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Abstract: Cloud Computing opens new possibilities of service provisioning for sensor networks, necessary as they 
become more pervasive and distributed. This paper introduces a Model as a Service approach and a modeling 
language specifically defined for representing sensor network architecture, based on a four-phased method. It 
describes the metamodel and the correspondent environment for graphical modeling, with examples of sensor 
network models for road traffic monitoring. The sensor modeling environment was integrated on a private 
Cloud platform, within a virtual machine template, to provide sensor network modeling as a service, which is 
currently available for our university students. This serves as a foundation for delivering new services based 
on the interpretation of the resulted sensor network architecture models. 

1 INTRODUCTION 

Sensor networks are present in plenty of distributed 
applications characteristic to the Internet of Things 
(IoT) era (Flammini and Sisinni, 2014), and they have 
a great potential to get advantage of the deployment 
in Cloud Computing environments for various goals, 
like data integration, advanced processing, or global 
interoperability. This paper approaches a kind of 
Cloud services based on the Model as a Service 
(MaaS) concept, whose applicability for sensor 
networks may be considerably extended. MaaS is 
derived from the Model Web and Everything as a 
Service concepts, as shown in (Roman et al., 2009). 
Roman et al. give an example of MaaS application for 
providing access to oil spill models, with the purpose 
to support decisions and increase the preparedness to 
this type of hazard. The work outlines important 
challenges related to the explicit manifestation of the 
model, separate from the rest of the software, as well 
as the importance of performing model updates based 
on data collected by sensors that might indicate a 
change in the environmental conditions. Researchers 
discovered a big potential for MaaS in domains like 
geosciences (Li et al., 2014) and, generally, whenever 
the models engage big volumes of data and must be 
executed repeatedly. Thus, MaaS may be considered 
a means to get models more accessible and widely 
used in executable settings and not just as simple 
documentation.  

This paper presents a MaaS-enabled environment 
for sensor network architecture modeling, offered as 
a service in an IBM CloudBurst platform, and used 
for educational applications. The graphical modeling 
language was specifically conceived for sensor 
networks and is accompanied by an editor and by 
interpreters developed within the Generic Modeling 
Environment (GME) (GME, 2017) and migrated to 
MaaS. The language resulted from the definition of a 
metamodel and the customization of a concrete 
notation. It is useful for representing models of sensor 
network architecture, which may subsequently be 
interpreted for reconfiguration and visualization of ad 
hoc networks, or for generation of standard 
descriptions in SensorML. It was elaborated based on 
the analysis of several sensor taxonomies and on the 
study of multiple sensor networks presented in the 
scientific literature.  

The remainder of the paper is structured in the 
following sections: Section 2 presents the Model as a 
Service concept; Section 3 describes our sensor 
network modeling environment and the way it was 
integrated in a Cloud Computing environment and 
offered as a service; Section 4 offers details about the 
realization of the sensor network modeling language, 
whose editor is delivered as a service. In Conclusion 
we discuss other services that may be provided as 
MaaS, starting from existing and future software, 
capable to automatically interpret sensor network 
models defined in this environment.   
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2 MODEL AS A SERVICE 

Model as a Service is a form of XaaS (Everything as 
a Service). A more detailed classification introduces 
the concept of Model and Simulation as a Service 
(MSaaS) (Cayirci, 2013), with three types of services: 
Modeling as a Service, Model as a Service, and 
Simulation as a Service. Another idea resulted from 
(Cayirci, 2013) is that it is possible to develop 
composite MSaaS, located either on a single 
datacenter, or on multiple ones.  

 A variant of MaaS called Model Web aims at 
creating “webs of interacting models”, and an 
initiative is proposed within the earth observation 
community (Nativiti et al., 2013). For instance, 
Model Web applications were introduced for climate 
change models (Skøiena et al., 2013), and the solution 
was also found suitable to give access to non-
homogeneous models for geo-analysis (Yuea et al., 
2016).  

Model Web is considered an implementation style 
derived from Systems of Systems (SoS) based on 
semantic web. Guided by principles like open access 
and publishing new resources in a simple way, the 
idea is to support interactions between models and 
between modelers. The Model Web is rather a 
precursor of MaaS, but it is still confronted with 
strong interoperability challenges. 

