
Supporting Multiple Agents in the Execution of Clinical Guidelines

Alessio Bottrighi, Luca Piovesan and Paolo Terenziani
DISIT, Universitá del Piemonte Orientale, Viale Teresa Michel 11, Alessandria, Italy

Keywords: Clinical Guidelines, Physician Interaction and Communication, Human Resources Coordination.

Abstract: Clinical guidelines (GLs) exploit evidence-based medicine to enhance the quality of patient care, and to

optimize it. To achieve such goals, in many GLs different agents have to interact and cooperate in an

effective way. In many cases (e.g. in chronic disorders) the GLs recommend that the treatment is not

performed/completed in the hospital, but is continued in different contexts (e.g. at home, or in the general

practitioner’s ambulatory), under the responsibility of different agents. Delegation of responsibility between

agents is also important, as well as the possibility, for a responsible, to select the executor of an action (e.g.,

a physician main retain the responsibility of an action, but delegate to a nurse its execution). To manage

such phenomena, proper support to agent interaction and communication must be provided, providing them

with facilities for (1) treatment continuity (2) contextualization, (3) responsibility assignment and delegation

(4) check of agent “appropriateness”. In this paper we extend GLARE, a computerized GL management

system, to support such needs. We illustrate our approach by means of a practical case study.

1 INTRODUCTION

Clinical guidelines (GLs) are defined as

“systematically developed statements to assist

practitioner and patient decisions about appropriate

healthcare under specific clinical circumstances”

(Field and Lohr, 1990). They are conceived as a way

of putting Evidence-Based Medicine (EBM) into

practice, as well as a mean to grant both the quality

and the standardization of healthcare services, and

the minimization of costs. Thousands of GLs have

been devised in the last years. For instance, the

Guideline International Network (http://www.g-i-

n.net) groups 103 organisations representing 47

countries from all continents, and provides a library

of more than 6400 CPGs. Since the 90’s, the medical

community has started to recognize that a computer-

based management can further increase GL advanta-

ges, providing relevant benefits (e.g. decision

making support) to care providers and patients.

Many different systems and projects have been

developed to this purpose (see e.g. (Fridsma, 2001;

Gordon and Christensen, 1995; Peleg, 2013)). Such

systems usually provide facilities to acquire,

represent and/or execute GLs, and are mainly

developed to support physicians in patient care.

Different forms of support may be provided. In

particular, a lot of attention has been devoted to

decision support facilities (such as “what if” analysis

(Terenziani et al., 2002) or cost-benefit analysis

(Montani and Terenziani, 2006)). Notably,

computer-based approaches do not aim at

substituting physicians: although physicians may

take into account the suggestions provided by the

systems, the final decision is always left to

physicians themselves. Specifically, physicians

retain the full responsibility of taking decisions, and

of identifying the proper actions for the patients.

However, computer-based GL systems have quite

neglected the problem of properly supporting the

coordination of different healthcare agents in the

execution of GLs (see, however, the discussion in

Section 6). Indeed, while some GLs are specifically

related to an execution context (e.g., they have to be

totally executed in an hospital), others, mainly

dealing with chronic disorders, require that patient

treatment is continued in time, and is carried on in

different contexts (e.g. at home, or in the general

practitioner’s ambulatory), under the responsibility

of different agents (not only physicians). In such

cases, the correct interaction and communication

between the involved agents is critical for the quality

of care, involving the ability of identifying a proper

responsible for the next actions, and the possibility

of delegating the responsibility and\or the execution

of actions to other agents. None of the available

208
Bottrighi, A., Piovesan, L. and Terenziani, P.
Supporting Multiple Agents in the Execution of Clinical Guidelines.
DOI: 10.5220/0006654802080219
In Proceedings of the 11th International Joint Conference on Biomedical Engineering Systems and Technologies (BIOSTEC 2018) - Volume 5: HEALTHINF, pages 208-219
ISBN: 978-989-758-281-3
Copyright © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

computerized GL systems fully addresses such

needs.

In this work, we propose an extension of a

computerized GL management tool to deal with

these needs. First, we identify the extensions to the

GL formalism needed to represent the different

pieces of information required to manage the above

phenomena. In particular, our representation

formalism supports the specification, for each

action, of the context in which it can be execute, and

of the qualification and capabilities required to its

responsible, and to its executor.

Then, we describe the facilities we have provided

to support the coordination of multi-agents

executing a GL. The main goal of such facilities is to

support a proper treatment of the patient, in such a

way that the GL actions are executed in the proper

context, under the responsibility of a proper (i.e.,

having the correct qualification and capabilities)

agent, and are executed by a proper agent. To

achieve such a goal, our facilities support:

(1) treatment continuity,

(2) action contextualization,

(3) responsibility assignment and delegation

(4) check of agent and executor

“appropriateness”.

Notably, there are several multi-agent

approaches for healthcare in the literature (see e.g.

the survey in (Isern and Moreno, 2016)), but they

consider agents as autonomous software entities. In

our approach, we consider agents as a representation

of a real entity and use a multi-agents view to

describe and support a distributed GL execution.

A practical implementation of this work is

represented by an extension of META-GLARE.

META-GLARE (Bottrighi and Terenziani, 2016) is

a recent extension of GLARE , a domain-

independent system for GL acquisition and

execution (Terenziani et al., 2008).

Resorting to the META-GLARE formalism, we

will illustrate the application of our approach to the

“management of harmful drinking and alcohol

dependence in primary care” GL developed by the

Scottish Intercollegiate Guidelines Network (SIGN)

(Scottish Intercollegiate Guidelines Network, n.d.),

which we have adapted to the Italian context.

However, although we have implemented our

approach in META-GLARE, it is worth stressing

that the methodology we propose is general and

application-independent.

The paper is structured as follows: in section 2

we describe the main features of GLARE and

META-GLARE. In section 3 we describe our

extensions to META-GLARE representation

formalism. In section 4, which is the core of the

paper, we describe the different facilities we provide

to support the distributed execution of a GL, and the

coordination of the involved agents. In section 5 we

exemplify a practical application of our approach

considering the treatment of alcohol-related

disorders. Finally, in the section 6 we address related

works and concluding remarks.

