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Abstract: In this paper, we introduce earth mover’s distances (EMDs, for short) for rooted labeled trees based on Tai

mapping hierarchy. First, by focusing on the restricted mappings in the Tai mapping hierarchy providing the

tractable variations of the tree edit distance, we formulate the EMDs whose signatures are all of the pairs of a

complete subtree and its frequency and whose ground distances are the tractable variations. Then, we compare

the EMDs with their ground distances, which are tractable variations.

1 INTRODUCTION

Comparing tree-structured data such as HTML and

XML data for web mining or DNA and glycan data

for bioinformatics is one of the important tasks for

data mining. The most famous distance measure bet-

ween rooted labeled unordered trees (trees, for short)

is the edit distance (Tai, 1979). The edit distance is

formulated as the minimum cost of edit operations,

consisting of a substitution, a deletion and an inser-

tion, applied to transform from a tree to another tree.

Whereas the edit distance is a metric, the problem of

computing the edit distance is MAX SNP-hard even if

trees are binary (Hirata et al., 2011; Zhang and Jiang,

1994).

As constant-factor lower bounding distances of

the edit distance, several histogram distances based

on local information (Aratsu et al., 2009; Kailing

et al., 2004; Li et al., 2013) have introduced. Whe-

reas we can compute them more efficiently than the

edit distance, none of them is a metric.

On the other hand, an earth mover’s distance

(EMD, for short) has originally developed to com-

pare with two images in image retrieval and pattern

recognition (Rubner et al., 2007) and is formulated

as the solution of the transportation problem between

the distributions of features in signatures in two ima-

ges. It is known that the EMD is a metric if so is the

ground distance between single features.

Gollapudi and Panigrahy (Gollapudi and Pani-

grahy, 2008) have extended the EMD to that between

two leaf-labeled trees with the same height, where a

tree is leaf-labeled if all of the labels are assigned to

just leaves. However, it is difficult for the EMD to

extend to be applicable to standard two trees, that is,

labels are assigned to all the nodes and having possi-

ble different height as follows. In the EMD, first, by

comparing each pair of leaves (that is, the nodes with

height 1), we set the value 1 if both leaves have the

same label and 0 otherwise. Then, by using the infor-

mation between the pair of nodes in the height k− 1,

we solve the transportation problem of the pair of no-

des in the height k. Hence, in order to apply such a

recursion to trees, the trees are necessary to have the

same height and have no internal nodes with labels.

Kawaguchi and Hirata (Kawaguchi and Hirata,

2017) have introduced another EMD based on com-

plete subtrees. The EMD is formulated by the his-

tograms consisting of either complete subtrees, co-

complete subtree or both and their frequencies as sig-

natures and the L1-distance between the histograms as

ground distances, so we can apply the EMD to rooted

labeled trees. Also the EMD is a metric and tracta-

ble. On the other hand, there exist trees that the EMD

cannot reflect intuitive similarity.

Since the edit distance between trees is corre-

sponding to a Tai mapping (Tai, 1979), many vari-

ations of the edit distance have developed as more

structurally sensitive distances obtained by restricting

the Tai mapping, that is, a top-down distance (Cha-

wathe, 1999; Selkow, 1977), an LCA- and root-

preserving distance (Yoshino and Hirata, 2017), an

LCA-preserving distance (Zhang et al., 1996), an

accordant distance (Kuboyama, 2007), an isolated-

subtree (or a constrained) distance (Zhang, 1995;

Zhang, 1996) and an alignment distance (Jiang et al.,
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1995). Almost variations are metrics except an align-

ment distance (Jiang et al., 1995). Also, whereas the

problem of computing the edit distance or the align-

ment distance between trees is MAX SNP-hard (Hi-

rata et al., 2011; Jiang et al., 1995; Zhang and Jiang,

1994), the problem of computing the other variations

is tractable.

The reason why these variations are tractable is

that the maximum weight bipartite matching pro-

blem can be applied to computing the variations after

decomposing trees from the root (Yamamoto et al.,

2014). In contrast, it cannot be applied to computing

the edit distance and the alignment distance, because

computing them is necessary to compare the decom-

posed trees and the remained trees after decomposing

trees from the root.

Since we can regard the minimum weighted bi-

partite problem as a special case of the transportation

problem in EMDs, in this paper, we formulate new

EMDs based on the Tai mapping hierarchy whose sig-

natures are pairs of a complete subtree and the ratio

of frequencies occurring in a whole tree and whose

ground distances are the tractable variations of the

edit distance. Then, we show that the EMDs are al-

ways metrics and tractable. Finally, we give experi-

mental results to evaluate the EMDs to compare them

with their ground distances and investigate the pro-

perties of the EMDs.

