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Abstract: This study evaluated and compared the utility of Landsat and ASTER in land cover change detection within 
granite quarries. Landsat data used was acquired in 1998 and 2015 while ASTER data used was acquired in 
2001 and 2013. Both Landsat and ASTER were classified using supervised and maximum likelihood 
classification. Post-classification and Normalized Difference Vegetation Index change detection techniques 
were applied to assess and measure changes in land cover caused by granite quarries. Overall classification 
of ASTER was slightly higher than that obtained for Landsat (overall accuracy (OA) =79% and kappa 0.75vs. 
OA=75% and kappa 0.71). Both Landsat and ASTER were able to assess land cover changes within granite 
quarries. Change detection results revealed increase in granite quarries which subsequently resulted in 
decrease in vegetation and bare land and increase in water bodies within the quarries. The study found ASTER 
to be better at discriminating granite quarries from other land cover features and was able to detect small water 
bodies within granite quarries due to higher spatial resolution of bands in the VNIR subsystem. On the 
contrary, Landsat was found better at detecting changes in vegetation within granite quarries. 

1 INTRODUCTION  

Remote sensing techniques are useful in  mapping, 
monitoring and managing land cover changes related 
to mining activities (López-Pamo et al., 1999). 
Coupled with capabilities to cover large areas, 
availability of historic data, availability of data at high 
spatial and spectral resolution, the technology is 
continuously contributing significantly to land 
management initiatives (Rogan and Chen, 2004). 
Several studies have used remotely sensed data 
ranging from low to high spatial resolution sensors 
such as MODIS, NOAA AVHRR, Landsat, ASTER, 
SPOT, and IKONOS in change detection studies (Lu 
et al., 2004).   Even though the use of remotely sensed 
data has been widely utilized in land use and land 
cover change (LULCC), its applications in mapping 
impacts of surface mining have not been extensively 
explored (Latifovic, 2005). This paper therefore 
compares   utility of Landsat and ASTER satellite 
sensors in   land cover changes caused by granite 
quarries located in the North West province of South 
Africa. 

Mining is an integral part of economic develop-
ment in many developing countries, however, it is 

often associated with adverse environmental and 
social impacts (Paull et al., 2006). Granite quarrying 
in South Africa started in the late 1930s in  
Bon-Accord area. Quarrying adversely affects 
environment in various ways. Common 
environmental impacts resulting from quarrying 
activities include loss of vegetation, disruption and 
destruction of natural habitat (Maponga and 
Munyanduri, 2001), and can alter hydrological 
systems (Darwish et al., 2011). It is therefore 
important to monitor environmental variables related 
to mining activities. Identifying and monitoring such 
impacts contributes to sustainable development and 
provides information regarding rehabilitation 
measures, future site selection methods and 
determining locations of abandoned and unreclaimed 
quarries (Demirel et al., 2011).  

2 STUDY AREA 

Granite quarrying in South Africa occurs in the Main 
Zone of the Rustenburg Layered Suite in the 
Bushveld Igneous Complex. The area is dominated 
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by gabbro and norite with interlayered anorthosite of 
the pyramid Gabbro-Norite, Rustenburg Layered 
Suite (Nex et al., 1998). The quarries are located 
between Rustenburg and Brits towns in the North 
West Province (Figure 1). Commercially, the word 
granite refers to any crystalline rock exploited for use 
in the construction and ornamental use (Dolley, 
2007). Granite mining in the North West province 
contributed 46 of the national mining of granite in 
2008 (Lamprecht et al., 2011).  

 
Figure 1: Maps showing (Top): Location of the study area 
and granite quarries (Bottom): Landscape of quarries and 
surrounding area.  

3 METHODOLOGY 

A minimum spatial coverage of 1 hectare and 200 m 
distance between the quarries were specified for 
quarry samples. The specification were set out to 
avoid overlap of samples, to promote independent 
comparison of quarries and to enhance detection with 
spatial resolution of remote sensing data. As a result, 
forty granite quarries were sampled for the study. 

Since the launch of Google EarthTM in 2005, people 
have been using it to explore the world around them 
(Cha and Park, 2007). It provides images with high 
spatial resolution (<2.5 m) that are useful for land use 
and land cover mapping  (Hu et al., 2013). Sampling 
was achieved using geographi-cal coordinates of 
known quarries. The coordinates were overlain on 
Google EarthTM to digitize the quarries and 
subsequently convert the polygons to shapefiles in 
ArcGIS® (ESRI 2016, ArcMap 10.4, Redlands, 
California, USA). Digitization process was done with 
the corresponding dates of acquired remote sensing 
data and therefore, the year 2015 and 2013 were used 
to digitize the quarries on Google EarthTM. Quarries 
corresponding to remote sensing data acqui-red in 
earlier years before 2005 could not be used for 
digitization due to lack of data in Google EarthTM.  

