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Abstract: Deploying IoT applications through the Fog in a QoS-, context-, and cost-aware manner is challenging due to
the heterogeneity, scale and dynamicity of Fog infrastructures. To decide how to allocate app functionalities
over the continuum from the IoT to the Cloud, app administrators need to find a trade-off among QoS, resource
consumption and cost. In this paper, we present a novel cost model for estimating the cost of deploying
IoT applications to Fog infrastructures. We show how the inclusion of the cost model in the FogTorchΠ

open-source prototype permits to determine eligible deployments of multi-component applications to Fog
infrastructures and to rank them according to their QoS-assurance, Fog resource consumption and cost. We
run the extended prototype on a motivating scenario, showing how it can support IT experts in choosing the
deployments that best suit their desiderata.

1 INTRODUCTION

Fog computing (Bonomi et al., 2014) aims at extend-
ing the Cloud towards the Internet of Things (IoT) to
better support time-sensitive and bandwidth hungry
IoT applications, by exploiting a multitude of collab-
orating heterogeneous devices spanning the Things1

to Cloud continuum from IoT gateways to micro-
datacentres. If architecture is about functionality al-
location (Chiang and Zhang, 2016), then deciding
where to deploy application functionalities (e.g., con-
trol loops, operational support, business intelligence)
will be crucial in defining Fog architectures (Open-
Fog, 2016).

Modern applications usually consist of many in-
dependently deployable components (each with its
hardware, software and IoT requirements) that inter-
act together in a distributed way. Such interactions
may have stringent QoS requirements – latency, band-
width – to be fulfilled for the deployed application to
work as expected (Dastjerdi and Buyya, 2016). Thus,
when deciding where to deploy application compo-
nents, one should check their hardware, software, IoT
and QoS requirements against the offerings of the
available context infrastructure (Iorga et al., 2017).

Determining eligible deployments of a multi-
component application to a given Fog infrastructure
is an NP-hard problem (Brogi and Forti, 2017). To

1Hereinafter, the word Things is used to refer to IoT de-
vices, both sensors and actuators.

make matters worse, variations in the QoS featured
by communication links at different moments in time
can cause violations to the QoS requirements of a de-
ployed application.

Estimating deployment costs is very important to
industry and businesses which aim at minimising de-
ployment operational costs at runtime, having both to
fulfil user requirements and to maximise their rev-
enues (Niyato et al., 2016). Indeed, financial con-
siderations can influence deployment selection, since
costs can considerably vary depending on the Fog or
Cloud nodes of choice. Whilst Cloud offerings are
limited to few large providers, Fog computing envi-
sions many other small and medium players (e.g., sin-
gle Fog node or Things owners) that will offer vir-
tual instances or IoT capabilities at different pricing
schemes, making it more difficult to identify cost-
effective deployments. Thus, the availability of cost
models that account for Fog peculiarities would em-
power such new players to better design billing of new
services for their customers and estimate their rev-
enues and outflows beforehand.

Overall, tools to support app deployment to the
Fog should desirably feature (i) QoS-awareness to
achieve latency reduction, bandwidth savings and to
enforce business policies, (ii) context-awareness to
suitably exploit local and remote resources, and (iii)
cost-awareness to enact cost-effective deployments.

In (Brogi et al., 2017), we developed a proto-
type (FogTorchΠ) that (1) determines app deployments
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that meet all processing, IoT and QoS requirements
over a given infrastructure, (2) estimates their QoS-
assurance and Fog resource consumption by simulat-
ing latency and bandwidth variations of communica-
tion links as per given probability distributions.

In this paper, we present a novel cost model for es-
timating the monthly cost of application deployments
to IoT+Fog+Cloud infrastructures. We extend the
FogTorchΠ prototype so to include the proposed cost
model and to feature cost-awareness. The novelty
of our approach is in that it extends existing pricing
schemes for the Cloud to Fog computing scenarios,
whilst introducing the possibility of integrating such
schemes with financial costs that originate from the
exploitation of IoT devices (i.e., Sensing-as-a-Service
subscriptions or data transfer costs) in the deployment
of applications. We show how the new version of Fog-
TorchΠ can help IT experts (or new businesses coming
onto the Fog market) in deciding how to distribute ap-
plication components to Fog infrastructures in a QoS-,
context- and cost-aware manner.