2 PRELIMINARIES

A tree T is a connected graph (V,E) without cycles,

where V is the set of vertices and E is the set of edges.

We denote V and E by V (T ) and E(T ). The size of

T is |V | and denoted by |T |. We sometime denote

v ∈V (T ) by v ∈ T . We denote an empty tree ( /0, /0) by
/0. A rooted tree is a tree with one node r chosen as its

root. We denote the root of a rooted tree T by r(T ).
For each node v in a rooted tree with the root r,

let UPr(v) be the unique path from v to r. The parent

of v(6= r), which we denote by par(v), is its adjacent

node on UPr(v) and the ancestors of v(6= r) are the

nodes on UPr(v)−{v}. We denote the set of all an-

cestors of v by anc(v). We say that u is a child of v if

v is the parent of u and u is a descendant of v if v is

an ancestor of u. We use the ancestor orders < and ≤,

that is, u < v if v is an ancestor of u and u ≤ v if u < v

or u = v. We say that w is the least common ancestor

of u and v, denoted by u⊔v, if u ≤ w, v ≤ w and there

exists no w′ such that w′ ≤ w, u ≤ w′ and v ≤ w′. is

the number of children of v. The degree of a rooted

tree T , denoted by d(T ), is the maximum number of

d(v) for every v ∈ T .

For nodes u,v ∈ T , u is to the left of v if pre(u)≤
pre(v) for the preorder number pre and post(u) ≤
post(v) for the postorder number post. We say that

a rooted tree is ordered if a left-to-right order among

siblings is given; unordered otherwise. We say that a

rooted tree is labeled if each node is assigned a sym-

bol from a fixed finite alphabet Σ. For a node v, we

denote the label of v by l(v), and sometimes identify

v with l(v). In this paper, we call a rooted labeled

unordered tree a tree simply.

Let T be a tree (V,E) and v a node in T . A com-

plete subtree of T at v, denoted by T [v], is a tree

T ′ = (V ′,E ′) such that r(T ′) = v, V ′ = {u∈V | u≤ v}
and E ′ = {(u,w) ∈ E | u,w ∈ V ′}. We denote the

(multi)set {T [v] | v ∈ T} of all the complete subtrees

in T by cs(T ). For a complete subtree S in T , we

denote the frequency of the occurrences of S in T by

f (S,T ).
Next, we introduce an edit distance and a Tai map-

ping.

Definition 1 (Edit operations (Tai, 1979)). The edit

operations of a tree T are defined as follows. (Fi-

gure 1).

1. Substitution: Change the label of the node v in T .

2. Deletion: Delete a node v in T with parent v′, ma-

king the children of v become the children of v′.
The children are inserted in the place of v as a sub-

set of the children of v′. In particular, if v is the

root in T , then the result applying the deletion is a

forest consisting of the children of the root.

3. Insertion: The complement of deletion. Insert a

node v as a child of v′ in T making v the parent of

a subset of the children of v′.

Substitution (v 7→ w)

v 7→ w

Deletion (v 7→ ε)

v′

v
7→ v′

Insertion (ε 7→ v)

v′ 7→
v′

v

Figure 1: Edit operations for trees.

Let ε 6∈Σ denote a special blank symbol and define

Σε = Σ∪{ε}. Then, we represent each edit operation
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by (l1 7→ l2), where (l1, l2)∈ (Σε×Σε−{(ε,ε)}). The

operation is a substitution if l1 6= ε and l2 6= ε, a dele-

tion if l2 = ε, and an insertion if l1 = ε. For nodes u

and v, we also denote (l(u) 7→ l(v)) by (u 7→ v). We

define a cost function γ : (Σε×Σε−{(ε,ε)}) 7→ R+ on

pairs of labels. We often constrain a cost function γ to

be a metric, that is, γ(l1, l2)≥ 0, γ(l1, l2) = 0 iff l1 = l2,

γ(l1, l2) = γ(l2, l1) and γ(l1, l3)≤ γ(l1, l2)+γ(l2, l3). In

particular, we call the cost function that γ(l1, l2) = 1

if l1 6= l2 a unit cost function.

Definition 2 (Edit distance (Tai, 1979)). For a cost

function γ, the cost of an edit operation e = l1 7→ l2
is given by γ(e) = γ(l1, l2). The cost of a sequence

E = e1, . . . ,ek of edit operations is given by γ(E) =
∑k

i=1 γ(ei). Then, an edit distance τTAI(T1,T2) bet-

ween trees T1 and T2 is defined as follows:

τTAI(T1,T2)

= min



γ(E)

∣∣∣∣∣∣

E is a sequence

of edit operations

transforming T1 to T2



 .