2 GLARE AND META-GLARE

META-GLARE is an evolution of GLARE, a

domain-independent system for acquisition and

execution of GLs (Terenziani et al., 2008), which we

are developing since 1997, in collaboration with the

physicians of Azienda Ospedaliera San Giovanni

Battista in Torino, Italy.

The core of GLARE (see box on the left of

Figure 1) is based on a modular architecture.

CG_KRM (Clinical Guidelines Knowledge

Representation Manager) is the main module of the

system: it manages the internal representation of GL,

and operates as a domain-independent and task-

independent knowledge server for the other

modules; moreover it permanently stores the

acquired GL in a dedicated Clinical Guidelines

Database (CG-DB). The Clinical Guidelines

Acquisition Manager (CG_AM) provides expert-

physicians with a user-friendly graphical interface to

introduce the GL into the CG_KRM and to describe

them. It may interact with four databases: the

Pharmacological DB, storing a structured list of

drugs and their costs; the Resources DB, listing the

resources that are available in a given hospital; the

ICD DB, containing an international coding system

of diseases; the Clinical DB, providing a “standard”

terminology to be used when building a new GL,

and storing the descriptions and the set of possible

values of clinical findings.

The execution module (CG-EM) executes a GL

for a specific patient, considering the patient’s data

(retrieved from the Patient DB). The schema of the

Patient DB mirrors the schema of the Clinical DB.

Therefore, the interaction with the Clinical DB

during the acquisition phase makes it possible to

automatically retrieve data from the Patient DB at

execution time. CG-EM stores the execution status

in another DB (CG Instances) and interacts with the

user-physician via a graphical interface (CG-IM).

GLARE’s architecture is open: new modules and

functionalities can be easily added if\when

necessary. In the latest years, several new modules

and\or methodologies have been added to cope with

Supporting Multiple Agents in the Execution of Clinical Guidelines

209

automatic resource-based contextualization (ADAPT

module, (Terenziani et al., 2004)), temporal

reasoning (TR, (Anselma et al., 2006)), decision

making support (DECIDE_HELP, (Montani et al.,

2005)), model-based verification (VERIFY,

(Bottrighi et al., 2010)), and comorbidities

(COMORBID, (Piovesan et al., 2014)).

Figure 1: Architecture of GLARE. Rectangles represent

computation modules, and ovals data/knowledge bases.

Representation Formalism. In the GLARE project,

a GL is represented through the set of actions

composing it. GLARE distinguishes between atomic

and composite actions. Atomic actions can be

regarded as elementary steps in a GL, in the sense

that they do not need a further decomposition into

sub-actions to be executed. Composite actions are

composed by other actions (atomic or composite).

Four different types of atomic actions can be

distinguished in GLARE: work actions, query

actions, decisions and conclusions. Work actions are

basic atomic actions which must be executed on the

patient, and can be described in terms of a set of

attributes, such as name, (textual) description, cost,

time, resources, goals. Query actions are requests of

information, which can be obtained from the outside

world (physicians, Databases, knowledge bases).

Decision actions are specific types of actions

embodying the criteria which can be used to select a

alternative paths in a GL. In particular, diagnostic

decisions are represented as an open set of triples

<diagnosis, parameter, score> (where, in turn, a

parameter is a triple <data, attribute, value>), plus a

threshold to be compared with the different

diagnoses’ scores. On the other hand, therapeutic

decisions are based on a pre-defined set of

parameters: effectiveness, cost, side-effects,

compliance, duration. Finally, conclusions represent

the output of a decision process. Composite actions

are defined in terms of their components, via the

“has-part” relation. Control relations establish which

actions might be executed next and in what order.

We distinguish among four different control

relations: sequence, constrained, alternative and

repetition. The description of sequences usually

involves the definition of the minimum and

maximum delay between actions. Complex temporal

constraints between actions (e.g., overlaps, during)

can be specified using constrained control relations.

In particular, action parallelism can also be

supported through this feature.

Acquisition. GLARE’s acquisition module (CG-AM

in Figure 1) provides expert-physicians with a user-

friendly and easy-to-use tool for acquiring a GL. In

order to achieve these goals, GLARE provides: (i) a

graphical interface, which supports primitives for

drawing the control information within the GL, and

ad hoc windows to acquire the internal properties of

the objects; (ii) facilities for browsing the GL; (iii)

an “intelligent” help and consistency checking

including name and range checking, logical design

criteria checks, and semantics checks concerning the

consistency of temporal constraints in the GL.

Execution. A dedicated module has been developed

to support the execution of a GL on a specific

patient, adopting the “agenda technique” (see

(Anselma et al., 2006)). Basically, though the

“agenda technique”, GLARE is able to identify all

the next actions to be executed in the current GL,

and a window of time during which such actions

have to be executed (according to the GL temporal

constraints).

Testing. GLARE has been already tested

considering different domains, including bladder

cancer, reflux esophagitis, heart failure, and

ischemic stroke. The acquisition of a GL using

GLARE is reasonably fast (e.g., the acquisition of

the GL on heart failure required 3 days).

META-GLARE. In the last years, a new GL

system, META-GLARE, has been designed, on top

of GLARE. Indeed, META-GLARE is a “meta”

system, in that it takes in input a GL representation

formalism, and automatically generates a GL system

to acquire and execute GL expressed in the input

formalism. To test it, an extended formalism has

been used (see (Bottrighi and Terenziani, 2016)). In

the following, we refer to such an extended

formalism as “META-GLARE formalism”. In

particular, META-GLARE formalism extends

GLARE’s one with the possibility of specifying not

only 1:1 arcs (i.e., arcs with just one input action and

one output action), but also 1:n, n:1 and n:n arcs.

Such an additional feature is very useful to easily

model the parallelism between actions.

GLARE and META-GLARE have been

developed in Java, to take advantage of its portability.

HEALTHINF 2018 - 11th International Conference on Health Informatics

210

As a consequence, GLARE can run similarly on any

hardware/operating-system platform.

3 GL ANNOTATIONS

In order to support the coordination of different

healthcare agents during the execution of a GL on a

specific patient, the description of the GL actions

must be extended to consider several additional

aspects. For each one of such aspects, we augment

the representation formalism with an additional

attribute, modelling it. In the following we refer to

such attributes as (action) annotations. First of all,

the possible contexts in which an action can be

executed must be specified.