The rest of the paper is organised as follows. After
introducing a motivating example of a smart building
application (Section 2), we briefly describe FogTorchΠ

(Section 3) and present the cost model extension (Sec-
tion 4). Then, we present the results obtained by ap-
plying the extended version of FogTorchΠ to the moti-
vating example (Section 5) and discuss some related
work (Section 6). Finally, we draw some concluding
remarks (Section 7).

2 MOTIVATING EXAMPLE

Consider a simple Fog application (Figure 1) that
manages fire alarm, heating and A/C systems, inte-
rior lighting, and security cameras of a smart building.
The application consists of three microservices:

• IoTController, interacting with the connected cyber-
physical systems,

• DataStorage, storing all sensed information for fu-
ture use and employing machine learning tech-
niques to update sense-act rules at the IoTController
so to optimise heating and lighting management
based on previous experience and/or on people be-
haviour, and

• Dashboard, aggregating and visualising collected
data and videos, as well as allowing users to inter-
act with the system.

Each microservice represents an independently de-
ployable component of the application (Newman,
2015) and has hardware and software requirements in
order to function properly (as indicated in the grey

Figure 1: Fog application of the motivating example.

box associated with each component). Hardware re-
quirements are expressed in terms of the virtual ma-
chine (VM) types2 listed in Table 1 and must be ful-
filled by the VM that will host the component.

Table 1: Hardware specification for different VM types.

VM Type vCPUSs RAM (GB) HDD (GB)
tiny 1 1 10

small 1 2 20
medium 2 4 40

large 4 8 80
xlarge 8 16 160

App components must cooperate so that well-
defined levels of service are met by the application.
Hence, communication links supporting component-
component interactions should provide suitable end-
to-end latency and bandwidth (e.g., the IoTController
should reach the DataStorage within 160 ms and have
at least 0.5 Mbps download and 3.5 Mbps upload free
bandwidth3). Component-Things interactions have
analogous constraints, and also specify the sampling
rate at which IoTController is expected to query Things
at runtime.

Figure 2 shows the infrastructure – two Cloud
data centres, three Fog nodes and nine Things – se-
lected by the system integrators in charge of deploy-
ing the smart building application for one of their cus-
tomers. The deployed application will have to exploit
the Things connected to Fog 1 and the weather station 3
at Fog 3. Furthermore, the customer owns Fog 2, what
makes deploying components to that node cost-free
for the system integrators.

All Fog and Cloud nodes are associated with pric-
ing schemes either to buy an instance of a certain

2Adapted from OpenStack Mitaka flavours:
https://docs.openstack.org/.

3Arrows on the links in Figure 1 indicate the upload di-
rection.
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Figure 2: Fog infrastructure of the motivating example.

VM type (e.g., a tiny instance at Cloud 2 costs e 7 per
month), or to build on-demand instances by selecting
the required number of cores and the needed amount
of RAM and HDD to support a given component.

Fog nodes offer software capabilities, along with
limited hardware resources (i.e., RAM, HDD, CPUs).
Cloud nodes offer software capabilities, whilst hard-
ware is considered unbounded assuming that one can
always purchase extra or larger instances on-demand.

Finally, Table 2 lists the QoS profiles of the avail-
able communication links4, which are represented as
probability distributions based on real data5, to ac-
count for variations in the QoS they provide. Green
color links at Fog 2 initially feature a 3G Inter-
net access. As per the current technical proposals
(e.g., (Bonomi et al., 2014) and (OpenFog, 2016)),
we assume Fog and Cloud nodes being able to ac-
cess directly connected Things as well as Things at
neighbouring nodes via a specific middleware layer
(through the associated communication links).

Planning to sell the deployed solution for e 1,500
a month, the system integrators set the limit of the
monthly deployment cost at e 850. Also, the cus-
tomer requires the application to be compliant with
the specified QoS requirements at least 98% of the
time. Then, interesting questions for the system inte-
grators before the first deployment of the application

4Arrows on the links in Figure 2 indicate the upload di-
rection.

5Satellite: https://www.eolo.it/, 3G/4G: https://www.
agcom.it, VDSL: http://www.vodafone.it.

Table 2: QoS profiles of communication links.