3.1 Remote Sensing Data  

Data used in this study included Landsat images 
acquired on the 16th March 1998 and 16th April 2015 
while ASTER data was acquired on the 26th April 
2001 and 11 October 2013. The data was acquired 
from the United States Geological Survey 
(https://earthexplorer.usgs.gov/). Attempts were 
made to acquire images of same or close dates for 
consistent comparison between Landsat and ASTER 
data however, most of ASTER data was covered with 
clouds and therefore only available cloud free data 
was considered. The study preferred the use of data 
acquired during high rainfall summer season when 
vegetation is denser, however, unavailability of 
suitable data necessitated the use of images outside of 
this time period.   

3.2 Data Processing  

3.2.1 Image Registration of ASTER Data 

Image registration process involves matching two or 
more images which were taken from different sensors 
at different times (Wahed et al., 2013). Accuracy in 
image registration is important as this can 
significantly affect the results of change detection 
process. As a result, image registration accuracy 
should be limited to half or one pixel in change 
detection (Townshend et al., 1992). In this study, the 
acquired ASTER data was firstly converted from 
hierarchical data format (HDF) file to tagged image 
file format (TIFF) file in ERDAS IMAGINE software 
(ERDAS IMAGINE® 2016, Hexagon Geospatial, 
Norcross, USA). After converting ASTER data from 
hdf to tiff format, image registration was performed 
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using automated registration technique in ArcGIS® 
10.4 on the 2001 and 2013 ASTER images using 
Landsat 1998 and 2015 images as reference data. 
Registration accuracy for both 2001 and 2013 images 
were within one pixel in each dataset. 

3.2.2 Radiometric Calibration  

Radiometric calibration is an important step required 
to improve quality of remotely sensed data by 
removing factors that alters spectral properties of land 
surface features (Pons et al., 2014). Both Landsat and 
ASTER images were radiometrically calibrated using 
absolute calibration method. This enables comparison 
of images acquired at different times from different 
sensors (Chander et al., 2009). Data was calibrated by 
firstly converting the digital numbers (DNs) to at-
sensor spectral. The second step involved converting 
at-sensor spectral radiance to exoatmospheric top of 
atmosphere (TOA) reflectance (Chander et al., 2009). 
Equations applicable Landsat data are explained by 
(Chander et al., 2009) while those applicable for 
ASTER data are provided by (Abrams and Hook, 
2002). 

3.2.3 Supervised Classification 

Supervised classification was applied to multispectral 
images created from Landsat and ASTER data. The 
technique requires the user to select training samples 
which are representative of the desired classes to be 
identified. The quality of this classification method 
depends highly on the quality of training classes 
(Perumal and Bhaskaran, 2010). Supervised 
classification involves three principle steps. The first 
step involves defining training classes, the second 
step is creation of signature file and the last step is 
classification of the image (Lillesand et al., 2014). 
Maximum likelihood classifier (MLC) algorithm was 
used to classify multispectral images. This method 
uses the training data by means of estimating means 
and variances of the classes, which are used to 
estimate probabilities and also consider the variability 
of brightness values in each class (Perumal and 
Bhaskaran, 2010). The effectiveness of MLC depends 
highly on accuracy of training samples (Richards, 
2012).  

3.2.4 Accuracy Assessment 

Accuracy assessment was carried out on the Landsat 
2015 and ASTER 2013 classified images. Error 
matrix was used to evaluate the accuracy of 
classification. A random set of 189 points were 
selected for error matrix. These points were overlain 

on Google EarthTM; the name of each class was then 
recorded using visual interpretation of land cover 
features on Google EarthTM. The recorded class 
names in the reference data were then compared to 
classes generated from each image and the supervised 
classification. Google EarthTM has been used in a 
number of studies as a source of reference against 
which classification could be compared (Cha and 
Park, 2007; Rwanga and Ndambuki, 2017). Error 
matrix was generated and accuracy assessment 
parameters i.e. producer’s accuracy (measure of 
omission errors), user’s accuracy (measure of 
commission errors) and Kappa coefficient (measure 
of agreement) were computed.   