• Context annotation: it specifies where the

action can be executed (e.g. in-patient care,

community medicine). Observe that a context

is not necessarily a physical place, but it is an

operative environment. For instance,

community medicine can refer to the

patient’s home or to the general practitioner’s

ambulatory. A set of contexts for an action

can be specified, meaning that the action can

be executed in any one of the contexts

specified in the list;

In many practical cases, it is important to

distinguish between the responsible of an action (or

of a whole part of a GL; for instance the head

physician of an hospital department), and the

executor of the action (for instance, a physician or a

nurse of that department). Indeed, to be

“appropriate” a responsible (executor) must have a

proper qualification, and, in some cases, some

specific additional competence (other than the ones

typically held by all the agents having the specified

qualification). To cope with such issues, we further

add six annotations:

• responsible_qualification: it specifies who

can be responsible of the action (e.g.

neurologist, gastroenterologist, …). A list of

qualifications can be specified, meaning that

the responsible must have (at least) one of the

qualifications in the list;

• responsible_competence: it specifies that

the must have specific abilities (e.g. expert in

the alcohol-related disorders management).

Such an attribute is optional. A list of

competences can be specified, meaning that

the responsible must have all the

competences in the list;

• delegate_qualification: it specifies who can

be delegated to manage the action (e.g.

physician, nurse); A list of qualifications can

be specified, meaning that the delegate must

have one of the qualifications in the list;

• delegate_competence (optional): it specifies

that the action can be managed only by agents

with some specific abilities (e.g. alcohol-related

disorders management). A list of competences

can be specified, meaning that the delegate must

have all the competences in the list;

• executor_qualification: it specifies who can

execute the action (e.g. physician, nurse); A list

of qualifications can be specified, meaning that

the executor must have one of the qualifications

in the list;

• executor_competence (optional): it specifies

that the action can be executed only by agents

with some specific abilities (e.g. alcohol-related

disorders management). A list of competences

can be specified, meaning that the executor must

have all the competences in the list;

When a GL is being acquired, we impose that

each action in it is annotated with a specification of

a list of possible contexts and of a list of possible

qualifications of responsibles and executors. This is

mandatory, and the acquisition module is extended

to support the acquisition of such annotations (see

Section 4). On the contrary competence annotations

are optional. In case the competence list is empty, no

specific restriction needs to be applied; otherwise,

only the agents having the required competences are

allowed to be responsible for or to execute the action

at hand.

Example. The action “Brief intervention for

hazardous and harmful drinking” (see action 11 in

Figure 3) in the alcohol-related disorders treatment

GL (Scottish Intercollegiate Guidelines Network,

n.d.) is described as follows:

• resposible_qualification: physician;

• resposible_competence: \

• delegate_qualification: physician;

• delegate_competence: \

• executor_ qualification: physician, nurse;

• executor_competence: \

• context: community medicine, SERT medicine

(SERT is the acronym for “SERvizio per le

Tossicodiopendenze”, an Italian service similar

to the Mental Health Service in U.S.A.), in-

patient care, hospital ambulatory care.

Supporting Multiple Agents in the Execution of Clinical Guidelines

211

In addition, as an independent data structure, we

support the annotation of a whole GL with a set of

continuity constraints. Such constraints are used to

model the fact that, in many practical cases, it is

preferable to assign “homogeneous” sets of actions

in a GL to the same responsible (or, in some cases,

executor). For instance, it might be preferable that

the same neurologist is responsible of all the

neurological activities performed on a given patient,

and that the different EMG examinations of a patient

are executed by the same specialist. Notably,

continuity constraints are interpreted as

“preferential” constraints by our system (see Section

4), but admits violations (e.g., after a period, a

physician may, for any reason, not be able to

continue to treat a given patient).

In the next sections, we will present how

annotations are formalized in our approach, and how

they are treated by META-GLARE.

3.1 Basic Ontology

GL annotations can be modeled on the basis of three

taxonomies, and of the relations between them. Part

of the taxonomies and relations are graphically

shown in Figure 2. The ontology of contexts is a

“part-of” taxonomy, in which each context can be

further specified by its components. For instance, in

Figure 2, FAMILY, HOSPITAL and COMMUNITY

MEDICINE are three possible contexts, and

NEUROLOGY, GASTROENTOROLOGY and

INTERNAL MEDICINE are some of the

departments that are part of hospitals. Qualifications

can be modeled through a standard “isa” taxonomy,

in which each qualification can be further refined

(isa relation) by its specializations. For instance, in

Figure 2, Nurse and Physician are two possible

qualifications. In turn, NEUROLOGIST,

GASTROENTEROLOGIST and INTERNIST are

specializations of PHYSICIAN. Analogously, also

competences are modeled by an “isa” taxonomy. For

instance, in Figure 2, (the competence in)

PERIPHERAL NEUROPATHY is a specialization

of (competence in) NEUROLOGY, which is a

specialization of MEDICAL COMPETENCE.

Besides concepts, which denote classes of

entities, the ontology also includes instances,

denoting specific entities. Each instance is connected

to its class through an “instance-of” relation. For

example, in Figure 2, Neuro2 is an instance of

Neurology in Azienda Ospedaliera San Giovanni

Battista (which is an instance of Hospital); Mario

Rossi is an instance of Neurologist (thus, given the

transitivity of the isa relation, Mario Rossi is also an

instance of Physician). It is worth noticing that,

while the entities in the context and qualification

taxonomies have instances, competences do not have

them (they are individual concepts). Besides part-of,

isa and instance-of relations, other relations are

useful to represent our domain. Agents (which are

instances of Qualifications) are related to the

contexts they belong by the belong-to relation.

Additionally, agents may have competences, and

this fact is represented by the has-competence

relation. For instance, in Figure 2, Mario Rossi

belongs to Neuro2, and has specific competence

about Peripheral Neuropathy. Contexts and persons

have contacts (usually phone numbers).