Dash Type Profile Latency Download Upload

3G 54 ms
99.6%: 9.61 Mbps

0.4%: 0 Mbps

99.6%: 2.89 Mbps

0.4%: 0 Mbps  

4G 53 ms
99.3%: 22.67 Mbps 

0.7%: 0 Mbps

99.4%: 16.97 Mbps

0.6%: 0 Mbps

VDSL 60 ms 60 Mbps 6 Mbps

Fibre 5 ms 1000 Mbps 1000 Mbps

WLAN 15 ms
90%: 32 Mbps

10%: 16 Mbps        

90%: 32 Mbps

10%: 16 Mbps         

98%: 4.5 Mbps

2%: 0 Mbps
Satellite 14M 40 ms

98%: 10.5 Mbps

2%: 0 Mbps

are, for instance:

Q1(a) — Is there any eligible deployment of the
application reaching the needed Things at Fog
1 and Fog 3, and meeting the financial (at most
e 850 per month) and QoS-assurance (at least
98% of the time) constraints mentioned above?

Q1(b) — Which eligible deployments minimise
resource consumption in the Fog layer so to per-
mit future deployment of services and sales of vir-
tual instances to other customers?

Suppose that with an extra monthly investment of
e 20, system integrators can exploit a 4G connection
at Fog 2. Then:

Q2 — Would there be any deployment that com-
plies with all previous requirements and reduces
financial cost and/or consumed Fog resources
when upgrading from 3G to 4G at Fog 2?

In Section 5, we will show how the new version of
FogTorchΠ – extended with the cost model of Section
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4 – can be exploited to obtain answers to all the above
questions.

3 OVERVIEW OF FogTorchΠ

FogTorchΠ (Brogi et al., 2017) is an open-source Java
prototype6 that permits to describe IoT+Fog+Cloud
infrastructures and applications (based on the model
of (Brogi and Forti, 2017)) so to determine QoS- and
context-aware application deployments. Before in-
troducing the cost-aware extension to FogTorchΠ, we
summarise its basic functioning. FogTorchΠ inputs:

1. an IoT+Fog+Cloud infrastructure I, with the
specification of the Fog and Cloud nodes available
for deployment (each with its hardware, software
and IoT capabilities), and the probability distri-
butions of the QoS (viz., latency, bandwidth) fea-
tured by the communication links interconnecting
such nodes7,

2. a multi-component application A, specifying all
hardware (i.e., CPU, RAM, storage), software
(i.e., OS, libraries, frameworks) and IoT require-
ments (i.e., which type of Things to exploit)
of each component, and the QoS (i.e., latency
and bandwidth) needed to support component-
component and component-Thing interactions,

3. a Things binding ϑ, mapping each IoT require-
ment of an application component to an actual
Thing in I, and

4. a deployment policy δ(γ), white-listing the nodes
where component γ of A can be deployed8 accord-
ing to security or business-related constraints.

Based on such input, FogTorchΠ determines all the el-
igible deployments of the components of A to Cloud
or Fog nodes in I. An eligible deployment ∆ maps
each component γ of A to a Cloud or Fog node n
in I so that (1) n ∈ δ(γ) and it satisfies the process-
ing requirements of γ, (2) hardware resources are
enough to deploy all components of A mapped to
n, (3) Things specified in ϑ are reachable, and (4)
component-component and component-Thing inter-
actions mapped to the same communication link do
not exceed the available bandwidth and meet their la-
tency requirements.

6Available at https://github.com/di-unipi-socc/Fog
TorchPI/tree/costmodel/.

7Actual implementations in Fog landscapes can exploit
monitoring tools (e.g., (Breitbart et al., 2001), (Fatema
et al., 2014)) to get updated information on the state of I.

8When δ is not specified for a component γ of A, γ can
be deployed to any compatible node in I.

1: procedure MONTECARLO(A, I, ϑ, δ, n)
2: D← /0 . dictionary of 〈∆, counter〉
3: for n times do
4: Is ← SAMPLELINKSQOS(I)
5: E ← FINDDEPLOYMENTS(A, Is, ϑ, δ)
6: D← UNIONUPDATE(D, E)
7: end for
8: for ∆ ∈ keys(D) do
9: D[∆]← D[∆]/n

10: end for
11: return D
12: end procedure

Figure 3: Pseudocode of the Monte Carlo simulation in Fog-
TorchΠ.

