershed algo-
rithm (Vincent and Soille, 1991) which in its classi-
cal form often results in over-segmentation. A po-
tential solution to over-segmentation is region merg-
ing, which does solve the problem but the method ef-
ficiency varies depending upon the object size and ob-
ject distribution concentration in the image. Marker-
controlled watershed (Malpica et al., 1997; Yang
et al., 2006) is also used for the purpose but the effi-
ciency of the method depends highly on the accurate
identification of the markers.

(Zhang and Pless, 2006) formulates the problem
as a combination of level set functions and uses sim-
ilarity transforms to predict the hidden parts of par-
tially visible objects. The drawback of this method is
that its performance is dependent on initialization and
is computationally expensive. (Álvarez et al., 2010)
proposes a morphological extension to the level based
methods, it introduces morphological operations in
traditional snake algorithms. This method outper-
forms earlier active contour methods as the curve
evolution is simpler and faster. It however fails to
converge when large number of closely spaced over-
lapped objects are present in the image. In (Zhang
et al., 2012), the problem of segmenting overlapping
elliptical bubbles is solved by segmenting the ex-
tracted contours into curves. These curves are further
segmented into groups belonging to the same bubble
followed by ellipse fitting. This approach works well
for images having similar shaped objects, but fail for
images containing multi-shaped overlapping objects.

Our proposed segmentation algorithm is inspired
from concave point based overlapping object segmen-
tation method (Zafari et al., 2015b). In (Zafari et al.,
2015b), the idea of grouping the contours belonging
to the same object present in an overlap cluster is car-
ried out by fitting ellipses over the segmented con-
tours. The grouped segments are further fitted with el-
lipses to separate overlapping objects. The efficiency
of this approach declines when applied to images with
multi-shaped objects.
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Our approach is built for images containing ob-
jects with high degree of overlap and we attempt to
solve the following issues present in earlier discussed
approaches: (1) We attempt to segment images with
regions of high object concentration, which becomes
a problem for approaches which are computationally
expensive, (2) Our approach does not rely on strong
gradients at boundaries to be effective and (3) Most
approaches don’t take into account images with over-
lapping multi-shaped objects, we use adaptive shape
fitting to address this problem.

3 PROPOSED METHODOLOGY

We propose a segmentation algorithm consisting of
the following two steps: Contour Region Detection
(CRD) and Shape Fitting. Fig.2 describes the method-
ology.

Figure 2: Overview of the proposed approach.

We take in RGB images as input and convert them
to grayscale before further processing. After conver-
sion, median blur is applied to remove noise from
the image, followed by Image binarization. This is
carried out using Otsu’s method (Otsu, 1979) from
which we get a binary image BO. Finally, morpho-
logical operations are used to filter noisy regions and
fill any small holes in the binary cell regions of BO.
Fig.3.a and 3.b shows the binarized image of Fig.1.a
and Fig.1.b respectively.

CRD step is then carried out on the binary image,
BO to extract the contour information. It identifies
the contours corresponding to both visible and hidden
boundaries and return contour segments grouped to-
gether on basis of them belonging to the same object.
Shape Fitting is the final segmentation step where a
shape entity like an ellipse or a rod is assigned to the
grouped contour segments. Rejection Filters are ap-
plied in the post-processing step for identifying and
eliminating wrongly segmented objects.

3.1 Contour Region Detection

CRD is the first step of our proposed methodology. In
this step, segmentation of overlapping objects is car-
ried out using the boundaries of the visible objects.
We begin first by extracting the contour points corre-
sponding to each of the object’s contour present in the

(a) Dataset-I image. (b) Dataset-II image.
Figure 3: Binarized Image for both the Datasets.

image. For this we use the border following algorithm
described in (Suzuki et al., 1985). Next we describe
some notations that we’ll be using from hereon, let
the detected object’s contour C is described using a
set Ccontour with N contour points such that, Ccontour
= {pi(xi,yi); i=1,2,...,N}, where N is the number of
contour points and pi is the ith contour point with co-
ordinates (xi,yi). pi+1 and pi−1 are the neighbouring
contour points of pi. The contour region detection
next involves two distinctive tasks: contour segmen-
tation and contour segment mapping.