The concept of MaaS is also associated with 
quantitative analysis (Yung Rowe, 2014). Due to the 
large-scale data resulted from the Internet of Things 
and social media, it may be useful to subscribe to 
MaaS, and to use the model outputs for decision 
support. MaaS is considered an agile approach to 
deliver data services in the context of Big Data and of 
heterogeneous lakes of data that may be structured, 
semi-structured or non-structured (Piscopo, 2014). 

An example of geospatial MaaS is ArcGIS Online 
(Esri, 2017), which offers services related to 
geoinformation models, including mapping and 
visualization. Generally, the use of MaaS in 
geosciences exonerates users not only from general 
software maintenance, but also from setting up 
models, which may be a repetitive and very complex 
task (Li et al., 2017). It also offers powerful resources 
in terms of data storage and computational speed. Li 
et at. proposed a framework where a model registry 
gives access to a repository of climate, polar and 
environmental models, based on a Cloud Computing 
platform. They refer to executable models, whose 
results can be obtained through a web interface.  

3 SENSOR NETWORK 
MODELING IN CLOUD  

3.1 Modeling Environment 

This paper introduces a modeling environment 
realized within Generic Modeling Environment and 
deployed in Cloud for the restricted use of our 
students.  

First, GME was used to represent the Sensor 
Network language in an abstract way, as a metamodel 
(further described in Section 4.3). Then, we 
introduced a concrete notation for each modeling 
element, and afterwards we used the GME 
metamodel interpreter to generate an environment 
configured for our language. The resulted modeling 
language is graphical, i.e. graph-based, and the model 
editor uses specific modeling elements, whose 
semantics are defined within the specific application 
domain, i.e. sensor networks.  

For configuring the model visualization, it is also 
possible to add one or more “aspects”, which allow 
one to see just a part of the modeling elements, in 
order to reduce the model complexity and to show 
what is relevant for a particular point of view. For the 
Sensor Network language, we defined “aspects” that 
show parts of the model concerning Communication, 
Power, Memory, and Sensors respectively. 

Thus, the modeling environment allows one to 
represent sensor network models conforming to the 
metamodel created in GME (see Figure 1). The next 
paragraph explains the environment, but the model 
illustrated in Figure 1, representing the architecture of 
a sensor network for road traffic monitoring, is 
presented in detail in Section 4.4. 

The central pane represents a model drawn with 
the elements available on the left side (Part Browser), 
corresponding to the classes defined in the 
metamodel, but configured with specific notations 
(i.e. icons). The environment shows the editable 
attributes of a selected model element on the lower 
right side (Object Inspector).  

With double-click on an element, a new drawing 
pane may open, and one can edit a diagram for 
showing the structure inside that element. When the 
mouse is placed over a modeling element, one can see 
the kind of that element (from the metamodel) - in 
parentheses - e.g. the kind AggregationUnit for T-
Sink Node Lane 4, in Figure 1. 
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Figure 1: Modeling environment representing a sensor network for road traffic monitoring. 

3.2 Modeling Service in Cloud  

The previously described modeling environment for 
sensor networks was deployed in Cloud, in Virtual 
Machines (VM) replicated in respect with the number 
of students subscribed to a Model Driven Engineering 
course.  

3.2.1 Implementation 

The implementation used an IaaS (Infrastructure as a 
Service) Cloud system based on IBM Service 
Delivery Manager (ISDM), which has the same 
hardware configuration as the IBM CloudBurst 2.1 
medium configuration (Lemos et al., 2012):  

 14 Blades HS22 (72 GB RAM) 
 28 TB Raw Data Space. 

From the point of view of software, ISDM is more 
flexible and customizable, being able to integrate 
different types of servers (servers with Intel or Amd 
CPUs, Power systems, or even Mainframe) (Huche et 
al., 2012). 

In order to implement the solution, a virtual 
machine was created, installed with the required 
software and transformed into a template. The 
template was then discovered by the TSAM 
component (Tivoli Service Automation Manager) 
and registered in the Cloud service catalog using the 
Self Service Interface offered by the Cloud system. 
From this point on, the service implemented by the 
virtual machine was available and ready to be 
requested and deployed into one or more projects. 