On the other hand, continuity constraints are

simply formalized, for each GL, by an independent

data structure, modeling

(i) the sets of actions which should (preferably)

have the same responsible;

(ii) the sets of actions which should (preferably)

have the same delegate;

(iii) the sets of actions which should (preferably)

have the same executor.

The definition of continuity constraints is a

refinement process. First the user can define the

continuity constraints concerning the responsibles.

Then, within each responsible-level continuity

group, she can further specify continuity groups for

possible delegates. Finally, continuity execution

groups can be defined, within the delegate-level

continuity groups.

Figure 2: Ontology of contexts, qualifications and

competences and their instances.

4 SOFTWARE TOOLS

4.1 Navigation Tool

We have developed a navigation tool to facilitate the

navigation through the above ontology. Such a tool

provides two types of facilities:

(1) schema browsing,

(2) instance browsing.

HEALTHINF 2018 - 11th International Conference on Health Informatics

212

The schema browsing facility allows users to

navigate the ontology (using the part-of and isa

relations) and to find qualifications/contexts/

competences.

The instance browsing facility allows users to

find a specific agent on the basis of the relations

part-of, isa, instance-of, has-competence, belong-to.

For example, it is possible to find an agent on the

basis of a qualification (e.g. Physician), a context

(e.g. Neurology) and, possibly, a competence (e.g.

Peripheral Neuropathy). This facility can give in

output (i) one or more agents (and their contact

information) satisfying the requirements, or (ii) one

or more specific contexts, in which agents having

the required qualification and competences operate.

4.2 Acquisition

We have extended GLARE with an annotation

support, supporting the acquisition of GL

annotations. We have developed a user friendly

Graphical User Interface (GUI). To achieve such a

goal, we enrich the acquisition GUI to provide users

with schema browsing facilities (section 4.1).

Moreover, we have developed an ad-hoc module

to support the definition and the acquisition of

continuity constraints. The user can use this module

to browse the GL and to specify the set of actions in

the GL which belong to a continuity constraints by

selecting such actions in the graphical representation

of the GL.

4.3 Execution Engine

We now extend the execution engine of META-

GLARE to support the distributed execution of GLs.

Specifically, we provide facilities to support the

identification of the responsible(s), of delegate(s)

and of the executor(s) for the next action(s)

according to the GL annotations.

Already in its original version (Terenziani et al.,

2014), META-GLARE execution engine was

adopting an agenda, containing a set of pairs

{(A1,TA1), …,(Ak,TAk)} representing the actions to

be executed next (A1,…,Ak), and the window of time

within which the actions have to be executed

(TA1, …,TAk). Notably, more than one pair may

appear in the set, to support concurrent execution.

To support the management of responsibilities\

delegations\executions, we add, for each action A in

the agenda, a new data structure StackA, called agent

stack (of A), of the form StackA: <(X1, role1),

…,(Xk, rolej)> where Xi is a specific agent, and roleh

her role in the management of the action A

(i.e., responsible (R), delegate (D), or executor (E))1.

The execution of a GL starts with an

initialization phase. All the initial actions are

inserted into the agenda, together with the window

of time in which they must be executed. Here and in

the following algorithms, we adopt the approach in

[9] to determine the window of time in which each

action has to be executed, on the basis of the

temporal constraints in the GL. For each one of such

actions, and for each actions belonging to the

Responsibility Continuity Group (“RCG” in the

following algorithm) of such actions, the agent stack

is initialized. In such a way the continuity of

resposibles is granted.

Notably the responsibles of the first actions are

predetermined and provided as input to the

execution engine.

The GL execution engines operates as described

by Algorithm 2. For each action A in the agenda, the

GL execution engine starts its execution by sending

the execute message (line 2) to the agent on the top

of the agent stack StackA, asking her to manage the

action A in the time window TA according to her

role. In case action A is executed (line 3), A is

removed from the Agenda (line 4). Thus, the

execution engine evaluates the set S of the next

actions in the GL to be executed, using the get_next

function (line 5). Notably, identifying the next

actions which have to be executed during the

execution of a GL is a standard operation (see (Isern

and Moreno, 2008)). For the META-GLARE

approach see (Terenziani et al., 2014).

Each action B belonging to S is pushed onto the

Agenda. Then, in the case that B has not a

responsible (i.e., StackB has not been created yet),

the execution engine asks to the responsible of A

(i.e. the agent stored at the bottom of StackA) to

search a responsible for B and the other actions in its

responsibility continuity group (i.e., RCG(B); line 9)

through the next_responsible? message. Notably,

since we manage continuity groups, the responsible

of an action B in the GL can be already determined

before the time when B is inserted in the agenda

(due to the fact that B belongs to the responsibility

continuity group of another action A already inserted

1 At the time of the execution of an action A, its agent

stack StackA should contain the responsible (bottom of

the stack), a certain number of delegates (zero

delegates in case no delegation has been performed;

more than one delegate are possible, to support

delegation of delegations), and one executor (which

might be also be the last delegate, or the responsible).

Supporting Multiple Agents in the Execution of Clinical Guidelines

213

in the agenda). Finally, the stack of A is deleted

(line 10).

1. Let {(A1,MA1), …, (Ak,MAk)} be the set of the
starting actions of GL, and of their
responsibles.

2. put the starting actions (and their time) in
Agenda

3. for each (A, TA) in Agenda do

for each B  RCG(A) do
initialize(StackB, MA, R)

Algorithm 1: Pseudocode of the initialization of the GL

executor engine.

1. for each (A, TA) in Agenda do
2. OUTsend (top(StackA),execute(A,TA))
3 if (OUT == OK) then
4. Remove A from Agenda
5. S  get_next(A)
6. for each B in S do
7. put in Agenda B
8. if B has no responsible then
9. send(next_responsible?

(bottom(StackA), RCG(B))
10. Delete StackA
11. else
12. pop(stack of A)
13. goto 2

Algorithm 2: Pseudocode of GL executor engine.

Otherwise, in case A is not executed (i.e. the

agent on the top of StackA rejects its role), a pop on

StackA is performed (line 12). Thus, A remains in

Agenda and the engine executor has to handle it

again sending an execute message to the new top of

the stack of A.