3.1.1 Contour Segmentation

The contour points extracted previously represents the
contour of a single object or multiple overlapped ob-
jects being detected as a single entity. Fig.4 dis-
plays the detected contour points on a sample con-
tour of the binarized crystal image shown in Fig.3.a.
The overlapping of objects forms an irregular closed
shape. The intersections of the object boundaries in a
overlapped object contour are represented using break
points or concave points. Concave points are thus
used to segment the contour of overlapping objects
into separate contour segments.

Figure 4: Plotting a contour from Dataset-I to show its Con-
tour points, which are represented using Green points.

The concave points are determined by a two step
procedure: (1) Determining the corner points using
RDP algorithm and (2) Identifying concave points
from corner points using convexity check.

The corner points are the points of local minima or
maxima of the curve drawn by plotting the predeter-
mined contour points. Thus, for each of the object’s
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contour governed by its contour points, the corner
points are computed using Ramer-Douglas-Peucker
(RDP) algorithm (Douglas and Peucker, 1973). RDP
is a path simplification algorithm which reduces the
number of contour tracing points. The RDP algorithm
takes in an ordered sequence of contour points rep-
resented using set Ccontour as input. The algorithm
returns a set of corner points extracted from the set
Ccontour. Let this set of corner points be represented
using a set Ccorner, Ccorner = {pcor,i(xi,yi) | pcor,i ∈
Ccontour; i = 1,2,...,M}, where pcor,i is the ith corner
point and M be number of corner points extracted
such that M ≤ N. Fig.5.a shows a set of corner points
being extracted from contour points of a sample con-
tour as displayed in Fig.4.

Convexity check is then carried out on the set of
corner points contained in Ccorner to obtain a set of
concave points. The algorithm to compute concave
points is described in Algorithm 1.

In Algorithm 1, detected corner points from
Ccorner are the inputs. Initially vectors are created by
joining two adjacent corner points in clockwise di-
rection along direction of second corner point. Thus,
each corner point will be contained in two vectors,
one originating from the concerned point and the
other terminating at it. For every corner point, the sign
of the cross product of the two vectors it is a part of,
is computed and stored as the orientation of that cor-
ner point. Net orientation of the contour is then com-
puted by taking sign of sum of all the orientations,
which basically gives effective sign over all orienta-
tions. If the net orientation is positive it means that
the overall contour traversal along the corner points
is in anti-clockwise direction else in clockwise direc-
tion. Wherever the corner point’s orientation is dif-
ferent from the net orientation i.e. there is a break in
the traversal direction, that corner point is marked as
a concave point.

Let the set of concave points computed from Al-
gorithm 1 be represented using a set Cconcave, Cconcave
= {pconcave,i(xi,yi) | pconcave,i ∈ Ccorner; i = 1,2,...,P},
where pconcave,i is the ith concave point and P be
number of concave points computed such that P <=
M <= N. Fig.5.b displays the concave points being
extracted from the corner points of a sample contour
displayed in Fig.5.a.

3.1.2 Contour Segment Mapping

The detected concave points in set Cconcave are used
to split the earlier detected object’s contour C into
contour segments Li’s. Let Li = {pi1 ,pi2 ,...,pis} rep-
resent a contour segment of the contour C where s is
the number of contour points on Li. The set Li con-

Algorithm 1: Concave Point Extraction.

1: net orient = 0 . Overall orientation of contour
2: orientation = []. Orientation at each corner point
3: FOR i = 1 to M : . M is # Corner Points
4: GET pcor,i , pcor,i−1 , pcor,i+1 ∈Ccorner
5: IF i equals 1 :
6: pcor,i−1 = pcor,M
7: ENDIF
8: IF i equals M :
9: pcor,i+1 = pcor,1

10: ENDIF
11: . Vector initialization from given two points
12: VVV i = (pcor,i−1 , pcor,i)
13: VVV i+1 = (pcor,i , pcor,i+1)
14: orientation[i]← SIGN(VVV i × VVV i+1)
15: net orient← net orient + orientation[i]
16: ENDFOR
17: net orient← SIGN(net orient)
18: . If net orient is ”+ve” means anti-clockwise if

”-ve” means clockwise
19: FOR i = 1 to M :
20: IF orientation[i] not equals net orient :
21: . Break in traversal direction
22: INSERT pcor,i in Cconcave
23: ENDIF
24: ENDFOR

(a) Corner Points Detection
(Red points).