FogTorchΠ employs the Monte Carlo method
(Dunn and Shultis, 2011) to estimate the QoS-
assurance of output deployments, by aggregating the
eligible deployments obtained when varying the QoS
of communication links (as per their input probabil-
ity distributions). In addition, FogTorchΠ outputs the
percentage of resources (RAM and HDD) consumed
in the Fog layer (or in specified Fog nodes) after per-
forming an eligible deployment.

Figure 3 shows the pseudocode of FogTorchΠ func-
tioning. First, an empty dictionary D is created to
contain key-value pairs 〈∆,counter〉, where the key
(∆) represents an eligible deployment and the value
(counter) keeps track of how many times ∆ will be
generated during the Monte Carlo simulation (line 2).
Then, at the beginning of each run of the simulation,
a state Is of the infrastructure is sampled according to
the probability distributions of the QoS of the com-
munication links in I (line 4).

The function FINDDEPLOYMENTS(A, Is, ϑ, δ)
(line 5) employs an exhaustive (backtracking) search
to determine the set E of eligible deployments ∆ of A
to Is, i.e. deployments of A that satisfy all processing
and QoS requirements in that particular state of the
infrastructure. Each output deployment ∆ also con-
tains information about its Fog resource consumption,
which is computed during the search. The objective of
this step is to look for eligible deployments, whilst dy-
namically simulating changes in the underlying net-
work conditions. At the end of each run, the set E of
eligible deployments of A to Is is used to update D.
The function UNIONUPDATE(D, E) (line 6) updates
D by adding deployments 〈∆,1〉 discovered during the
last run (∆ ∈ E \ keys(D)) and by incrementing the
counter of those deployments that had already been
found in a previous run (∆ ∈ E ∩ keys(D)).

At the end of the simulation (n ≥ 100,000), the
QoS-assurance of each deployment ∆ ∈ keys(D) is
computed by dividing the counter associated to ∆ by
n (lines 8–10). Thus, the QoS-assurance is the per-
centage of runs a certain deployment ∆ was found by
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FINDDEPLOYMENTS(A, Is, ϑ, δ). Such percentage
estimates how likely ∆ is to meet all QoS constraints
of A, taking into account variations in the communi-
cation links as per historical behaviour of I. Finally,
dictionary D is returned (line 11).

The next section introduces the cost model ex-
tension of FogTorchΠ, which permits estimating the
monthly deployment cost of output deployments. We
extended FINDDEPLOYMENTS(A, Is, ϑ, δ) so to re-
turn each deployment ∆ with its associated monthly
cost9 in addition to its Fog resource consumption.

4 COST MODEL

Our cost model extends to Fog computing previous
efforts in Cloud VM cost modelling (Dı́az et al.,
2017), and includes software costs, and costs due to
IoT (Niyato et al., 2016).

At any Cloud or Fog node n, our cost model con-
siders that a hardware offering H can be either de-
fault VMs (Table 1) offered at a fixed monthly fee
or on-demand VMs (built with an arbitrary amount
of cores, RAM and HDD). Being R the set of re-
sources considered when building on-demand VMs
(viz., R = {CPU,RAM,HDD}), the estimated monthly
cost for a hardware offering H at node n is

p(H,n)=

c(H,n) if H is a default VM
∑

ρ∈R
[H.ρ× c(ρ,n)] if H is an on-demand VM

where c(H,n) is the monthly cost of a default VM
H at Fog or Cloud node n, whilst H.ρ indicates the
amount of resource ρ ∈ R used by10 the on-demand
VM represented by H, and c(ρ,n) is the unit monthly
cost at n for resource ρ.

Analogously, for any given Cloud or Fog node n,
a software offering S can be either a predetermined
software bundle or an on-demand subset of the soft-
ware capabilities available at n (each sold separately).
The estimated monthly cost for S at node n is

p(S,n) =

{
c(S,n) if S is a bundle
∑

s∈S
c(s,n) if S is on-demand

9Cost computation is performed on-the-fly during the
search step, envisioning the possibility to exploit cost as a
heuristic to lead the search algorithm towards a best candi-
date deployment.