Notably, we support the fact that an agent

accepts the responsibility, the delegation or the

execution of a set of actions (all the actions in a

continuity group) but, later on, stops to operate on

some of the accepted actions. In such a case, the GL

execution engine “goes up” in the agent stack of the

“rejected” actions to find new delegates or

responsibles. Notably, though the current

responsible may decide not to operate any more on

the actions he previously accepted, before “retiring”

she has to find a new responsible for them

4.4 Support to Agents

As described above, we consider three different

categories of agents in GL execution: responsibles,

delegates, and executors. Each of them has different

rights and duties, and for each of them we provide

different supports.

A first set of facilities has the goal of supporting

agents to find proper responsibles, delegates and

executors of one or more GL actions.

The find_responsible function allows an agent to

use the instance browsing facility to find a set of

agents that satisfy the requirements expressed in the

GL annotations. The agent selects one of them as the

responsible for the action A (if A is in a continuity

group, all the actions in the continuity group are

considered). Notably, finding a responsible for a

continuity group of actions does not only involve the

selection of an appropriate (i.e., satisfying the

annotations of the actions) agent in the ontology, but

also to interact with her to know whether this agent

accepts or not (by sending the

accept_responsibility?({(A1,TA1)…,(Ak,TAK)})

message. In the case the agent gives a positive

response the agent stacks of A1, …, AK are created,

specifying the new responsible, otherwise the

research for a responsible goes on.

The find_delegate and find_executor functions

operate similarly, supporting the identification of

appropriate delegates (if desired) and executors

(compulsory) to actions (through the use of

accept_delegation? and accept_execution?

messages) and taking into account continuity groups.

In our approach, each agent has the possibility to

receive and send different types of messages,

depending on her current role (responsible, delegate,

executor) in the execution of the GL.

Responsible.

Receipt of an execute(A,TA) message. When the

responsible of an action A receives an execute(A,TA)

message, it means that it has previously accepted the

responsibility of such an action. However, it may be

the case that, for any reason, at the time when A

must be executed, the responsible wants\needs to

decline (e.g., the responsible of a patient with a

chronic disease may retire, or move away). We

allow her to do so, but with a restriction: the current

responsible is in charge of finding a new responsible

for the action A and the other actions (not executed

yet) in the responsibility continuity group of A

(using the find_responsible function). On the other

hand, if the responsible retains her responsibility,

she still has several options: she can

(i) delegate DCG(A) (i.e., A and all the other

actions in the Delegate Continuity Group of

A), through the find_delegate function

(ii) find an executor for ECG(A) (i.e., A and all

the other actions in the Executor Continuity

Group of A, through the find_executor

function,

(iii) directly execute A herself

HEALTHINF 2018 - 11th International Conference on Health Informatics

214

Receipt of a next_responisble?({(A1,TA1),…,

(Ak,TAk)} message.

The current responsible is in charge of

identifying an appropriate responsible for the actions

A1… Ak. To support her in this task, we provide the

find_responsible function, described above.

Receipt of an accept_responsibility?({(A1,TA1),…,

(Ak,TAk)} message.

The agent may accept or reject the new

responsibility.

Notably, soon after the acceptance of the

responsibility of a set of actions {(A1,TA1),…,

(Ak,TAk)} (a Responsibility Continuity Group of

actions), the new responsible can soon search for

delegates or executors for such actions (considering

their Delegate and Executor Continuity Groups

respectively), using the find_delegate and

find_executor facilities. In such a way, the

mechanism of determining delegates and executors

can proceed in a (partially) asynchronous way with

respect to the actual execution of actions in the GL.

Delegate.

When a delegate receives an execute(A,TA)

message, she may decline. Such a situation is

directly managed by the execution engine (see

Algorithm 2), which pops the delegate from StackA

and send the execute(A,TA) message to the new top

of the stack. On the other hand, if the delegate

retains her role, she can delegate DCG(A), find an

executor for ECG(A) or directly execute A herself.

Additionally, she may accept or reject an

accept_delegation?({(A1,TA1),…, (Ak,TAk)} request.

Notably, as in the case of responsibles, soon

after the acceptance of the delegation of a set of

actions {(A1,TA1),…, (Ak,TAk)} the new delegate

can soon look for delegates or executors for such

actions.

Executor.

When an executor receives an execute(A,TA)

message, she may decline. Such a situation is

directly managed by the execution engine, as

described above (concerning delegates). Otherwise,

she must execute action A within the time interval

TA. Additionally, she may accept or reject an

accept_execution?({(A1,TA1),…, (Ak,TAk)} request.

5 EXAMPLE

In this section, we present an application of our

approach to a GL for alcohol-related problems

(Scottish Intercollegiate Guidelines Network, n.d.),

adapted to the Italian context (see Figure 3).

The GL starts with a request of some clinical

data (query action 1), used in the following decision

action (decision action 2), which is meant to

diagnose whether the patient is currently experien-

cing a crisis state. The management of an alcohol-

related crisis is outside the GL scope. If, on the other

hand, the patient is not experiencing a crisis, her

history is collected (query action 3), to distinguish

whether it is the first time that the patient is in

treatment for alcohol-related problems, or not

(decision action 4). New patients require the

collection of biological markers, blood alcohol

concentration and anamnestic data (data request 5

and work action 6), while this data collection is not

needed for patients who were already cared for

alcohol related disorders (data request 12 and work

action 13). For latter patients, an evaluation of

biological markers and blood alcohol concentration

(decision action 14) are required, to decide whether

monitoring them or proceed with a detoxification.

Focusing on new patients, a diagnosis about the

presence of alcohol-related problems is performed

(decision action 7), on the basis of the collected

information. Ifthe patient does not show alcohol-

related problems, the GL execution is ended.

Otherwise, two different treatments can be applied,

depending on the severity of alcohol-related

problems; both start with a screening test (work

actions 8 and 9 respectively). Focusing on patients

who show a mild alcohol-dependence (work action

9), after evaluating the screening test results

(decision action 10), the patient can be selected for a

brief intervention for hazardous and harmful

drinking (composite action 11), which basically

consists in a set of motivational interviews.

Figure 3: META-GLARE graphical representation of part

of the GL on the treatment of alcohol related disorders.