Definition 3 (Tai mapping (Tai, 1979)). Let T1 and

T2 be trees. We say that a triple (M,T1,T2) is an unor-

dered Tai mapping (a mapping, for short) from T1 to

T2 if M ⊆ V (T1)×V(T2) and every pair (u1,v1) and

(u2,v2) in M satisfies that (1) u1 = u2 iff v1 = v2 (one-

to-one condition) and (2) u1 ≤ u2 iff v1 ≤ v2 (ancestor

condition). We will use M instead of (M,T1,T2) when

there is no confusion denote it by M ∈ M TAI(T1,T2).

Let M be a mapping from T1 to T2. Let IM and JM

be the sets of nodes in T1 and T2 but not in M, that is,

IM = {u ∈ T1 | (u,v) 6∈ M} and JM = {v ∈ T2 | (u,v) 6∈
M}. Then, the cost γ(M) of M is given as follows.

γ(M) = ∑
(u,v)∈M

γ(u,v)+ ∑
u∈IM

γ(u,ε)+ ∑
v∈JM

γ(ε,v).

Theorem 1. The following statement holds (Tai,

1979).

τTAI(T1,T2) = min{γ(M) | M ∈ M TAI(T1,T2)}.

Unfortunately, the following theorem holds for

computing τTAI between unordered trees.

Theorem 2. For unordered trees T1 and T2, the

problem of computing τTAI(T1,T2) is MAX SNP-

hard (Zhang and Jiang, 1994). This statement also

holds even if both T1 and T2 are binary (Hirata et al.,

2011).

Finally, we introduce the variations of a Tai map-

ping and an edit distance.

Definition 4 (Variations of Tai mapping). Let T1 and

T2 be trees and M ∈ M TAI(T1,T2). We denote M \
{(r(T1),r(T2))} by M−.

1. We say that M is an isolated-subtree map-

ping (Zhang, 1995; Zhang, 1996), denoted by

M ∈ M ILST(T1,T2), if M satisfies the following

condition.

∀(u1,v1)(u2,v2)(u3,v3) ∈ M

(u3 < u1 ⊔u2 ⇐⇒ v3 < v1 ⊔ v2) .

2. We say that M is an accordant mapping (Ku-

boyama, 2007), denoted by M ∈ M ACC(T1,T2), if

M satisfies the following condition.

∀(u1,v1)(u2,v2)(u3,v3) ∈ M

(u1 ⊔u2 = u1 ⊔u3 ⇐⇒ v1 ⊔ v2 = v1 ⊔ v3) .

3. We say that M is an LCA-preserving map-

ping (Zhang et al., 1996), denoted by M ∈
M LCA(T1,T2), if M satisfies the following condi-

tion.

∀(u1,v1)(u2,v2) ∈ M ((u1 ⊔u2,v1 ⊔ v2) ∈ M) .

4. We say that M is an LCA- and root-preserving

mapping (Yoshino and Hirata, 2017), denoted by

M ∈ M LCART(T1,T2), if M ∈ M LCA(T1,T2) and

(r(T1),r(T2)) ∈ M.

5. We say that M is a Top-down mapping (Cha-

wathe, 1999; Selkow, 1977), denoted by M ∈
M TOP(T1,T2), if M satisfies the following condi-

tion.

∀(u,v) ∈ M− ((par(u),par(v)) ∈ M) .

The above variation of Tai mapping provides the

following hierarchy (Kuboyama, 2007; Yoshino and

Hirata, 2017).

M TOP(T1,T2)⊆ M LCART(T1,T2)⊆ M LCA(T1,T2)
⊆ M ACC(T1,T2)⊆ M ILST(T1,T2)⊆ M TAI(T1,T2).

Definition 5 (Variations of edit distance). For every

A ∈ {ILST,ACC,LCA,LCART,TOP}, we define the

distance τA(T1,T2) as follows.

τA(T1,T2) = min{γ(M) | M ∈ M A(T1,T2)}.
Here we call τILST an isolated-subtree dis-

tance (Zhang, 1995; Zhang, 1996), τACC an accordant

distance (Kuboyama, 2007), τLCA an LCA-preserving

distance (Zhang et al., 1996), τLCART an LCA- and

root-preserving distance (Yoshino and Hirata, 2017),

and τTOP a top-down distance (Chawathe, 1999; Sel-

kow, 1977). By the Tai mapping hierarchy, the fol-

lowing inequality for the variation of edit distance

holds.