10Bounded by the maximum amount purchasable at any
chosen Cloud or Fog node.

where c(S,n) is the price for the software bundle S
at node n, and c(s,n) is the monthly cost of a single
software s at n.

Finally, in Sensing-as-a-Service (Perera, 2017)
scenarios, a Thing offering T exploiting an actual
Thing t can be offered at a monthly subscription fee
or through a pay-per-invocation mechanism. Then,
the cost for offering T at Thing t is

p(T, t) =

{
c(T, t) if T is subscription based
T.k× c(t) if T is pay-per-invocation

where c(T, t) is the monthly subscription fee for T at
t, while T.k is the number of monthly invocations ex-
pected over t and c(t) is the cost per invocation at t
(including Thing usage and/or data transfer costs).

In what follows, we assume that ∆ is an eligible
deployment for an application A to an infrastructure
I, as introduced in Section 3. In addition, let γ ∈ A
be a component of the considered application A, and
let γ.H , γ.Σ and γ.Θ be its hardware, software and
Things requirements, respectively. Overall, the ex-
pected monthly cost for a given deployment ∆ can be
first approximated by combining the previous pricing
schemes as in:
cost(∆,ϑ,A) =

∑
γ∈A

[
p(γ.H ,∆(γ)) + p(γ.Σ,∆(γ)) + ∑

r∈γ.Θ

p(r,ϑ(r))
]

Although this formula gives an estimate of the
monthly cost for a given deployment, yet it does not
feature a way to select the “best” offering to match
the application requirements at the VM, software and
IoT levels. Particularly, it may lead the choice always
to on-demand and pay-per-invocation offerings when
the application requirements do not match exactly de-
fault or bundled offerings, or when a Cloud provider
does not offer a particular VM type (e.g., starting its
offerings from medium). This can lead to overesti-
mate the monthly deployment cost.

For instance, consider the infrastructure of Fig-
ure 2 and the hardware requirements of a compo-
nent to be deployed to Cloud 2, specified as R =

{CPU : 1,RAM : 1GB,HDD : 20GB}. Since no exact match-
ing between the requirement and an offering at Cloud
2 exists, this first cost model would select an on-
demand instance, and estimate its cost of e 30 11.
However, Cloud 2 also provides a small instance that
can satisfy the requirements at a (lower) cost of e 25.

Since larger VM types always satisfy smaller
hardware requirements, bundled software offerings
may satisfy multiple software requirements at a lower
price, and subscription-based Thing offerings can be

11
e 30 = 1 CPU x e 4/core + 1 GB RAM x e 6/GB + 20 GB HDD x e 1/GB
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more or less convenient depending on the number
of invocations on a given Thing, some policy must
be used to choose the “best” offerings for each soft-
ware, hardware and Thing requirement of an applica-
tion component. In what follows, we refine our cost
model to also account for this fact.

A requirement-to-offering matching policy
pm(r,n) matches hardware or software requirements
r of a component (r ∈ {γ.H ,γ.Σ}) to the estimated
monthly cost of the offering that will support them
at Cloud or Fog node n, and a Thing requirement
r ∈ γ.Θ to the estimated monthly cost of the offering
that will support r at Thing t.

Overall, this refined version of the cost model
permits to estimate the monthly cost of ∆ including
a cost-aware matching between application require-
ments and infrastructure offering (for hardware, soft-
ware and IoT), chosen as per pm. Hence:

cost(∆,ϑ,A) =

∑
γ∈A

[
pm(γ.H ,∆(γ)) + pm(γ.Σ,∆(γ)) + ∑

r∈γ.Θ

pm(r,ϑ(r))
]

The new version of FogTorchΠ – extended with the
cost model – exploits a best-fit lowest-cost policy for
choosing hardware, software and Thing offerings. In-
deed, it selects the cheapest between the first default
VM (from tiny to xlarge) that can support γ.H at node
n and the on-demand offering built as per γ.H . Like-
wise, software requirements in γ.Σ are matched with
the cheapest compatible version available at n, and
Thing per invocation offer is compared to monthly
subscription so to select the cheapest12.

Formally, the cost model used by the new version
of FogTorchΠ can be expressed as:

pm(H ,n) = min{p(H,n)}
∀ H ∈ {default VMs, on-demand VM} ∧ H |= H

pm(Σ,n) = min{p(S,n)}
∀ S ∈ {on-demand, bundle} ∧ S |= Σ

pm(r, t) = min{p(T, t)}
∀ T ∈ {subscription, pay-per-invocation} ∧ T |= r

where O |= R reads as offering O satisfies require-
ments R.

