
Comparison Between Bare-metal, Container and VM
using Tensorflow Image Classification Benchmarks

for Deep Learning Cloud Platform

Chan-Yi Lin, Hsin-Yu Pai and Jerry Chou
Computer Science, National Tsing Hua University, No.101, Sec. 2, Guangfu Rd., East Dist., 300, Hsinchu, Taiwan

Keywords: Deep Learning, Cloud Computing, Performance Benchmark, Virtualization, Container, Virtual Machine.

Abstract: The recent success of AI is contributed by the adaptation of using deep learning in decision making pro-
cess. To harness the power of deep learning, developers mustnot only rely on a computing framework, but a
cloud platform to ensure resource utilization and computing performance to ease the burden on users as well.
Hence, ”how cloud resources should be orchestrated for deep learning?” becomes a fundamental question
for cloud providers. In this work, we built an in-house OpenStack cloud platform to enable various resource
orchestrations, including virtual machine, container andbare-metal. Then we systematically evaluate the per-
formance of different orchestration choices using Tensorflow image classification benchmarks to quantify the
performance impact and discuss the challenges of addressing these performance issues.

1 INTRODUCTION

Artificial Intelligent (AI) has been widely considered
the next big thing for the future. According to the lat-
est report (Gartner, 2017), AI is going to create $2.9
trillion of business value by 2021, furthermore, 41%
of organizations in their research has already adopted
AI solution. The recent success of AI is contributed
by the adaptation of using deep learning in decision
making process. Deep learning is a machine tech-
nique based on neural network (NN) model. By intro-
ducing multiple hidden layers in the NN model, and
then learning the parameters from huge amount train-
ing datasets, it has been proven that the deep learn-
ing can achieve significant better prediction accuracy
in various application domains, including image clas-
sification (Russakovsky et al., 2015), voice recog-
nition (Noda et al., 2015), autonomous car (Ramos
et al., 2017), etc. However, to harness the power of
deep learning, application developers must rely on
two things: a computing framework, and a resource
pool.

A number of frameworks (Theano Development
Team, 2016; Collobert et al., 2011; Chen et al., 2015;
Abadi et al., 2015) have been developed for deep
learning to ease the code development and execution
management burden on users. Among them, Tensor-
flow (Abadi et al., 2015) is one of the most popu-

lar frameworks. At same time, deep learning con-
sumes huge amount of computing capacity, because
it often relies on deeper networks and larger train-
ing datasets to improve its model accuracy. Hence,
some people starts to use the deep learning computing
services offered by cloud providers to take advantage
of the pay-as-you-used pricing model. Others decide
to build their own private cloud infrastructure with
more administration control and data privacy. In par-
ticularly, besides the traditional cloud infrastructure
based on virtual machine, increasing attentions are
drawn by the lightweight virtualization approach like
container or even bare-metal. Moreover, according
to (Bernstein, 2014), there are several other possible
layering combinations for running containers and its
runtime applications such as container-to-bare-metal,
container-to-VM, and so on. Therefore, regardless
which cloud model is used for accessing resource,
or which framework is chosen for developing code, a
fundamental problem is ”how cloud resources should
be orchestrated for deep learning?”

To answer the aforementioned question, we built
an in-house cloud platform using the open source
cloud software, OpenStack (OpenStack, 2017). Nec-
essary OpenStack service were installed to compare
resource orchestration options: (1) bare-metal (BM);
(2) virtual machine (VM); (3) container on BM; and
(4) container on VM. We used a Tensorflow image

376
Lin, C., Pai, H. and Chou, J.
Comparison Between Bare-metal, Container and VM using Tensorflow Image Classification Benchmarks for Deep Learning Cloud Platform.
DOI: 10.5220/0006680603760383
In Proceedings of the 8th International Conference on Cloud Computing and Services Science (CLOSER 2018), pages 376-383
ISBN: 978-989-758-295-0
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

classification benchmark suite to systematically eval-
uate the performance impacts and issues of using dif-
ferent orchestrations options under three training sce-
narios, including different input datasets (synthetic
and real), different execution modes (single-host and
distributed), and different resource environment (iso-
lated and shared). Through a series of experimental
studies using real application workloads, we quanti-
fied the performance overhead, and performance in-
terference from resource orchestration, and identified
the research challenges that deserved to receive more
attentions in the future.