τTAI(T1,T2)≤ τILST(T1,T2)≤ τACC(T1,T2)≤
τLCA(T1,T2)≤ τLCART(T1,T2)≤ τTOP(T1,T2).

Furthermore, for all the above variations, the follo-

wing theorem holds.
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Theorem 3 (cf., (Yamamoto et al., 2014; Yoshino and

Hirata, 2017; Zhang et al., 1996)). For every A ∈
{ILST,ACC,LCA,LCART,TOP}, we can compute

τA(T1,T2) in O(n2d) time, where n = max(|T1|, |T2|)
and d = min{d(T1),d(T2)}.

3 EARTH MOVER’S DISTANCE

FOR TREES

In this section, we first introduce an earth mover’s dis-

tance (Rubner et al., 2007) and then extend to that for

trees based on Tai mapping hierarchy.

We call the set of pairs of a feature pi and its

weight wi a signature and denote it by P = {(pi,wi)}.

For a feature pi such that (pi,wi) ∈ P, we denote

pi ∈ P simply. An earth mover’s distance (EMD, for

short) between two signatures is given as the mini-

mum cost of the transportation problem from a signa-

ture to another signature.

Let P = {(pi,ui)} and Q = {(q j,v j)} be signatu-

res. We call a distance between pi and q j a ground

distance and denote it by gd(pi,qi). Also we denote

the flow from pi to q j by fi j. When the cost of the flow

from pi to q j is given by gd(pi,q j) fi j , the overall cost

of the flows from P to Q is defined as follows.

∑
pi∈P

∑
q j∈Q

gd(pi,q j) fi j .

Then, find the minimum cost flow f ∗i j subject to the

following constraints:

1. fi j ≥ 0,

2. ∑pi∈P fi j ≤ ui,

3. ∑q j∈Q fi j ≤ v j,

4. ∑pi∈P ∑q j∈Q fi j = min
(

∑pi∈P ui,∑q j∈Q v j

)
.

The constraint (1) allows moving “supplies” from P

to Q and not vice versa. The constraints (2) and (3)

limit the amount of supplies within the weight. The

constraint (4) forces to move the maximum amount

of supplies possible.

Let f ∗i j be the optimum flow of the transportation

problem. Then, we define the EMD between two sig-

natures P and Q as follows.

EMDgd(P,Q) =
∑pi∈P ∑q j∈Q gd(pi,q j) f ∗i j

∑pi∈P ∑q j∈Q f ∗i j

=
∑pi∈P ∑q j∈Q gd(pi,q j) f ∗i j

min
(

∑pi∈P ui,∑q j∈Q v j

) .

Note that the EMD allows for partial matches

when the total weight of a signature is different from

that of another signature, which is important for

image retrieval applications (Rubner et al., 2007). We

can realize the partial match to transport from a signa-

ture whose total weight is smaller than a part of anot-

her signature. Also the following theorem holds for

the EMD.

Theorem 4. Suppose that two signatures have the

same total weight. If a ground distance is a me-

tric, then so is the EMD. Furthermore, we can

compute the EMD in O(n3 logn) time, where n =
max{|P|, |Q|} (Rubner et al., 2007).

Next, we formulate the EMD for trees based on

Tai mapping hierarchy.

It is necessary for the EMD to introduce a signa-

ture and a ground distance between features. In order

to formulate the EMD for trees, we transform from a

tree to a signature. In this paper, we adopt the follo-

wing signature s(T ) for a tree T .

s(T ) =

{
(S,w)

∣∣∣∣S ∈ cs(T ),w =
f (S,T )

|T |

}
.

The features of s(T ) are complete subtrees of T and

the weight of s(T ) is the ratio of the occurrences of

complete subtrees. Hence, the total weight of s is 1.

Since this signature contains T itself, we can trans-

form T to s(T ) uniquely. On the other hand, as a

ground distance between trees, we adopt 5 tractable

variations of the edit distance, that is, τTOP , τLCART ,

τLCA , τACC and τILST .

Hence, by combining signatures and ground dis-

tances, we formalize the following 5 kinds of an

EMD for trees. In the following, we assume that

A ∈ {ILST,ACC,LCA,LCART,TOP}.

Definition 6 (EMD for trees). We define an EMD

for trees as EMDτA
(s(T1),s(T2)) between signatures

s(T1) and s(T2) for a ground distance τA and denote it

by EMDA(T1,T2).

Corollary 1. EMDA(T1,T2) is a metric.

Proof. It is straightforward since a ground distance

τA is a metric and the total weight of signatures is 1

and by Theorem 4.