(b) Concave Points Detec-
tion (Red points).

Figure 5: Contour segmentation points of a sample contour
in Dataset-I.

tains the set of contour points from Ccontour present
between two concave points, pi1 and pis . The start and
end points of the corresponding segment, Li are rep-
resented by pi1 and pis , such that pi1 ,pis ∈ Cconcave.
Since total number of concave points are P, we have

C = L1 +L2 + ...+LP (1)

From now on, the detected contours C are referred
to as contour clusters. A contour cluster is a general
term for detected contours which may contain mul-
tiple overlapped objects or just a single object. Our
proposed segmentation algorithm segments the over-
lapped objects present in a contour cluster, if overlap-
ping exists otherwise it just segments the single object
present. The sample contour present in Fig.4 can now
be referred as a contour cluster.

Overlapping of objects and their shape irregulari-
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ties in a contour cluster lead to a presence of multiple
contour segment of a single object. Contour segment
mapping is thus needed to map together all the con-
tour segments belonging to a same object in a contour
cluster.

The segment mapping algorithm iterates over each
pair of the contour segment(Li’s), checking if they
could be mapped (grouped) together. The algorithm
follows orientation based mapping, where an ellipse
is first fitted on each of the contour segment using
classical least square fitting. The fitted ellipse on a
contour segment is then mapped with other ellipses
based on proximity and orientation. The algorithm
for segment mapping is discussed in Algorithm 2.

Algorithm 2: Contour Segment Mapping.

1: . Ls
i : ith contour segment of contour cluster C

2: FOR i = 1 to P : . P is # Concave Points
3: fit ellipse Ei to segment Li
4: ma jor axisi,minor axisi,orient anglei← Ei
5: aspect ratioi ← ma jor axisi

minor axisi
6: IF aspect ratioi < 2 :
7: . Fitted ellipse close to a circle
8: . Mark as unique segment, isn’t mapped
9: MAP Li alone to Set G

10: CONTINUE
11: ENDIF
12: FOR j = i+1 to P :
13: fit ellipse E j to segment L j
14: ma jor axis j, minor axis j ← E j
15: orient angle j ← E j
16: aspect ratio j ← ma jor axis j

minor axis j
17: IF | orient anglei - orient angle j |< ε:
18: MAP together Li and L j to Set G
19: ENDIF
20: ENDFOR
21: ENDFOR

In Algorithm 2, the contour segment with fitted el-
lipse close to a circle (aspect ratio ≤ 2) isn’t mapped
with any other contour segment. It’s assumed that
only elongated ellipses, with larger aspect ratio (> 2)
have more than one contour segment present in the
contour cluster C.

For the contour cluster C containing P contour
segments, let these segments are mapped to form
K groups. This new unique contour set containing
groups of mapped together contour segments is rep-
resented using a set G with K elements such that :

G = {G1,G2, ...,GK} (2)

K⋃

i=1

Gi = {L1,L2, ...,LP} (3)

K⋂

i=1

Gi = Φ (4)

An element in this unique set of grouped contour seg-
ments G, represents the entire visible contour of an
unique object present in the overlapping object con-
tour cluster.

Fig.6 displays the result of the Contour Segment
Mapping using color visualization. The sample con-
tour cluster is the one shown in Fig.4. Fig.6.a shows
the result before segment mapping, where each col-
ored segment represents a contour segment Li of the
above mentioned sample contour cluster, C. These
segments are split using concave points as displayed
in Fig.5.b. Fig.6.b shows the result after segment
mapping. It can be seen that earlier present contour
segments denoted by yellow, green and pink colors
respectively now gets mapped together and is repre-
sented using pink color. Each of the unique colored
segments in Fig.6.b represents an element of the set
G.