The rest of paper is structured as follows. Sec-
tion 2 introduces the deep learning application and
cloud service components used in our study. Sec-
tion 3 describes our experimental methodology, and
Section 4 summarizes the evaluation results. Related
work is in Section 5. Section 6 concludes the paper.

2 BACKGROUND

2.1 Tensorflow

Tensorflow is one of the most popular deep learning
frameworks. It provides a set of high-level API for
users to build deep learning models more easily, and
implements many features to optimize the deep learn-
ing computations on computing resources. For ex-
ample, it supports parallel I/O to reduce the training
data load time from disk and the data transfer time be-
tween CPU and GPU or between GPUs. Furthermore,
distributed Tensorflow was introduced and released in
2016 to support deep learning computations across
multiple nodes. In distributed Tensorflow, computa-
tions can be parallelized in several ways to reduce
computation time. One of common approaches is
to duplicate the model on each node and partition
training dataset across nodes, so that each node can
train the model with different data input in parallel.
But since the model parameters must be synchronized
among nodes, users can specify a set of parameter
servers to store and update these shared model param-
eters throughout the training process with less com-
munication traffic among nodes.

2.2 Compute Instances in OpenStack

In this work, we built a cloud platform using Open-
Stack, and installed the cloud service to orches-
trate four types of resource orchestrations: (1) bare-
metal (BM); (2) virtual machine (VM); (3) container
on BM; and (4) container on VM. The architecture
of our cloud platform is shown in Figure 1, and we

OpenStack

Kubernetes

Nova

Compute

Ironic

Magnum

Servevr Server Server Server

VM VM

Hypervisor

VM VM

Docker Egine

C C C C

Docker Egine

C C C C

Hypervisor

Bare-metal Container on BM Virtual Machine Container on VM

Figure 1: The OpenStack and its service components (i.e.,
Magnum, Nova and Ironic) that we installed to deploy the
four types of compute instance based on virtual machine,
container and bare-metal resource provisioning techniques.

briefly introduce the orchestration services used in the
evaluation as follows.

Ironic (Bare-metal): A physical machine which
is fully dedicated without any virtualization layer is
expressed in terms of bare-metal. Ironic allocates the
bare-metal as on-demand compute instance to users
via PXE (Preboot eXecution Environment) and IPMI
(Intelligent Platform Management Interface) mech-
anism. With bare-metal, applications in the cloud
could be executed as in the local environment with-
out losing performance due to the fully utilization of
hardware. Meanwhile, the bare-metal still can be dy-
namically provisioned and allocated to users in a on-
demand manner like other cloud resources. However,
since a bare-metal is provisioned as a whole phys-
ical machine, the resource on it is dedicated to its
users, and cannot be shared among other tenants in
the cloud. Thus, bare-metal could result in lower re-
source utilization and compute instance deployment
density in cloud.

Nova (Virtual Machine): Nova is the service in
OpenStack to spawn and manage virtual machines
through a VM hypervisor, such as QEMU. The vir-
tualization of hardware resources allows a VM to be
created with different resource configurations, and let
multiple VMs to be run on one machine for sharing
physical resources. Hence, comparing to bare-metal,
virtual machine can increase the resource utilization,
but introduce more performance overhead.

Magnum (Container): Container can be consid-
ered as lightweight virtualization. It isolates Linux
processes into their own system environment, but
shares the OS kernel with host machine. Hence,
comparing to virtual machine, it has less perfor-
mance overhead, higher deployment density, faster
boot time. Thus, container has been widely used for
software and service deployment. In OpenStack, con-
tainers are provisioned and managed through a con-
tainer orchestration engine(COE). The service that in-
teracts with COE is called Magnum, which provides
an unified interface for users to control various COE

Comparison Between Bare-metal, Container and VM using Tensorflow Image Classification Benchmarks for Deep Learning Cloud Platform

377

implementations, including Kubernetes (Kubernetes,
2017), Swarm (Docker, 2017) and Mesos (Hindman
et al., 2011). Magnum can launch COE on either vir-
tual machines provisioned by Nova or bare-metal ma-
chines provisioned by Ironic. In this work, we choose
Kubernetes as our COE.