3.2.5 Change Detection  

Change detection involves four major aspects: (1) 
detecting that changes have occurred, (2) identify-ing 
the nature of the change, (3) measuring the areal 
extend of the change and (4) assessing the spatial 
pattern of the change (Congalton and Green, 2008). 
Various techniques used to perform change detec-tion 
with digital imagery has been described by Singh 
(1989). This study utilized post-classification and 
Normalized Difference Vegetation Index (NDVI) 
change detection techniques to assess land cover 
changes within granite quarries. In post- classification 
comparison, each image is classified independently 
and then classification results are compared to 
determine areas and magnitude of change (Singh, 
1989). The NDVI has been widely used to measure 
vegetation condition and biomass (Jiang et al., 2006). 
It is defined as the difference between the near-
infrared band (NIR) and the red band divided by the 
sum of these two bands (Tucker, 1979). The results of 
NDVI range between -1 and +1, where negative 
values correspond to absence of vegetation and 
positive values correspond to vegetated zones.  
The higher the index, the greater the chlorophyll 
content of the target (Pettorelli, 2013). 

4 RESULTS 

4.1 Accuracy Assessment 

Error matrix for Landsat image is presented in Table 
1. Overall accuracy obtained for Landsat data was 
75% with Kappa coefficient of 0.71. Error matrix 
demonstrated that Water bodies had perfect producer’s 
and user’s accuracy. Granite quarries had moderate 
producer’s accuracy due to confusion with Exposed 
rock formation, Bare land, Built-up land and Other 
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mining areas. Results for user’s accuracy however, 
were very high with limited confusion from Other 
mining areas. Results of other classes showed 
misclassification with other classes i.e.: Bare land and 
Vegetation had good producer’s accuracies but were 
also confused with each other. Other mining areas were 
confused with Bare land, Built-up land and Granite 
quarries. Exposed rock formation resulted in low 
producer’s accuracy due to confusion with Bare land 
and Built-up land. Similarly, Built-up land was 
confused with Bare land and that resulted in low 
producer’s accuracy of Built-up land. 

Overall accuracy obtained for ASTER imagery 
was 79% with kappa coefficient of 0.75 (Table 2). 
Similar to Landsat classification, there was also 
confusion in classification of features. Water bodies 
had perfect producer’s and user’s accuracy. 
Producer’s accuracy for Granite quarries was high, 
however, was confused with Vegetation. Misclassi-

fication of Exposed rock formation was observed due 
to Granite quarries, Bare land, Built-up land and 
Vegetation. Relatively low producer’s accuracy was 
obtained for Other mining areas, due to mostly 
confusion with Granite quarries, Built-up land, Bare 
land and Vegetation. On the contrary, user’s accura-
cy for Other mining areas was perfect. Similarly, 
Exposed rock formation had almost perfect user’s 
accuracy with limited confusion observed with Bare 
land. Granite quarries had high user’s accuracy, but 
were confused with Exposed mining areas, Vegeta-
tion, and Other mining areas. Low user’s accuracy in 
Bare land was caused by misclassification from Other 
mining area, Built-up land, Exposed rock formation 
and Vegetation. Similarly, low user’s accuracy in 
Vegetation was a result of confusion caused by 
Granite quarries, built-up land, Bare land, Other 
mining areas and Exposed rock formation. 

Table 1: Error matrix of classification derived from Landsat imagery in 2015. 

 Reference Data 

C
la

ss
if

ie
d 

D
at

a 

  WB  GQ ER  BUL BL V OMA Tot. UA (%) 
WB 10 0 0 0 0 0 0 10 100 
GQ 0 20 0 0 0 0 1 21 95 
ER  0 3 19 0 0 0 0 22 86 
BUL 0 2 2 19 0 0 3 26 73 
BL 0 1 9 11 24 3 4 52 46 
V 0 0 0 0 6 27 0 33 82 

OMA 0 3 0 0 0 0 22 25 88 

Tot. 10 29 30 30 30 30 30 141  

PA (%) 100 69 63 63 80 90 73   

Overall accuracy = 75%, Kappa = 0.71 

Key: WB=Water Bodies, GQ= Granite Quarries, ER= Exposed Rock Formations, BUL=Built-Up Land, BL=Bara Land, 
V=Vegetation, OM= Other Mining Areas, Tot. =Total, PA=Producer’s Accuracy, UA= User’s Accuracy. 

Table 2: Error matrix derived from ASTER imagery taken in 2013 (Key definitions similar as in Table 2). 