Exploiting the annotation support (see Section 4.2),
we have annotated all the actions defining the
possible qualification(s) of its responsible, delegate
(if any) and executor. Moreover, we have identified
and specified the continuity groups in the GL. In this
specific application, possible values for the attributes

Supporting Multiple Agents in the Execution of Clinical Guidelines

215

Figure 4: The annotations of actions in Figure 3.

in the annotations are the following:

• context: Community medicine (C1), SERT

medicine (C2), in-patient care (C3), hospital

ambulatory care (C4), social services (C5);

• qualification: physician (R1), nurse (R2),

healthcare assistant (R3), social assistant (R4),

laboratory technician (R5).

The treatment continuity criteria demands that all the

actions corresponding to the initial evaluation of the

patient status (actions 1-4) must have a unique

responsible (responsibility continuity group RG1;

see Figure 4), which must be a physician (R1) or a

social assistant (R4). The continuity group RG1 is

further divided into two “subparts”, corresponding to

the two delegation continuity groups DG1 and DG2.

In particular, DG1 corresponds to the identification

of a crisis currently in progress (actions 1 and 2) and

DG2 corresponds to the identification of previous

alcohol-related disorder treatments (actions 3 and 4).

Moreover, due to the execution continuity

constraints, action 1 and action 2 belong to a single

execution continuity group (EG1) and the actions 3

and 4 to a single execution continuity group (EG2).

The executor of the actions in EG1 must be a

physician (R1), or a social assistant (R4), or a nurse

(R4). The actions in EG2 have the same constraints

and the same annotations. After action 4, there are

two alternative treatment paths. One path manages

patients who are treated for alcohol correlated

problems for the first time. Such a path is annotated

with a responsibility continuity group RG2 on the

actions to evaluate the patient’s problem (action 5

and 7) and with a responsibility group RG3 on the

exams needed for such an evaluation (action 6). RG2

and RG3 require a physician (R1) as responsible.

Notably, a continuity group can contain non-

contiguous actions (e.g., RG2 is composed by action

5 and 7 which are not contiguous in the GL).

In the following, we exemplify how META-

GLARE extended execution engine can work on the

above part of the GL. For the sake of simplicity, we

omit the management of temporal constraints.

STEP 0: at the beginning of the execution, the

META-GLARE executor engine identifies action 1

as the first action of the GL, and puts it in the

agenda. We suppose that agent X, who is a social

assistant in the social services SS1, is the responsible

of action 1. Since action 1 belongs to RG1, X is also

the responsible of all the actions belonging to such a

continuity group (i.e., actions 1, 2, 3 and 4). Thus,

the agent stacks of the four actions are created and

initialized with X as responsible. In the initial step,

the stacks for actions 1-4 are therefore initialized as

follows (line 3 of Algorithm 1):

stack1: <(X,R)>; stack2: <(X,R)>; stack3: <(X,R)>;

stack4: <(X,R)>.

The agenda of the execution engine contains

only action 1 (and its temporal window, not

considered in the example).

Agenda: <1>.

STEP 1: the executor engine sends an execute

message for each action in the agenda (line 2 on

Algorithm 2). Action 1 is the only action in the

agenda, therefore the executor engine sends a

message to the top element of the stack1 (i.e., to X)

to perform the execution of action 1. X receives the

execute message and she decides to be the executor

of action 1. Thus, X is put in the stack of action 1 as

executor, and since actions 1 and 2 belong to the

execution continuity group EG1, she is pushed as

executor also onto the stack of action 2. At this

point, the status of agent stacks and the agenda is the

following:

stack1: <(X,R),(X,E)>; stack2: <(X,R),(X,E)>;

stack3: <(X,R)>; stack4: <(X,R)>.

Agenda: <1>.

X executes action 1 (returning “OK”, line 2).

Since action 1 has been executed, the executor

engine removes it from the agenda (line 4). Then

(line 5), the next action of the GL is found (i.e.

action 2) and it is put in the agenda (line 7). Action 2

has already a responsible, thus the stack of action 1

is simply deleted.

stack2: <(X,R),(X,E)>; stack3: <(X,R)>; stack4:

<(X,R)>.

Agenda: <2>.

STEP 2: the above procedure is similarly repeated

for action 2 in the Agenda. We suppose that, after

receiving the message, X, who is registered as

executor of action 2, executes it, deciding that

patient is not experiencing a crisis. Thus, action 3 is

HEALTHINF 2018 - 11th International Conference on Health Informatics

216

identified as next action and put in the agenda. Also

in this case, action 3 has its responsible already

defined (i.e. X).

stack3: <(X,R)>; stack4: <(X,R)>.

Agenda: <3>.

STEP 3: Action 3 is the only action in the Agenda

and is managed sending an execute message to its

responsible X (i.e. X is on the top of stack3).

However, in this case we suppose that X decides to

delegate such an action. Exploiting the instance

browsing facility of our navigation tool (see Section

4.1), X searches for an agent satisfying the

requirements (i.e. a social assistant or a physician in

her context). Through the navigation tool, X is

provided with a list of possible agents. She selects a

preferred one from the list and ask for acceptance,

until she receives a positive reply. We suppose that

(possibly after some negative replies of social

assistants) the social assistant Y accepts. Since

actions 3 and 4 belong to the same delegation

continuity group (i.e. DG2), Y is also delegated for

action 4.

stack3: <(X,R),(Y,D)>; stack4: <(X,R),(Y,D)>.

Agenda: <3>.

Y decides to be the executor of action 3. Since

actions 3 and 4 belong to the same execution

continuity group EG2, Y is nominated also as the

executor of action 4 and she is put in the two stacks

as executor.

stack3: <(X,R),(Y,D),(Y,E)>;

stack4: <(X,R),(Y,D),(Y,E)>.

Agenda: <3>.

Y executes action 3 and action 4 is put in the

agenda as next action.

stack4: <(X,R),(Y,D),(Y,E)>.

Agenda: <3>.

STEP 4: the engine takes action 4 from the agenda,

then it notifies to Y (i.e. Y is on the top of stack4)

that action 4 has to be executed. Exploiting the

instance browsing facility Y identifies the agent W

as executor of action 4. W satisfies the action

annotations (i.e. she is a nurse and operate is SS1).