(a) Before Contour Seg-
ment Mapping.

(b) After Contour Segment
Mapping.

Figure 6: Contour Segment Mapping result on a sample
contour cluster from Dataset-I(colors are used for illustra-
tion to visualize contour segment mapping, images are mag-
nified thus continuous color segments looks broken).

3.2 Shape Fitting

The final step of the algorithm is to assign a shape en-
tity to the object contours present in a contour cluster.
Here we present a heuristic based approach for as-
signing this entity. We begin with modeling the con-
tours with ellipse fitting. The classic least square fit-
ting algorithm is used for assigning the ellipses. An
ellipse is fitted on each element of the set G governed
by Eq.2-4(representative of all the contours belonging
to the same object). Fig.7 displays result of the seg-
mentation on some detected contour clusters of the
binarized crystal image(Fig.3.a).

For Dataset-II, ellipse fitting suffices the segmen-
tation process, as it contains rectangular shaped ob-
jects whose dimensions are well represented by the
major and minor axes of the fitted ellipse. However,
the heuristics are required for Dataset-I, where the
contours are needed to be classified according to their
shape representation. The aspect ratio of the fitted el-

VISAPP 2018 - International Conference on Computer Vision Theory and Applications

414



Figure 7: Overlapped object segmentation in Dataset-I.
First row contains three different detected contour clusters,
second row shows segmentation of corresponding clusters.

lipse determines its closeness to a circle (aspect ratio
< 2) or a rod. The threshold value for the aspect ratio
is set to be 2 by analyzing the data manually. We can-
not represent the rod shaped crystals with ellipse due
to a problem of overestimation of length. This is due
to the fact that the rod shaped crystals have very small
width and the fitted ellipse couldn’t take account of
this. As a solution to this, we propose a new bound-
ing box algorithm as a shape estimator for rod shaped
crystals. It takes into account the small width of the
crystal. The results after applying this algorithm are
shown in Fig.8. The procedure for the bounding box
algorithm is discussed below:

1. The orientation angle, center coordinates and the
major and minor axis of the fitted ellipse on the
rod shaped crystal’s contour are computed.

2. A pair of parallel line is used with their slope
equal to the ellipse’s orientation angle and their
initial position coinciding with the major axis.

3. The parallel lines are separated equidistantly from
the major axis along the direction of minor axis in
opposite directions.

4. The separation distance is increased until a far end
of the crystal contour is achieved at the both side.

5. The distance between parallel lines gives the
width of the rod shaped crystal.

6. The same algorithm is extended to calculate rod’s
length using a new parallel line pair with initial
slope along normal to orientation angle and initial
position coinciding with minor axis.

7. The bounding box generated by the intersection
of these two pairs of parallel lines at their final
positions gives the desired shape estimator for the
segmentation of rod shaped crystals.

The calculated dimensions are converted from
pixels to micrometres using scaling factor of the mi-
croscope and the camera.

(a) Normal ellipse fitting. (b) Bounding box algorithm.
Figure 8: Rod shape crystal estimation using bounding box.

3.3 Rejection Filters

This is the post-processing step of our proposed
methodology. It reduces the false positive segmenta-
tion which may be introduced due to incorrect ellipse
fitting in the shape fitting step. The two filters being
used are discussed accordingly.

The first filter is a masking rejection filter, which
checks whether the fitted ellipse covers at least 75%
black pixels within its boundaries in the binary image.
It makes sure that the fitted ellipse is not empty. Fi-
nally, an area overlap filter is used, which on encoun-
tering a high degree of overlap between neighbour-
ing ellipses rejects the neighbouring smaller ellipse.
A high degree of overlap is defined by the larger el-
lipse encompassing more than 50% of the area of the
smaller ellipse. The output of applying different re-
jection filters is displayed in Fig.9.