 Reference Data 

C
la

ss
if

ie
d 

D
at

a 

  WB  GQ ER  BUL BL V OMA Tot. UA (%) 

WB 10 0 0 0 0 0 0 10 100 
GQ 0 26 1 0 0 1 1 29 90 
ER  0 0 24 0 1 0 0 25 96 
BUL 0 0 1 21  0 1 3 26 81 
BL 0 0 2 6 24 4 3 39 62 
V 0 3 2 3 4 26 4 42 62 

OMA 0 0 0 0 0 0 19 19 100 

Tot. 10 29 30 30 29 32 30 150   

PA (%) 100 90 80 70 83 81 63     

Overall accuracy = 79%, Kappa = 0.75 
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4.2 Post-classification Change 
Detection  

Figure 2 shows an example of land cover change 
within granite quarry boundaries on a zoomed portion 
of the study area.  Seven land cover types generated 
from Landsat and ASTER classification analysis 
included (1) Water bodies, (2) Vegetation (3) Other 
mining areas (4) Granite quarries, (5) exposed rock 
formation, (6) Built-up land and (7) Bare land. The 
results from Landsat data classification in the whole 
study area revealed that dominant land cover types in 
1998 were Vegetation, Bare land, natural Water 
bodies and Exposed rock formation with moderate 
occurrences of Granite quarries. In the year 2015 
there was an increase in Granite quarries, Built-up 
land as well as Water bodies inside the quarries. A 
decrease in Vegetation and Bare land was observed in 
the year 2015. Figure 2 shows portions of the study 
area where development of granite quarries evolved 
(2015) on the land that did not have quarries before 
(1998).  

Results of classification of ASTER images  
 

revealed that Granite quarries were lesser in 2001 
compared to the year 2013. Land cover in 2001 was 
dominated by Vegetation and Bare land, natural 
Water bodies, Exposed rock formation and to a lesser 
extent, covered with granite quarries. Classification 
of 2013 image however, revealed an increase in 
Granite quarries relative to those detected in 2001 as 
well as an increase in water bodies inside the quarries. 
The 2013 image also revealed loss in Bare land and 
increase in Exposed rock formation. Similarly, Figure 
2 shows a portion of land cover that did not have 
granite quarries in 2001 but evolved in the year 2013. 

4.2.1 Quantitative Measures of Land Cover 
change 

The measure of areal extent of land cover change 
based on forty quarries between 1998 and 2015 for 
Landsat is given in Table 3. The results reveal 
significant increase in Granite quarries which 
subsequently resulted in accumulation of Water 
bodies. Increase in Granite quarries also resulted in 
significant loss of Vegetation and Bare land. 

 

Figure 2: Land cover distributions created using supervised classification. Left images: land cover change within granite 
quarries derived from Landsat imagery (1998 and 2015). Right images:  land cover change within granite quarries derived 
from ASTER imagery (2001 and 2013). 
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Table 3: Measure of land cover change within granite 
quarries based on Landsat classification data. 

Classes 
Area of classes 

(ha) 
Difference 

(ha) 
1998 2015 2015-1998 

Water Bodies 0.2 2.07 1.9 

Granite 
Quarries 

433.5 910.4 476.9 

Bare 
Land 

19.2 2.7 -16.5 

Vegetation 793.7 313.1 -480.6 

Similarly, the measure of change within granite 
quarries using ASTER data revealed more or less the 
same as those obtained from Landsat data.  

Table 4 presents quantitative measure of land 
cover change based on ASTER data. 

Table 4: Measure of land cover change using ASTER data. 

Classes 
Area of classes 

(ha) 
Difference 

(ha) 
2001 2013 2013-2001 

Water 
Bodies 

0.2 2.4 2.23 

Granite 
Quarries 

213.1 745.1 531.9 

Bare 
Land 

219.5 157.4 -62.1 

Vegetation 704.2 236.5 -467.7 

Increase in Water bodies as detected by ASTER is 
more relative to results obtained from Landsat. There 
was a significant increase in Granite quarries while 
Vegetation and Bare land decreased significantly.  