W accepts the assignments and she is put on stack4

as executor.

stack4: <(X,R),(Y,D),(W,E)>.

Agenda: <4>.

W executes action 4 and identifies that the

patient is in treatment for alcohol-related problems

for the first time (i.e. action 5 is the next action).

Thus, action 5 is put in the agenda. Since action 5

has not yet a responsible (line 8), the system asks to

X, the responsible of action 4 (i.e., the element at the

bottom of the stack4) to find a responsible for the

next action. X must find a responsible who is a

physician (R1) and works either in a Community

medicine (C1) or in a SERT medicine (C2) or in-

patient care (C3) or in a hospital ambulatory care

(C4). Exploiting the instance browsing facilities, X

finds a physician Z, who works in the community

medicine CM2, and asks her for the responsibility of

action 5. Z accepts the responsibility and, since

action 7 belongs to the same responsibility

continuity group (RG2), Z is nominated as

responsible of both the actions in RG2.

Stack5: <(Z,R)>; Stack7: <(Z,R)>.

Agenda: <5>.

Then, the GL execution goes on in a similar way.

6 COMPARISONS AND

CONCLUSIONS

In this paper, we describe the first computerized

approach to GLs supporting many different crucial

issues for the distributed and coordinated execution

of GLs by multiple healthcare agents. Our

approachgrants for the continuity of the treatment of

patients (i.e., the fact that, in any moment during the

GL execution, there is always a responsible for each

one of the next actions to be executed on the patient)

through a support to the identification of the

responsibles, executors and contexts of execution of

the next actions. The extensions to the GL formalism

(Section 3) and to the GL execution engine and the

facilities in Section 4 fully achieve such a

challenging goal. Indeed, they support action

contextualization and (through the definition of

Continuity Groups) treatment continuity. They

provide support in the identification of responsibles,

delegates and executors of actions having the

required qualification, and the overall approach

grants that, whenever an action has to be executed,

there is always a current responsible for it, and

possibly delegates and executors (notably, if an

executor has not been already identified, the current

responsible is urged to do so). Notably, also the

temporal window in which actions must be executed

(given the temporal constraints in the GL) is taken

into account. Last, but not least, delegation is

supported, to enable the current responsible to take

advantage of the help of other healthcare agents.

Notably, we have described our approach on the

basis of METAGLARE, but it is worth stressing that

our methodology is completely general and system\

application-independent (i.e. other GL system can be

extended applying our approach).

Supporting Multiple Agents in the Execution of Clinical Guidelines

217

While in the literature there is no other approach

to computerized GL that has provided a support

considering all the aspects above, several approaches

have faced at least few of them.

Fox’s group proposed an extension of the

PROforma representation formalism (Sutton and

Fox, 2003) to specify who will execute an action.

However their goal is not the one of managing

agents interactions in different contexts: they exploit

agent information for better contextualizing GLs

taking into account local human resources, and for

flexibly adjusting them through delegation.

(Leonardi et al., 2007) propose a workflow-

based solution to manage chronic patients over long

time periods. In particular, the approach is meant to

allow patients to obtain the necessary health care

services by accessing different locations/

organizations, which can properly exchange/

communicate health data when needed. Their goal

(i.e. support cooperative work between different

healthcare organizations) is quite similar to ours;

moreover, the authors model organizational

knowledge (i.e. qualifications, resources etc.) by

means of ontologies – as we do. However, their

approach is not as flexible as ours, because

interactions between agents, and allocations of the

next action to a specific responsible, are strictly

predetermined by a contract and can not be

determined dynamically during the GL execution.

On the other hand, we allow the responsible of the

current action to navigate the ontology, and to

dynamically and freely identify the responsible

and\or the executor of the next action on the basis of

the available knowledge and constraints. Moreover,

they do not support delegation.

(Sánchez et al., 2011) propose an ontology-

driven execution of GLs. Their approach relies on a

multi-agent system, where every entity (i.e. actor or

structure) in a medical centre is represent by one

specific agent and every GL action is characterized

by hasResposible relation with one agent or a set of

agents. Their main contribution regards the

delegation issue in a supervised fashion and the

automation of the coordination internal activities

using a medical-organisational ontology. Since their

approach is meant to be applied within a specific

medical centre, it is focused on supporting

interaction in a distributed environment, where the

coordination between actors can not be managed

automatically.

Grando et al (2010) formalize cooperative work

in GL execution (but not distributed executions

across different contexts). The main issue they deal

with is delegation of tasks to specific members of

the working team, on the basis of their competences,

paying particular attention to responsibilities for

enacting a service, and for handling exceptions.

Specifically, they extend the design pattern

framework introducing the types role (qualification

in our approach) and actor, and a set of relations

between key concepts. Since actors have roles and

competences, they recall our notion of agent.

Therefore, they rely on concepts which are similar to

our annotation information, even if we resort to a

different mean for formalizing them (i.e. an

ontology). However, Grando et al. do not consider

contexts: in this sense, their approach is more

limited than ours, and not straightforwardly

extendable to deal also with distributed (and not just

cooperative) GL executions. Moreover, we provide

a set of software tools to manage the ontology in our

formalization.

(Wilk et al., 2015) propose a framework to

support GL execution, in which interdisciplinary

healthcare teams are involved. They define three

classes of agents (i.e. team manager, practitioner

assistant, patient representative), but they classes do

not correspond to qualification. They have the

concept of capability that is similar to competence.

They annotate actions, but their annotations are only

related to the capability requirements. They have

only the concept of executor of an action and not of

responsible. Moreover, they have the concept of

team, i.e. a set of agents (defined using a hybrid

approach) who managed the execution and are

coordinated by the team manager, i.e. the response-

ble of execution for the whole GL. The identification

of executor of an action is not general as ours: only

the team manager can identify the executors and first

she has to consider the agents in the team. Only in

the case than there is not any suitable and available

agents in the team, she can search an external agent

to execute the action and can add it to the team.

Notably, this is a clear limitation, since many GLs

can not have a single responsible. Considering also

the absence of context, their approach is not adapt to

deal with distributed executions.