It is worth noting that the proposed cost model
separates the cost of purchasing VMs from the cost of
purchasing software. This choice keeps the modelling
general enough to include both IaaS and PaaS Cloud
offerings. Furthermore, even if we referred to VMs as
the only deployment unit for application components,

12Other policies are also possible such as, for instance,
selecting the largest offering that can accommodate a com-
ponent, or always increasing the component’s requirements
by some percentage (e.g., 10%) before selecting the match-
ing.

the model can be easily extended so to include other
types of virtual instances (e.g., containers).

5 MOTIVATING EXAMPLE
(CONTINUED)

We now present the results of running the new ver-
sion of FogTorchΠ over the smart building example
of Section 2 and to get answers for the questions of
the system integrators. FogTorchΠ outputs the eligible
deployments (as per Section 3) along with their esti-
mated QoS-assurance, Fog resource consumption and
monthly cost (as per Section 4).

Table 3: Eligible deployments generated by FogTorchΠ for
Q1 and Q213.

Dep. ID IoTController DataStorage Dashboard
∆1 Fog 2 Fog 3 Cloud 2
∆2 Fog 2 Fog 3 Cloud 1
∆3 Fog 3 Fog 3 Cloud 1
∆4 Fog 2 Fog 3 Fog 1
∆5 Fog 1 Fog 3 Cloud 1
∆6 Fog 3 Fog 3 Cloud 2
∆7 Fog 3 Fog 3 Fog 2
∆8 Fog 3 Fog 3 Fog 1
∆9 Fog 1 Fog 3 Cloud 2

∆10 Fog 1 Fog 3 Fog 2
∆11 Fog 1 Fog 3 Fog 1
∆12 Fog 2 Cloud 2 Fog 1
∆13 Fog 2 Cloud 2 Cloud 1
∆14 Fog 2 Cloud 2 Cloud 2
∆15 Fog 2 Cloud 1 Cloud 2
∆16 Fog 2 Cloud 1 Cloud 1
∆17 Fog 2 Cloud 1 Fog 1

For question Q1(a), the new version of FogTorchΠ

outputs eleven eligible deployments (∆1 — ∆11 in Ta-
ble 3), determined as described in Section 3.
It is worth recalling that we envision remote access
to Things connected to Fog nodes from other Cloud
and Fog nodes. In fact, some output deployments
map components to nodes that do not direclty con-
nect to all the required Things. For instance, in
the case of ∆1, IoTController is deployed to Fog 2
but the required Things (fire sensor 1, light control 1,
thermostate 1, video camera 1, weather station 3) are at-
tached to Fog 1 and Fog 3, still being reachable with
suitable latency and bandwidth.

Figure 4 only shows the five output deployments
that satisfy the QoS and budget constraints imposed

13Results and Python code to generate 3D plots as in
Figures 4 and 5 are available at: https://github.com/di-unipi-
socc/FogTorchPI/tree/costmodel/results/SMARTBUILDIN
G18/.
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by the system integrators. ∆3, ∆4, ∆7 and ∆10 all fea-
ture 100% QoS-assurance. Among them, ∆7 is the
cheapest in terms of cost, consuming as much Fog re-
sources as ∆4 and ∆10, although more with respect
to ∆3. On the other hand, ∆2, still showing QoS-
assurance above 98% and consuming as much Fog
resources as ∆3, can be a good compromise at the
cheapest monthly cost of e 800 (what answers ques-
tion Q1(b)).

Finally, to answer question Q2, we change the In-
ternet access at Fog 2 from 3G to 4G. As mentioned
in Section 2, this increases the monthly expenses by
e 20. Running FogTorchΠ now reveals six new eli-
gible deployments (∆12 — ∆17) in addition to the
previous output. Among those, only ∆16 turns out
to meet also the QoS and budget constraints that the
system integrators require (Figure 5). Interestingly,
∆16 costs e 70 less than the best candidate for Q1(b)
(∆2), whilst sensibly reducing Fog resource consump-
tion. Hence, overall, the change from 3G to 4G would
lead to an estimated monthly saving of e 50, enacting
∆16 instead of ∆2.