4.3 Change Detection using NDVI 

Comparison of mean NDVI values within granite 
quarries using Landsat and ASTER data is presented 
in Figure 3. High mean NDVI values are observed in 
the year 1998 indicating more presence of green 
vegetation than in 2015. Mean NDVI values within 
quarries in 1998 range from 0.17 to 0.54 while for 
quarries in 2015 the range is between 0.05–0.3. 
Majority of quarries in 2001 have mean NDVI values 
above 0.25 while in 2013 majority have mean NDVI 
values below 0.1. Quarry 27 shows lowest mean 
NDVI value in the year 2001 whereas in 2013 and 
2015, the quarry shows high mean NDVI values. This 
is a typical example of an abandoned quarry where 
revegetation is taking place. One quarry (Quarry #1) 
was sampled to evaluate NDVI pattern based on 
individual pixels within the quarry. NDVI histogram 
of Landsat data based on 322 pixels revealed that 79% 
of pixels in the year 1998 have NDVI values above 
0.29. On the contrary, 45% of pixels in the year 2015 
have NDVI values equal or less than 0. 148 while 
other pixels show distribution across a range of NDVI 
values.  

Analysis of NDVI values using ASTER data was 
based on 1296 pixels in the same quarry. Results showed 
that 100% of the pixels in the year 2013 have NDVI 
values between 0 and 0.233 while majority of pixels in 
the year 2001 are distributed above 0.233 NDVI values. 

 
Figure 3: Comparison of mean NDVI values within granite quarries using Landsat and ASTER data. 
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Figure 4: NDVI frequency distribution graphs for (left) Landsat data suing 322 pixels at 30 m spatial resolution and (right) 
ASTER data using 1296 pixels at 15 m spatial resolution. 

5 DISCUSSIONS 

The aim of this study was to compare utility of 
Landsat and ASTER in land cover change detection 
within granite quarries. Both Landsat and ASTER 
proved effective in mapping and detecting land cover 
changes within granite quarries. Misclassifica-tion of 
classes was encountered in both classification of 
Landsat and ASTER imagery. Land cover change 
detection using both satellite sensors revealed a 
significant increase in Granite quarries. This increase 
subsequently resulted in loss of Vegetation and Bare 
land. Expansion of Granite quarries also resulted in 
accumulation of Water bodies inside the quarries. 
Mouflis et al. (2008) and Koruyan et al. (2012) have 
also demonstrated capabilities of Landsat and 
ASTER in monitoring land cover changes caused by 
expansion in marble quarries.  

NDVI change detection analysis revealed 
decrease in green Vegetation cover within the 
acquired data period for both Landsat and ASTER. 
Results of NDVI derived from Landsat indicated that 
mean NDVI comparison between 1998 and 2015 
varies across all quarry samples. Results obtained 
from ASTER data, showed that majority of quarries 
(95%) in 2001 displayed mean NDVI values between 
0.25-0.3 while for 2013, majority (90%) of quarries 
had mean NDVI values below 0.1. Decrease in green 
Vegetation within granite quarries indicates the 
proliferation of quarrying activity over the acquired 
data periods. On the contrary, an increase in 
Vegetation on other quarries indicates revegetation 
process in abandoned quarries.  

Although Landsat and ASTER were able to map 
land cover changes within granite quarries. ASTER 
data was found to be more effective in discriminating 

Granite quarries and small Water bodies within 
granite quarries. This is attributed to the higher spatial 
resolution of ASTER in the visible and near infrared 
of electromagnetic spectrum than Landsat’s is (15 m 
vs 30 m). On the other hand, analysis of NDVI change 
detection revealed that Landsat sensor was better at 
detecting green Vegetation compared to results 
obtained using ASTER data.  

Similar observations were recorded by Chevrel et 
al. (2005) who demonstrated capabilities of ASTER 
data in identifying and mapping surface disturbances 
due to mining. Charou et al. (2010), also demonstrate-
ed the effectiveness of ASTER in monitoring 
anomalies of water surfaces compared to Landsat and 
SPOT. Similarly, Musa and Jiya (2011) demonstrated 
the effectiveness of Landsat in assessing mining 
activities impacts on vegetation using NDVI.  

6 CONCLUSION  

Comparison of Landsat and ASTER data in change 
detection within granite quarries was evaluated in this 
study. Overall accuracy of classification using 
supervised classification and MLC for Landsat was 
75% with kappa coefficient of 0.71, while ASTER 
returned a slightly better overall classification 
accuracy (79%) and kappa coefficient (0.75). Land 
cover mapping using Landsat data had limitation in 
detecting water bodies within granite quarries due to 
inadequate spatial resolution of the image relative to 
water body sizes. Vegetation cover was well 
discriminated in Landsat as compared to ASTER 
data. ASTER was found more effective in delineating 
granite quarries as compared to Landsat and this is 
attributed to the high spatial resolution of ASTER in 
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the visible and near infrared of the electromagnetic 
spectrum.  
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