Theorem 5. We can compute EMDA(T1,T2) in

O(n3 logn) time, where n = max{|T1|, |T2|}.

Proof. By using s(T1), s(T2) and {τA(T1[u],T2[v]) |
(u,v) ∈ T1 × T2}, we can design the following algo-

rithm to compute EMDA(T1,T2).

1. Construct s(T1) and s(T2) from T1 and T2.

2. Compute G = {τA(T1[u],T2[v]) | (u,v) ∈ T1 ×T2}.

3. Compute EMDA(T1,T2) from G.
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It is obvious that the running time of Step 1 is

O(n). For Step 2, since the algorithm of computing

τA(T1,T2) can store the value of τA(T1[u],T2[v]) for

every (u,v)∈ T1 ×T2 and by Theorem 3, we can com-

pute G in O(n2d) time, where d =min{d(T1),d(T2)}.

Since |s(T1)| = |s(T2)| = O(n) and by Theorem 4,

the running time of Step 3 is O(n3 logn). Hence,

we can compute EMDA(T1,T2) in O(n) +O(n2d)+
O(n3 logn) = O(n3 logn) time.

4 EXPERIMENTAL RESULTS

In this section, we give experimental results to evalu-

ate EMDA to compare EMDA with τA and investigates

the properties of EMDA. Here, we assume that a cost

function is a unit cost function.

In this section, we use two kinds of data; One is N-

glycan data provided from KEGG1 as real data. Anot-

her is 6 data of randomly generated trees by using the

algorithm PTC (Luke and Panait, 2001). We call them

Ri (1 ≤ i ≤ 6), where the number of nodes in Ri is

50× i. Furthermore, we use the computer environ-

ment that CPU is Intel Xeon E51650 v3 (3.50GHz),

RAM is 1GB and OS is Ubuntsu Linux 14.04 (64bit).

Table 1 illustrates the details of data, that is, the

number of data (#), the average number of nodes (n),

the average degree (d) and the average height (h).

Table 1: The details of data.

data # n d h

N-glycan 2142 11.07 2.07 6.20

R1 100 50.00 2.00 8.75

R2 100 100.00 2.00 10.69

R3 100 150.00 2.00 12.12

R4 100 200.00 2.00 12.75

R5 100 250.00 2.00 13.81

R6 100 300.00 2.00 14.24

4.1 Running Time

First, we compare the running time to compute EMDA

and τA for N-glycan data and randomly generated

trees in Table 1. Table 2 illustrates the running time

to compute such distances.

Tables 1 and 2 show that the running time of both

EMDA and τA is increasing when the number of nodes

is increasing and the ratio of increasing for EMDA is

larger than that for τA.

1Kyoto Encyclopedia of Genes and Genomes.
http://www.kegg.jp/

Table 2: The running time to compute the distances (sec.).

distance N-glycan R1 R2

τILST 1580.95 69.72 289.48

τACC 1386.33 60.18 285.78

τLCA 1129.97 49.13 201.78

τLCART 1109.80 49.64 203.96

τTOP 485.42 20.71 83.56

EMDILST 1592.32 77.00 351.81

EMDACC 1399.14 66.23 307.31

EMDLCA 1133.82 55.17 261.24

EMDLCART 1128.05 55.08 261.36

EMDTOP 509.49 26.45 138.04

distance R3 R4 R5 R6

τILST 665.12 1186.53 1874.17 2722.80

τACC 578.79 1013.98 1597.39 2308.71

τLCA 461.58 824.09 1298.07 1873.32

τLCART 467.38 834.47 1313.06 1891.92

τTOP 189.58 336.86 527.42 760.66

EMDILST 894.53 1802.92 3073.49 4832.80

EMDACC 790.38 1583.50 2763.23 4376.64

EMDLCA 687.20 1401.26 2474.14 3965.60

EMDLCART 687.29 1414.33 2474.22 3961.98

EMDTOP 397.84 875.98 1637.42 2759.20

Table 3 illustrates the ratio (EMDA/τA) of the run-

ning time of computing the EMDs (EMDA) for that of

computing the ground distances (τA) in Table 2. Here,

we call it the ratio of EMDA for τA simply.

Table 3: The ratio (EMDA/τA) of the running time of com-
puting the EMDs (EMDA) for that of computing the ground
distances (τA) in Table 2.