The service can be offered using two methods:  
 As access to the modelling environment  
 As a virtual machine for each service request 

in the form of an IaaS service 
In this way, the user can benefit of the entire 
virtual machine, not only of the modeling 
software; after the service request has been 
processed and the virtual machine is available, 
one can connect using Remote Desktop 
Connection, and the username and password 
provided by the system 

The first method, i.e. the access to the modeling 
environment, can be applied in two different ways: 
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 For each service request, a virtual machine can 
be created, and each user will use his or her 
own VM, like in the previous IaaS solution; 
however, each VM is customized such that, 
each time a connection is made, the explorer 
process is killed, and the modeling software is 
launched; thus, the user only has access to the 
requested software, so one can consider that, by 
using an IaaS system, the modeling service is 
offered as Software as a Service (SaaS) 

 The other option is to deploy a VM for a 
predefined number of users. When a user is 
requesting a service, the VM is only 
reconfigured by TSAM, and a new user is 
added to the virtual machine; the VM 
configuration can be identical to the first 
solution, for offering access only to the 
software (killing explorer and starting the 
modeling software only) and can be installed 
with VNC (Virtual Network Computer), which 
offers the possibility to connect to the user 
session using a Java-enabled web interface. In 
this way, one can connect to the service only 
using a web browser. 

3.2.2 Service Request & Provisioning 
Process 

When requesting a service, the user will connect to a 
web interface, which is the Cloud Self Service 
Interface; the user authenticates with a registered 
username and a password and then, selecting the 
interface options, he or she can request a service in 
the form of a project, including the number of virtual 
machines to be created based on a template. The 
service request is filled with the following 
information: the name of the project, the description, 
the period of time when the project will be available, 
the name of the virtual machine template used to 
deploy the virtual machines included in the project, 
the additional software that will be installed, the 
number of virtual machines included in the project 
and their hardware configuration (number of virtual 
CPU cores, the number of tenths of physical CPU 
cores, RAM, swap space and HDD capacity). 

After the user submits the request, the service 
request is sent to the Cloud administrator to be 
processed. If the Cloud administrator approves the 
service request (SR), the SR is sent from the Self 
Service Interface to Tivoli Service Request Manager 
(TSRM) using REST API; the requester of the service 
is also notified that the request has been approved. 
Then, TSRM places the request into a queue and 
waits for the scheduled date and time. 

When the scheduled date and time arrive, the 
provisioning of virtual servers begins; if the 
provisioning is successful, then the user who 
requested the service is notified by email and receives 
information on how to access the VMs (VM hardware 
configuration, IP address, username, password). 
From this point forward, the VMs can be accessed 
and used; if the user wishes to modify the project (for 
example the RAM capacity of VMs, or the project 
schedule) the request is sent to the administrator to be 
approved and then the project is modified. If the 
project is canceled or the project end date arrives, 
then the virtual machines are powered off and then 
erased, and the resources are freed; a copy of the VM 
image can be done if the user requested it when the 
project was created or canceled. The user is notified 
at the end of the project, and also two days before the 
end date arrives, so he or she can modify the project 
schedule if needed.     

3.2.3 Testing the Solution 

From the preliminary tests, we noticed that, for a 
template having a size of 10 GB and a project with 20 
VMs, the process of offering the service takes about 
22 minutes. Using the same template into a project 
with 100 VMs, the process only requires 63 minutes.  

These performances are obtained because the VM 
template has a reduced size, and also because the 
project provisioning was done without processing 
other service requests in parallel. The small 
difference between the two tests exists because, in the 
first stage of project provisioning, TSAM checks the 
status of Cloud resources and has an intensive 
interaction with the Cloud hypervisor (VMware) and 
the Cloud database (DB2), which takes about 10 
minutes, before the VM template cloning starts; the 
cloning process takes lesser time because the size of 
the template is reduced, but also because the cloning 
is done in parallel on eight threads. 

4 SENSOR NETWORK 
MODELING LANGUAGE 

4.1 Background 

The service provisioning related to sensors is support-
ed by OGC (Open Geospatial Consortium) with the 
Sensor Observation Service (SOS), for registering 
sensors and giving access to the data measured by 
them through web services (OGC, 2017). SOS does 
not support a service for modeling the architecture of 
the sensor networks that acquire the data. 
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For sensor modeling there is a standard called - 
Sensor Model Language (SensorML) - focused on 
data models, position, description of the observed 
phenomena, and processes (OpenGIS, 2007). It does 
not support the description of a network topology.  

In the Model-Driven Engineering (MDE) 
community, there have been multiple attempts to 
model sensor networks. A comprehensive study on 
Wireless Sensor Networks (WSN) was presented in 
(Malavolta and Muccini, 2014), where several criteria 
were used for comparison: capacity to generate code, 
type of modeling language, aspects under considera-
tion (e.g. structure, behavior, mobility, power consum-
ption). Another survey, based on almost two thousand 
papers, was presented in (Essaadi et al., 2017). 