The final choice for a particular deployment is left
to the system integrators, leaving them the freedom
to select the “best” trade-off among QoS-assurance,
resource consumption and cost. Indeed, the analy-
sis of application specific requirements (along with
data on infrastructure behaviour) can lead decision to-
wards different segmentations of an application from
the IoT to the Cloud. Conversely to multi-objective
optimisation techniques (Gao et al., 2013), we fol-
low a human-driven approach – aided by predictive
tools like FogTorchΠ – to determine the best trade-off
among metrics that describe likely run time behaviour
of a deployment and make it possible to evaluate
changes in the infrastructure (or in the application)
before their actual implementation (what-if analyses
(Rizzi, 2009)).

6 RELATED WORK

With respect to the Cloud paradigm, the Fog intro-
duces new problems, mainly due to its pervasive geo-
distribution and heterogeneity, need for connection-
awareness, dynamicity and support to interactions
with the IoT, that were not taken into account by pre-
vious works (Varshney and Simmhan, 2017) (Wen
et al., 2017) (Arcangeli et al., 2015). Particularly,
some efforts in Cloud computing considered non-
functional requirements (e.g., (Nathuji et al., 2010),
(Cucinotta and Anastasi, 2011),(Rimal et al., 2011)
and (Durao et al., 2014)) or uncertainty of execu-
tion (as in Fog nodes) and security risks among in-

Figure 4: Results for Q1(a) and Q1(b). Colormap refers to
Fog resource consumption.

Figure 5: Results for Q2. Colormap refers to Fog resource
consumption.

teractive and interdependent components (Wen et al.,
2016). Only recently, (Wang et al., 2016) has linked
services and networks QoS by proposing a QoS-
and connection-aware Cloud service composition ap-
proach to satisfy end-to-end QoS requirements in the
Cloud.

To the best of our knowledge, few approaches
have been proposed so far to specifically model Fog
infrastructures and applications, as well as to deter-
mine and compare eligible deployments for an appli-
cation to an Fog infrastructure under different met-
rics. (Sarkar and Misra, 2016) aims at evaluating
service latency and energy consumption of the new
Fog paradigm applied to the IoT, as compared to tra-
ditional Cloud scenarios. The model of (Sarkar and
Misra, 2016), however, deals only with the behaviour
of software already deployed over Fog infrastructures
and simulates it mathematically.
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iFogSim (Gupta et al., 2017) is among the most
promising prototypes to simulate resource manage-
ment and scheduling policies applicable to Fog envi-
ronments with respect to their impact on latency, en-
ergy consumption and operational cost. The focus of
iFogSim model is mainly on stream-processing appli-
cations and hierarchical tree-like infrastructures, to be
mapped either Cloud-only or Edge-ward so to com-
pare results.

Building on top of iFogSim, (Bittencourt et al.,
2017) compares different task scheduling policies,
taking into account user mobility, optimal Fog re-
source utilisation and response time. (Tärneberg
et al., 2017) presents a distributed approach to cost-
effective application placement, at varying workload
conditions, with the objective of optimising opera-
tional cost across the entire infrastructure. Apropos,
(Shekhar et al., 2017) introduces a hierarchy-based
technique to dynamically manage and migrate appli-
cations between Cloud and Fog nodes. They exploit
message passing among local and global node man-
agers to guarantee QoS and cost constraints are met.
Similarly, (Skarlat et al., 2017) leverages the concept
of Fog colonies (Skarlat et al., 2016) for schedul-
ing tasks to Fog infrastructures, whilst minimising re-
sponse times. (Aazam et al., 2016) provides a first
methodology for probabilistic record-based resource
estimation to mitigate resource underutilisation, to en-
hance the QoS of provisioned IoT services.

All the aforementioned approaches focus on
monolithic or DAG application topologies, and do
not take into account QoS for the interactions with
the IoT, nor historical data about Fog infrastructure
or deployment behaviour. Our approach permits in-
stead to express arbitrary multi-component applica-
tion topologies, as the one of the illustrated exam-
ple. Furthermore, the attempts to explicitly target and
support with predictive methodologies the decision-
making process to deploy IoT applications to the
Fog were very limited, and none of them considered
matching of application components to the best vir-
tual instance (Virtual Machine or container), depend-
ing on expressed preferences (e.g., cost or energy tar-
gets) in this work.