4 EXPERIMENTS

4.1 Dataset

We choose two datasets to test our proposed algo-
rithm. The first dataset (Dataset-I, Fig.1.a), com-
prise images taken from a hand-held camera of crys-
tals present in rod and circular shapes. It consists
of 2 subsets of 10 images, each image has an aver-
age of 200 crystals. Each of these two subsets con-
tains different percentages of rod and circular shaped
crystals. The second dataset (Dataset-II, Fig.1.b),
consists of microscopic images of similarly shaped
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Figure 9: Effect of Rejection Filter on Dataset-I. Red el-
lipses are final fitted ellipse after rejection filters, Green el-
lipses are rejected due to masking rejection filter, Blue el-
lipses are rejected due to area overlap filter.

rectangular crystals. It consists of 15 images, each
image has an average of 100 crystals. The images
in both datasets are of dimension 640 x 480 pix-
els. The ground truth is generated by manually mark-
ing crystal’s center in all the images contained in
both datasets. Dataset-II represents a generic homo-
geneous dataset that most existing algorithms work
with, such datasets contain similarly shaped crystals
overlapping each other. On the other hand Dataset-
I is a heterogeneous dataset, containing multi-shaped
crystals overlapping each other. We demonstrate the
novelty of our proposed algorithm on this dataset.

4.2 Performance Measures

To evaluate our algorithm performance, first we com-
pare our results with two baselines followed by veri-
fication of results with the experimental crystal mix-
ture data. For evaluation we use precision and recall
as follows:

Precision =
T P

T P+FP
(5)

Recall =
T P

T P+FN
(6)

where TP is True Positive and it is defined the
number of correctly segmented crystals, False Neg-
ative (FN) is the number of unsegmented crystals and
False Positive (FP) is the number of incorrectly seg-
mented crystals. The values of TP, FN and FP are
calculated manually and are taken average over each
of the datasets.

As a sanity check we use Jaccard Similarity Co-
efficient (JSC) to check the accuracy of our segmen-
tation (Choi et al., 2010). A binary map of the seg-
mented object Os and the ground truth particle Og is
created. Distance between the ground truth particle’s
center and the fitted ellipse’s (or rod’s) center for a

segmented particle is used as the parameter for binary
map generation. The JSC is computed as follows:

JSC =
n(Os∩Og)

n(Os∪Og)
(7)

The distance threshold value (JSC threshold, ρ)
for the binary map is set to 8 pixels. It means that if
the distance between the ground truth crystal’s cen-
ter and fitted ellipse’s center on segmented crystal is
less than 8 pixels then they are mapped together in the
binary map i.e. added to the Os∩Og set.

The average JSC (AJSC) value over each dataset
is thus used as a third measure to evaluate the seg-
mentation performance. Fig.10 presents the variation
of AJSC value of our proposed algorithm with differ-
ent values of threshold ρ for both the datasets. Note,
here a higher value of ρ represents a higher leniency
in measuring the accuracy for segmentation. Our al-
gorithm achieves very similar AJSC values for both
the datasets for low ρ values.

Figure 10: AJSC performance of the proposed segmenta-
tion method with different values of distance threshold, ρ.

4.3 Results

Fig.11.a and Fig.11.b show results of our proposed
segmentation algorithm implemented on the two dif-
ferent set of crystal image samples, Fig.1.a and
Fig.3.b respectively.

The performance of the proposed segmentation
method is compared with two existing segmentation
algorithms, Segmentation of Partially Overlapping
Nanoparticles (SPON) (Zafari et al., 2015b) and Seg-
mentation of Overlapping Elliptical Objects (SOEO)
(Zafari et al., 2015a). The SPON and SOEO meth-
ods are particularly chosen as it is previously applied
for segmentation of overlapping convex objects being
represented by an elliptical shape. The implementa-
tion made by the corresponding authors is used for
SPON (Zafari et al., 2015b) and SOEO (Zafari et al.,
2015a).

Examples of visual comparison of the segmenta-
tion results for both the datasets are presented in the
Fig.12 and 13. Distinctive segmentation efficiency of
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(a) Blue boxes represent
rod crystals, Red ellipses
represent circular crystals.