4.2 Method 

Based on the general theoretical background related 
to sensor networks, we applied an iterative method for 
developing the graphical modeling language.  

Phase 1 is the analysis of examples of sensor 
networks, for which one identifies the main concepts 
(terms) that describe the physical and the 
computational architecture.   

Phase 2 is focused on the creation of a 
metamodel, seen as the abstract syntax of the future 
language specific for modeling sensor networks. The 
aim is that any concept or relationship related to the 
real-world examples selected at Phase 1 can be 
represented as an instance of a metamodel class. The 
metamodel also considers existing classifications and 
taxonomies regarding measurements, sensor 
characteristics, or Wireless Communication 
Networks (WCN) in general (see Section 4.3).   

Phase 3 generates an editor of models conforming 
to the metamodel, introducing customized notations, 
and adding the abstractions that allow one to visualize 
different views and hide the rest of the model details 
– if the users need this. As explained in Section 3.1, 
in GME they are called “aspects”. 

Phase 4 was introduced for the metamodel 
validation. It consists of using the editor to represent 
models for all the examples analyzed at Phase 1. 

4.3 Metamodel 

Generally, sensor networks are represented 
informally for visualization purposes and formally for 
hypertext-based design, which requires programming 
skills. The language proposed here aims at 
reconciling the two approaches, i.e. obtaining an 
intuitive representation that is also compatible with a 

precise metamodel, which allows model execution 
within a program, and automatic transformation to 
other paradigms, for interconnection purposes.  

Our concern was the sensor network architecture, 
with a focus on structural aspects and less details 
about the behavioral ones. Moreover, the purpose was 
to elaborate a little language, and to raise the 
abstracting level as much as possible, yet to be 
capable to model a large variety of real-life sensor 
networks. This fits to the existing trend of developing 
little Domain-Specific Languages (DSL) (Erwig and 
Walkingshaw, 2014), and then compose them 
according to the needs of large-scale applications 
(Estublier and Ionita, 2005).  

The metamodel of the sensor network modeling 
language is composed of a core (named Sensor 
Network) and four other parts, defined according to 
the classification of WCN devices: Communication, 
Power, Memory, and Sensors (Cheekiralla and 
Engels, 2005). A sensor network may be composed 
of sensing, aggregation, communication, and 
processing units, and of sensors connected to each 
other (see Figure 2).  

We define ProcessingUnit as an element that may 
contain SoftwareUnit elements, dependent on one 
another. A software unit in our language represents 
any piece of software, be it a physical or a logical 
artifact, e.g. an architectural layer, a software agent, a 
service, or even an algorithm.  

A SensingUnit is an AggregationUnit that 
contains sensors, so it can perform acquisition of data. 
An AggregationUnit is used for gathering data 
originated from sensing units or from other 
aggregation units, and for transmitting them forward, 
but it may also perform some data processing. For this 
reason, it contains objects of the following kinds: 
CommunicationUnit, ProcessingUnit, and 
PowerUnit, connected to each other. 

A Sensor contains the attribute MeasurandType, 
having one of the following values: Acoustic, 
Biological, Chemical, Electric, Magnetic, 
Mechanical, Optical, Radiation, and Thermal, as in 
the classification from (White, 1987).  

The type of SensorNetwork is specified through 
an enumeration attribute: Standards-Based, Internet-
Connected, Context-Aware, Agent-Based, Service-
Oriented, Secure and Fault-Tolerant, Vehicle-Based, 
Habitat-Monitoring, and Multi-Owner, following the 
taxonomy proposed in (Fokum et al., 2008).  

The sensors characteristics are given in 
conformity with the abstract syntax from the Sensor 
part of the metamodel, with classes like: Operating 
Range, Power Supply, Output, Accuracy, Sensitivity - 
according to (Kalantar-zadeh, 2013). 
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Figure 2: Part of the metamodel. 