Pricing models for the Cloud are quite established
(e.g., (Dı́az et al., 2017), (Niyato et al., 2016) and
references therein) but they do not account for costs
generated by the exploitation of IoT devices. Cloud
pricing models are generally divided into two types,
pay per use scheme and subscription-based. In (Dı́az
et al., 2017), based on given user workload require-
ments, a Cloud broker chooses a best VM instance(s)
among several cloud providers. The total cost of de-
ployment is calculated considering hardware require-

ments such as number of CPU cores, VM types, time
duration, type of instance (reserved or pre-emptible),
etc.

On the other hand, IoT providers normally pro-
cess the sensory data coming from the IoT devices
and sell the processed information as value added ser-
vice to the users. (Niyato et al., 2016) shows how
they can also act as brokers, acquiring data from dif-
ferent owners and selling bundles. The authors of
(Niyato et al., 2016) also consider the fact that dif-
ferent IoT providers can federate their services and
create new offers for their end-users. Such end-
users are then empowered to estimate the total cost
of using IoT services by comparing pay-per-use and
subscription-based offers, depending upon their data
demand. In Fog scenario, however, there is a need
to compute IoT costs at a finer level, also accounting
for data-transfer costs (i.e., event-based). More re-
cently, (Markus et al., 2017) propose a cost model for
IoT+Cloud scenario. Considering parameters such as
the type and number of sensors, number of data re-
quest and uptime of VM, their cost model can esti-
mate the cost of running an application over a certain
period of time.

Other recent studies tackle akin challenges from
an infrastructural perspective either focusing on scal-
able algorithms for QoS-aware placement of micro-
data centres (Selimi et al., 2017), on optimal place-
ment of data and storage nodes that ensures low la-
tencies and maximum throughput, optimising costs
(Naas et al., 2017), or on the exploitation of genetic
algorithms to place intelligent access points at the
edge of the network (Majd et al., 2017).

To the best of our knowledge, our attempt to
model costs in the Fog scenario is the first that extends
Cloud pricing schemes to the Fog layer and integrates
them with costs that are typical of IoT deployments.

7 CONCLUDING REMARKS

In this paper, we presented a novel cost model to esti-
mate multi-component application deployment cost to
IoT+Fog+Cloud infrastructures. The model considers
various cost parameters (hardware, software and IoT),
extending Cloud computing cost models to the Fog
computing paradigm, whilst taking into account costs
associated to the usage of IoT devices and services.

We included it in the FogTorchΠ prototype to show
how it can assist IT experts in deciding how to dis-
tribute a multi-component application over a given in-
frastructures in a QoS-, context-, and cost-aware man-
ner. We envision the possibility of exploiting such a
cost model to drive design of billing of new services
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offered by small and medium enterprises in the Fog
marketplace. Indeed, supporting deployment decision
in the Fog requires comparing a multitude of offerings
where providers are able to deploy their applications
to their infrastructure integrated with the Cloud, with
the IoT, with federated Fog devices as well as with
user-managed devices.
We see three main directions for future work:

- Exploiting a multitude of highly distributed
nodes, Fog computing is likely to consume more
energy with respect to the Cloud. Application de-
ployments should also consider energy-related is-
sues so to guarantee reliable service provisioning
and longer deployment lifetime when exploiting
battery powered IoT devices or Fog nodes. Hence,
we aim at further extending our contribution to
consider energy consumption as a characterising
metric for eligible deployments.

- Monte Carlo simulation is in general computa-
tionally expensive but it can be efficiently par-
allelised and optimised. Furthermore, FogTorchΠ

exploits exponential search algorithms. Apropos,
another direction for future work is to parallelise
the simulation and tame the complexity of Fog-
TorchΠ algorithms to scale better over large infras-
tructures, by leading search with improved heuris-
tics and by approximating metrics estimation.

- Currently, Fog computing lacks medium to large
scale test-bed deployments (i.e., infrastructure
and applications) to test devised approaches. Last,
but not least, we intend to contribute further in en-
gineering FogTorchΠ and to assess validity of the
prototype over an experimental lifelike test-bed
that is currently at study.
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