A N-glycan R1 R2 R3 R4 R5 R6

ILST 1.01 1.10 1.22 1.34 1.52 1.64 1.77

ACC 1.01 1.10 1.08 1.37 1.56 1.73 1.90

LCA 1.00 1.12 1.29 1.49 1.70 1.91 2.12

LCART 1.02 1.11 1.28 1.47 1.69 1.88 2.09

TOP 1.05 1.28 1.65 2.10 2.60 3.10 3.63

Table 3 shows that, whereas the ratio of EMDA for

τA is between 1.00 and 1.05 for N-glycan data, the ra-

tio of EMDTOP for τTOP is over 3 for the data R6. On

the other hand, smaller distance in the inequality for

the variations (τILST ≤ τACC ≤ τLCA ≤ τLCART ≤ τTOP)

tends to give smaller ratio of EMDA for τA except

LCA and LCART; The ratio of EMDLCA for τLCA is

greater than the ratio of EMDLCART for τLCART .

Furthermore, whereas the ratio of EMDA for τA is

O(n logn/d) in theoretical by Theorems 3 and 5, the

ratio is at most 4 in experimental. Then, the problems
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of computing EMDs are efficient for trees with at least

300 nodes and small degree.

4.2 Comparing EMDs with Ground

Distances

Next, we investigate the relationship between the

EMD EMDA and its ground distance τA for N-glycan

data.

Figure 2 illustrates the distributions of EMDs (up-

per) and ground distances (lower). Here, the x-axis is

the value of the distance and the y-axis is the percen-

tage of pairs with the distance pointed by the x-axis.
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Figure 2: The distributions of EMDs (upper) and ground
distances (lower) for N-glycan data.

Figure 2 shows that both EMDs and ground dis-

tances are near to normal distribution. Also the distri-

butions of EMDTOP and τTOP are right to other EMDA

and τA (A ∈ {ILST,ACC,LCA,LCART}), respecti-

vely. Whereas the peak of the distribution of EMDTOP

is larger than that of other distributions of EMDA, the

peak of the distribution of τTOP is smaller than that of

other distributions of τA.

Figures 3 and 4 illustrate the scatter charts bet-

ween the number of pairs of trees with τA pointed

at the x-axis and that with EMDA pointed at the y-

axis for N-glycan data whose number of total pairs is

2,293,011. Here, the diameter and the color represent

the number of pairs of trees such that longer diameter

and deeper color are larger number. Also, Figures 3

and 4 represent the cases that A ∈ {ILST,ACC} and

A ∈ {LCA,LCART,TOP}, respectively.
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Figure 3: The scatter charts between the number of pairs
of trees with τA pointed at the x-axis and that with EMDA

pointed at the y-axis for A ∈ {ILST,ACC}.

Figures 3 and 4 show that EMDA is relative to

τA and almost values of τA are larger than those of

EMDA. Also the plots of TOP vary more widely than

others.

4.3 Typical Cases

In the following, we point out the typical cases of

trees with different values between of τA and EMDA.
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Figure 4: The scatter charts between the number of pairs
of trees with τA pointed at the x-axis and that with EMDA

pointed at the y-axis for A ∈ {LCA,LCART,TOP}.

Here, let ui be a node in T1 such that pre(ui) = i and

vi a node in T2 such that pre(vi) = i.

Example 1. Consider trees T1 and T2 illustra-

ted in Figure 5, that is, one tree (T1) is obtai-

ned by deleting leaves to another tree (T2). In

this case, it holds that τA(T1,T2) ≤ EMDA(T1,T2).
For the trees T1 and T2 in Figure 5, it holds that

τA(T1,T2) = 1 and EMDA(T1,T2) = 1.357 for every

A ∈ {ILST,ACC,LCA,LCART,TOP}.

It is obvious that τA(T1,T2) = 1. On the ot-

her hand, it holds that τA(T1[ui],T2[vi]) = 1 and

τA(T1[ui],T2[v7]) = |T1[ui]| (1 ≤ i ≤ 6). Since the

weight of T1[ui] (resp., T2[vi]) is 1/6 (resp., 1/7), the

optimum flow consists of the 6 flows from T1[ui] to

T2[vi] whose costs are 1/7 and the 6 flows from T1[ui]
to T2[v7] whose costs are 1/42. Then, the cost of the

optimum flow is 6(1/7)+(6+5+4+3+2+1)/42=
57/42 = 1.357 = EMDA(T1,T2).

Hence, whereas the ground distances are not sen-

sitive to inserting leaves, the EMD is necessary to

transport the remained weights for every node in one

tree to an inserted leave in another tree.

I

B

C

D

B

G

I

B

C

D

B

G

H

T1 = G01687 T2 = G02836

Figure 5: Trees T1 and T2.