(Bottrighi et al., 2013) is the approach most

closely related to the one we present in this paper. In

particular, in such an approach, actions are annotated

(coloured, in the terminology in (Bottrighi et al.,

2013)) with context, and qualification and

competences for the responsible, and different forms

of support are proposed to acquire and query

annotations, and to execute coloured GLs. Notably,

the approach we propose deeply extends the one in

(Bottrighi et al., 2013) to consider three significant

aspects, neglected in (Bottrighi et al., 2013):

HEALTHINF 2018 - 11th International Conference on Health Informatics

218

(1) we support the distinction between the

responsibles of actions, and their executors;

we support the delegation of responsibility

(2) we represent and manage continuity

constraints

(3) we manage the execution of GLs expressed

in META-GLARE formalism (while

(Bottrighi et al., 2013) considered only

GLARE formalism), thus also supporting

n:1, 1:n, and n:m arcs (i.e., concurrency in

the GL execution).

ACKNOWLEDGEMENTS

The authors are very grateful to Prof. Gianpaolo

Molino and Dr. Mauro Torchio of Azienda

Ospedaliera San Giovanni Battista in Turin (one of

the largest hospitals in Italy) for their constant

support, and for their help in the definition of the

case study.

REFERENCES

Anselma, L., Terenziani, P., Montani, S., Bottrighi, A.,

2006. Towards a comprehensive treatment of repeti-

tions, periodicity and temporal constraints in clinical

guidelines. Artif. Intell. Med., Temporal Representa-

tion and Reasoning in Medicine 38, 171–195.

Bottrighi, A., Giordano, L., Molino, G., Montani, S.,

Terenziani, P., Torchio, M., 2010. Adopting model

checking techniques for clinical guidelines

verification. Artif. Intell. Med. 48, 1–19.

Bottrighi, A., Molino, G., Montani, S., Terenziani, P.,

Torchio, M., 2013. Supporting a distributed execution

of clinical guidelines. Comput. Methods Programs

Biomed. 112, 200–210.

Bottrighi, A., Terenziani, P., 2016. META-GLARE: A

meta-system for defining your own computer

interpretable guideline system—Architecture and

acquisition. Artif. Intell. Med. 72, 22–41.

Field, M. J., Lohr, K. N. (Eds.), 1990. Clinical Practice

Guidelines: Directions for a New Program. National

Academies Press (US), Washington (DC).

Fridsma, D. B., 2001. Special Issue on Workflow

Management and Clinical Guidelines. J. Am. Med.

Inform. Assoc. 22, 1–80.

Gordon, C., Christensen, J. P. (Eds.), 1995. Health

Telematics for Clinical Guidelines and Protocols. IOS

Press, Amsterdam.

Grando, A., Peleg, M., Glasspool, D., 2010. Goal-based

design pattern for delegation of work in health care

teams. Stud. Health Technol. Inform. 160, 299–303.

Isern, D., Moreno, A., 2016. A Systematic Literature

Review of Agents Applied in Healthcare. J. Med. Syst.

40.

Isern, D., Moreno, A., 2008. Computer-based execution of

clinical guidelines: A review. Int. J. Med. Inf. 77, 787–

808.

Leonardi, G., Panzarasa, S., Quaglini, S., Stefanelli, M.,

van der Aalst, W.M.P., 2007. Interacting agents

through a web-based health serviceflow management

system. J. Biomed. Inform. 40, 486–499.

Montani, S., Terenziani, P., 2006. Exploiting decision

theory concepts within clinical guideline systems:

Toward a general approach. Int J Intell Syst 21, 585–

599.

Montani, S., Terenziani, P., Bottrighi, A., 2005. Exploiting

decision theory for supporting therapy selection in

computerized clinical guidelines. Lect. Notes Comput.

Sci. Subser. Lect. Notes Artif. Intell. Lect. Notes

Bioinforma. 3581 LNAI, 136–140.

Peleg, M., 2013. Computer-interpretable clinical guide-

lines: A methodological review. J. Biomed. Inform.

46, 744–763.

Piovesan, L., Molino, G., Terenziani, P., 2014. Supporting

Physicians in the Detection of the Interactions between

Treatments of Co-Morbid Patients, in: Healthcare

Informatics and Analytics: Emerging Issues and

Trends. IGI Global, pp. 165–193.

Sánchez, D., Isern, D., Rodríguez-Rozas, Á., Moreno, A.,

2011. Agent-based platform to support the execution

of parallel tasks. Expert Syst. Appl. 38, 6644–6656. y.

Scottish Intercollegiate Guidelines Network, n.d.

Management of harmful drinking and alcohol

dependence in primary care [WWW Document]. URL

http://www.sign.ac.uk/guidelines/fulltext/74/index.htm

l (last accessed 05.10.17).

Sutton, D.R., Fox, J., 2003. The Syntax and Semantics of

the PROforma Guideline Modeling Language. J. Am.

Med. Inform. Assoc. JAMIA 10, 433–443.

Terenziani, P., Bottrighi, A., Rubrichi, S., 2014. META-

GLARE: a meta-system for defining your own CIG

system: Architecture and Acquisition, in: KR4HC. pp.

92–107.

Terenziani, P., Montani, S., Bottrighi, A., Molino, G.,

Torchio, M., 2008. Applying artificial intelligence to

clinical guidelines: the GLARE approach. Stud. Health

Technol. Inform. 139, 273–282.

Terenziani, P., Montani, S., Bottrighi, A., Torchio, M.,

Molino, G., 2002. Supporting physicians in taking

decisions in clinical guidelines: the GLARE“ what if”

facility. Proc. AMIA Symp. 772.

Terenziani, P., Montani, S., Bottrighi, A., Torchio, M.,

Molino, G., Correndo, G., 2004. A context-adaptable

approach to clinical guidelines. Stud. Health Technol.

Inform. 107, 169–173.

Wilk, S., Astaraky, D., Michalowski, W., Amyot, D., Li,

R., Kuziemsky, C., Andreev, P., 2015. MET4:

Supporting Workflow Execution for Interdisciplinary

Healthcare Teams, in: Fournier, F., Mendling, J.

(Eds.), Business Process Management Workshops.

Springer International Publishing, Cham, pp. 40–52.

Supporting Multiple Agents in the Execution of Clinical Guidelines

219