(b) Red ellipses represent
similarly shaped crystals.

Figure 11: Final segmentation result of our proposed algo-
rithm on sample image from Dataset-I(a) and Dataset-II(b).

our proposed algorithm could be observed as com-
pared to SPON and SOEO. Binarized image after pre-
processing is used as an input to the SPON and SOEO
algorithm since the pre-processing step is dependent
on the experimental setup.

(a) Proposed (b) SPON (c) SOEO
Figure 12: Dataset-I segmentation comparison. Results of
proposed algorithm is displayed on original crystal image
whereas SPON and SOEO on binarized crystal image.

(a) Proposed (b) SPON (c) SOEO
Figure 13: Dataset-II segmentation comparison. All the re-
sults are displayed on the binarised crystal image.

The corresponding performance statistics of the
competing methods applied to the two datasets are
presented in Table1 and Table2. Our algorithm out-
performs both SPON and SOEO in terms of Recall
and AJSC criterias for both the datasets whereas com-
parable results are obtained for Precision criteria. For
Dataset-I the gain is substantial with our algorithm

outperforming SPON by 36% on Recall. SOEO gives
a very poor score for Dataset-I (2% Recall) reaffirm-
ing the challenges of segmenting images with multi-
shaped objects. We also achieve substantially higher
AJSC values for both the datasets indicating improved
accuracy of placing segments in the image for our al-
gorithm. ρ is taken to be 8 pixels for computing the
AJSC value.

Table 1: Dataset-I performance comparison.

Methods Recall % Precision % AJSC %
Proposed 87 85 70

SPON 51 89 28
SOEO 02 75 04

Table 2: Dataset-II performance comparison.

Methods Recall % Precision % AJSC %
Proposed 82 87 66

SPON 81 82 31
SOEO 39 76 23

We provide a verification of our segmentation al-
gorithm using composition analysis. Dataset-I con-
tains images of the crystal p-Amino benzoic acid
which is present in two shapes namely circular
(prism) and the rod (needle). The circular shaped
crystal is called the β-polymorph whereas the rod
shaped crystal is called the α-polymorph. Using
known dimensions of the two shapes from Section
3.2, the volumes are computed by estimating rods as
cylinders and circular crystals as spheres. Weight per-
centage of each of these polymorphs are then com-
puted using known density, 1.369 g/ml and 1.379 g/ml
for α-polymorph and β-polymorph respectively.

Two sets of crystal samples are prepared by mix-
ing different known weight percentage of each of the
polymorph. Using our algorithm, for each of the set,
average weight percentage of each shape is computed
and checked against known weight percentage of the
two samples. The corresponding performance statis-
tics for the verification step is shown in Table 3. The
algorithm has an average error of 1.95% over the ac-
tual weight percentages.

Finally, we do a complexity analysis. For K de-
tected contour points, M corner points and P concave
points the algorithm has the following complexity :

O(K ∗ (M+P2)) (8)

The proposed method is implemented in Python,
using a PC with a 2.60 GHz CPU and 6GB of RAM.
The computational time of our proposed algorithm is
around 0.5s per input image of size 640 x 480 pixels.
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Table 3: Verification from weight analysis, Actual : known
sample percentage; Image: calculated weight percentage
from proposed algorithm.

Polymorphs Sample A Sample B

Actual Image Actual Image
α wt.(%) 0.0 3.5 20.0 19.6
β wt.(%) 100.0 96.5 80.0 80.4

5 CONCLUSIONS

A new method for segmenting convex objects with
high degree of overlap is developed in this paper. The
algorithm uses concave point for segmentation and
heuristic based approach for adaptive shape fitting.
The key novelty of our work is to segment multi-
shaped convex objects with high degree of overlap
present in high density in an image. The proposed
algorithm is tested on two different datasets, the first
dataset contains multi-shaped crystals and the other
contains similar shaped crystals. The algorithm per-
formance is compared against two competing algo-
rithms, SPON and SOEO, with our proposed algo-
rithm outperforming both.
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