Example 2. Consider trees T1 and T2 illustrated in

Figure 6, that is, just a label of the root in one tree

(T1) is different from that in another tree (T2). In

this case, it holds that EMDA(T1,T2) ≤ τA(T1,T2).
For the trees T1 and T2 in Figure 6, it holds that

τA(T1,T2) = 1 and EMDA(T1,T2) = 0.083 for every

A ∈ {ILST,ACC,LCA,LCART,TOP}.

It is obvious that τA(T1,T2) = 1. On the other

hand, the signature containing r(T1) (resp., r(T2)) is

just T1 (resp., T2) itself. Since τA(T1[ui],T2[vi]) = 0

for 2≤ i ≤ 12, the cost of the flow from T1[ui] to T2[vi]
is 0. Since the weight of T1[ui] and T2[vi] is 1/12 and

τA(T1[u1],T2[v1]) = 1, the cost of the optimum flow is

1/12+ 11(0/12)= 0.083 = EMDA(T1,T2).
Hence, the difference near to the root is more sen-

sitive to the ground distances rather than the EMDs.

Furthermore, in this case, the EMDs is much smaller

than the ground distance.

Example 3. Consider trees T1 and T2 illustrated in

Figure 7 and T3 and T4 illustrated in Figure 8, that
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Figure 6: Trees T1 and T2.

is, one tree (T1 or T3) is obtained by deleting the

root of another tree (T2 or T4). For these cases,

it holds that EMDLCART(T1,T2) ≤ τLCART(T1,T2) and

EMDTOP(T3,T4) ≤ τTOP(T3,T4). For the trees T1 and

T2 in Figure 7, τA(T1,T2) and EMDA(T1,T2) are:

A τA EMDA

LCA 2 0.841

LCART 12 0.917

TOP 17 1.512

For the trees T3 and T4 in Figure 8, τA(T3,T4) and

EMDA(T3,T4) are:

A τA EMDA

LCA 2 0.810

LCART 4 0.813

TOP 34 1.092

Here, we also illustrate the minimum cost map-

ping in M A in Figures 7 and 8, where the correspon-

ding node is denoted by ◦ and the non-corresponding

node is denoted by •, which implies τA.

The reason is that the structural difference near to

the root is much sensitive to τLCART and τTOP , whose

values tend to be large, but the EMDs are not.
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Figure 7: Trees T1 and T2.

Example 4. Consider trees T1 and T2 illustrated in

Figure 9, that is, subtrees in one tree (T1) frequently

occur in another tree (T2). In this case, it holds
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Figure 8: Trees T3 and T4.

that EMDA(T1,T2) is much smaller than τA(T1,T2).
For the trees T1 and T2 in Figure 6, it holds that

τA(T1,T2) = 16 and EMDA(T1,T2) = 1.63 for every

A ∈ {ILST,ACC,LCA,LCART,TOP}. Since T2 is

obtained by inserting 16 nodes to T1, it holds that

τA(T1,T2) = 16.

The weight of T1[u] (resp., T2[v]) is 1/20 (resp.,

1/36). Then, T1[u4], T1[u13], T2[v4], T2[v12], T2[v21]
and T2[v29] are isomorphic and T1[u6], T1[u9], T1[u15],
T1[u18], T2[v6], T2[v9], T1[u14], T1[u17], T2[v23], T2[v26],
T1[u31] and T1[u34] are isomorphic, so the weights of

T1[u4], T2[v4], T1[u6] and T2[u6] as features are 2/20,

4/36, 4/20 and 8/36, respectively. Since these weig-

hts are preserved in the subtrees of them, the total

weight of features consisting of T1[u4] and its sub-

trees in T1 is 2/20+2/20+4/20+4/20= 16/20 and

that of T2[v4] and its subtrees in T2 is 4/36+ 4/36+
8/36+ 8/36 = 32/36. Hence, the cost of flows in

these isomorphic subtrees from T1 to T2 is 0, be-

cause τA(T1[u4],T2[v4]) = 0, for example. Since these

flows move all the weight 16/20 of T1[u4], T2[v4] and

its subtrees can receive the weight 32/36− 16/20 =
4/45.

For the remained features in T2, the weights of

T2[v1], T2[v2] and T2[v3] as features are 1/36, 1/36

and 2/36, respectively. Furthermore, as T2[v4] and its

subtrees receive the weights, it is necessary to con-

sider the ground distances between T1[u3] and T2[vi]
(4 ≤ i ≤ 8). The ground distances necessary to com-

pute EMDA(T1,T2) are given as follows.
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τA(T1[u1],T2[v1]) = 16, τA(T1[u2],T2[v2]) = 16,

τA(T1[u3],T2[v3]) = 8, τA(T1[u1],T2[v3]) = 3,

τA(T1[u2],T2[v3]) = 4, τA(T1[u3],T2[v4]) = 1,

τA(T1[u3],T2[v5]) = 2, τA(T1[u3],T2[v6]) = 6,

τA(T1[u3],T2[v7]) = 7, τA(T1[u3],T2[v8]) = 8.