The metamodel was specified in the 
metamodeling language supported by Generic 
Modeling Environment. GME offers a metamodeling 
language whose main objects are: Atom (indivisible, 
yet characterized by attributes), Model (a composite 
of other modeling elements) and Connection (to 
represent links between model elements). The 
notation adopted in GME is very similarly to the 
UML (Unified Modeling Language) class diagrams, 
as noticed from Figure 2. As in UML, the triangle is 
used for generalization relationships, and the line 
ended with a diamond for compositions 

4.4 Example of Model 

According to the method described in Section 4.2, we 
performed multiple iterations for elaborating the 
metamodel and testing the use of the modeling editor. 
During one of these iterations, we studied a series of 
systems where wireless sensor networks were used 
for monitoring vehicle traffic. A comprehensive 
survey on this topic is presented in (Nellore and 
Hancke, 2016). Thus, in Phase 1 from our method, 
we studied multiple sensor networks described in the 

scientific literature, then in Phase 4 we modeled them 
with the specific modeling environment from Section 
3.1.  

One of these systems is meant to detect vehicles 
on a four-lanes road, using a Telematics Sensor 
Network (TSN) (Yoo, 2013). 

Figure 1, also illustrating the modeling 
environment, contains the upper part of the TSN 
model, containing the following objects of kind 
AggregationUnit:  
 four sink nodes, one for each lane, and  
 one base station, named T-BS-com node, which 

has a video camera and transmits the data to a 
ProcessingUnit named T-Mon Host.  

The names from this model are the ones given in 
(Yoo, 2013). Data are collected from two telematics 
sensor nodes per lane, named T-Sensor Node, 
instantiated from SensingUnit.  

We also added details for some of these elements, 
according to the description from Yoo’s article. For 
example, the elements inside a sensor node are: 
 MSP430 MCU, micro-controller, of kind 

ProcessingUnit  
 CC2590 RF Amplifier, of kind ProcessingUnit 
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 CC2420 Transceiver, of kind 
CommunicationUnit and  

  HMC1041Z MR, of kind Sensor, with the 
MeasurandType attribute set to Magnetic. 

All the objects previously mentioned have the 
type Model in the GME language, therefore it is 
possible to describe their inner structure. For instance, 
the sensor is described with three groups of 
characteristics, as specified in (Honeywell, 2017): 
Bridge Elements, Set/Reset Strap, and Offset Straps.  
The specific modeling environment allows one to 
specify values for each characteristic, e.g. for one that 
represents an OperatingRange, it is possible to set the 
conditions, the minimum, typical and maximum 
values, and their units. The values given in our model 
are those from the technical specification of the 
sensor. 

5 CONCLUSIONS 

The paper presents a modeling language and a 
graphical modeling environment for sensor network 
architecture, provided as an educational service on a 
private Cloud. The approach can be compared to 
WebGME, realizing Domain Specific Modeling 
Languages (DSML) in the Cloud (Maróti et al., 
2014). Thus, our service is exclusively dedicated to 
modeling, not to metamodeling (as WebGME) and its 
users are only supposed to use the sensor network 
modeling environment AS-IS, and not to upgrade it, 
or configure it themselves. Any modifications at the 
metamodel level need, in our process, the creation of 
a new template for generating other virtual machines. 
The migration of models to the new VMs is clearly 
possible, but with the inherent limitations imposed by 
GME; for example, if a metamodel class is eliminated 
from the metamodel, a model containing an instance 
of that class cannot be opened with the new version 
of the sensor network editor. The modeling 
environment has evolved during our study and it is 
still subject to change, according as new examples are 
studied and modeled. For example, the language was 
applied for modeling volcano monitoring networks, 
and it may be considered one of the multiple 
modeling paradigms (Ionita and Mocanu, 2015) 
required for dealing with the complexity of hazard 
management systems in general. 

According to the Cayirci’s classification 
presented in Section 2, our approach currently fits in 
the Modeling as a Service type (Cayirci, 2013), 
because it stands in the availability of a sensor 
network modeling environment, deployed on a Cloud 
platform. The templates we use also have some 

similarities to the solution from (Li et al., 2017), 
where the models are executed on virtual machines, 
based on an image. The MaaS engine presented there 
generally corresponds to a model interpreter. 

The template containing the modeling 
environment may be used for creating virtual 
machines according to the needs of various 
educational programs in our university, to allow the 
remote access to graphical modeling of sensor 
network architecture.  It also supports the definition 
of models that are potentially executable, therefore 
the environment is a foundation for providing more 
services by adding model interpreters, in the spirit of 
the Model as a Service approach. 

Future work will focus on adding new services 
that provide information about sensor network 
complexity, transform the model to standard formats, 
integrate the data acquired by sensors, or evaluate the 
impact of sensor network evolution.  
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