Hence, by computing the optimum flow to receive

the weight 4/45+ 4/36 = 1/5 in T2, we can obtain

EMDA(T1,T2) as 16(1/36)+ 16(1/36)+ 8(1/90)+
3(1/45)+4(1/45)+1(1/90)+2(1/90)+6(1/45)+
7(1/45)+ 8(1/45)= 49/30 = 1.633.
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Figure 9: Trees T1 and T2.

4.4 Properties of EMDs for Trees

Finally, we investigate the properties of the EMDs for

trees by summarizing the typical cases in Section 4.3.

1. Concerned with Example 1, just the case that one

tree is obtained by deleting leaves to another tree

implies that τA(T1,T2) ≤ EMDA(T1,T2) for N-

glycan data. Whereas the trees T1 and T2 in Ex-

ample 1 are paths, the statement holds when some

internal nodes have some leaves as children.

As another case concerned with Example 1, con-

sider trees Ti (1 ≤ i ≤ 6) in Figure 10. Then, it

holds that τA(T1,Ti) = 1 for every i (2 ≤ i ≤ 6)

but EMDA(T1,T2) = 0.2, EMDA(T1,T3) = 0.4,

EMDA(T1,T4) = 0.6, EMDA(T1,T5) = 0.8 and

EMDA(T1,T6) = 1. The reason is that the farther

node with a different label from the root makes

more different signatures.
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Figure 10: Trees Ti (1 ≤ i ≤ 6).

2. Concerned with Examples 2 and 3, consider

complete binary trees T1 and T2 with 15 no-

des and a tree T3 adding the root to T1 illustra-

ted in Figure 11. Then, for A ∈ {ILST,TOP},

EMDA(T1,Ti) and τA(T1,Ti) are as follows.

Ti T2 T3

EMDILST(T1,Ti) 0.067 0.796

EMDTOP(T1,Ti) 0.067 1.07

τILST(T1,Ti) 1 1

τTOP(T1,Ti) 1 23

Hence, the difference of both labels and structu-

res near to the root is more sensitive to τTOP than

EMDTOP . On the other hand, for the difference

of labels near to the root, EMDA is much smal-

ler than τA. As stated in Examples 2 and 3, there

also exists a case that LCATOP is sensitive to the

difference of both labels and structures near to the

root.

A

B

B

A

T1 T2 T3

Figure 11: Trees T1, T2 and T3.

3. Concerned with Example 4, consider a tree T1

with 10 nodes and trees Ti (2 ≤ i ≤ 5) contai-

ning T1 as subtrees illustrated in Figure 12. Then,

EMDA(T1,Ti) and τA(T1,Ti) are as follows.

Ti T2 T3 T4 T5

EMDA(T1,Ti) 0.5 0.738 0.822 0.866

τA(T1,Ti) 1 11 21 31

In this case, whereas the ground distances are ne-

cessary to insert new nodes, the EMDs tend to ab-

sorb the influence of isomorphic subtrees.

T1 T2 T3

T4

T5

Figure 12: Trees Ti (1 ≤ i ≤ 5).
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5 CONCLUSION

In this paper, for the variations of edit distance τA for

A ∈ {ILST,ACC,LCA,LCART,TOP}, we have for-

mulated the earth mover’s distances EMDA based on

τA . Then, we have given experimental results to eva-

luate EMDA comparing with τA . As a result, we have

investigated the properties of EMDA.

It is a future work to give experimental results for

more large data (with large degrees) to analyze the

theoretical ratio O(n logn/d) in Section 4.1 in expe-

rimental. Also it is a future work to formulate EMDs

to other tractable variations in Tai mapping hierar-

chy (Yoshino and Hirata, 2017).

Concerned with Example 1 in Section 4.3 and Ste-

tement 1 in Section 4.4, we have found no trees T1

and T2 such that τA(T1,T2) < EMDA(T1,T2) except

the case that T1 is obtained by deleting leaves to T2.

Then, it is a future work to determine whether or

not there exist other cases satisfying that τA(T1,T2)<
EMDA(T1,T2).

It is a future work to analyze the properties of

EMDs in Section 4.4 in more detail and investigate

how data are appropriate for EMDs. In particular,

since it is possible that the number of the signature is

too small to formulate EMDs for trees, it is an impor-

tant future work to investigate appropriate signatures

for EMDs for trees.
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