3 METHODOLOGY

This section details our performance evaluation
methodology. First, we give the hardware specifica-
tion and software version in our experiments testbed.
Then, we introduce the Tensorflow benchmark for
generating the deep learning computation workload.
Finally, we identify three commonly used execution
scenarios of Tensorflow, and use them in our evalua-
tion to reflect the actual application performance.

3.1 Testbed Environment

Our experiments were conducted on a in-house Open-
Stack cloud platform with 4 physical nodes connected
by 1Gbps network. Each node equipped with four In-
tel(R) Core(TM) i5-6600 CPU, 62GB of RAM. Three
of them owned two GeForce GTX 1080 GPUs, and
they were used as the worker nodes for provisioning
compute instance, including bare-metal, virtual ma-
chine and container. The Tensorflow jobs from our
benchmark were also run on these worker nodes. The
machine without GPU was used as the master node to
deploy controller components, including the Kuber-
netes master.

How does each compute instance access GPU
plays an important role in our works. For virtual ma-
chine, we use pci passthrough mechanism to enable
VM access GPU without significantly losing perfor-
mance. This is also how public cloud provider, like
GCP and AWS, support GPU servers in their cloud
platform. On the other hand, Kubernetes supports
GPU through the kubelet deployed on every worker
node. If a container requests for GPU resource, the
kubelet initializes the container, and uses cgroup to
map GPU devices onto the container.

Finally, the versions of software used in our de-
ployment are summarized as follows. The OS version
is CentOS 7.3.1611. The version of OpenStack is Mi-
taka. The version of Docker is v17.05.0-ce. The ver-
sion of Kubernetes is v1.7.5. We use CUDA v8.0,
cudnn v6.0 and Tensorflow-gpu v1.4 to execute all
Tensorflow jobs in our experiments. As shown, all
these software packages are released recently within
a year or so.

Table 1: Configuration of models in our benchmark.

Options InceptionV3 ResNet-50 AlexNet
Batch size/GPU 32 32 512

Data Format NHWC
Optimizer sgd

Variable update
Single node: parameter server

Distributed: distributed replicated
Local parameter

device
Single node: CPU
Distributed: GPU

3.2 Image Classification Benchmarks

The benchmark applications used in our evalua-
tion are three image classification CNN(Convolution
Neural Network) models that won the ImageNet
challenge in the past few years, including Incep-
tionV3(Szegedy et al., 2015), ResNet-50(He et al.,
2015) and AlexNet(Krizhevsky et al., 2012). These
models can be either trained by a synthetic dataset or
a real dataset (ImageNet dataset (Russakovsky et al.,
2015)). Synthetic dataset is generated in memory and
can avoid disk I/O overhead, while real dataset re-
quires additional disk I/O operations to load data from
file system. Noted, while real dataset is used, we
replicate the dataset and place it on every node.

Each benchmark run is a model training job that
does 10 warm-up steps followed by another 100 train-
ing steps. Our experiments focus on two key perfor-
mance metrics: (1)throughputmeasured by the num-
ber of images processed per second during the train-
ing steps, and (2)elapse timemeasured by the total
execution time from a training job is launched until it
finished. In other words, the elapse time metric in-
cludes the performance impact of data loading and
pre-processing while the throughput metric does not.
All the configurations for running Tensorflow bench-
mark are summarized in Table 1.

3.3 Evaluation Scenarios

We design three evaluation scenarios in order to fully
compare different compute environments and to cap-
ture behavioral performance of how the training jobs
are commonly executed in a virtualized and shared
cloud environment. The execution settings of these
scenarios are described in below:

a) Single instance scenario: It represents the sim-
plest setting for running a Tensorflow job. In this sce-
nario, each job only runs on a single compute instance
provisioned by the cloud resource orchestration man-
ager. But in our experiments, each compute instance
is attached with two GPU devices. Hence, we let the
job to parallelize its computing workload across the
two GPU devices, and launches a single parameter

CLOSER 2018 - 8th International Conference on Cloud Computing and Services Science

378

server process on CPU to coordinate the communica-
tion among them. This job execution scenario is also
the most commonly seen approach by the Tensorflow
users, because it can utilize all the GPU resource on
a compute instance, and avoid communication over-
head across network.

b) Distributed multi-instance scenario: It repre-
sents the setting when users need to perform large-
scale model training. In this scenario, we use the
distributed Tensorflow to launch a job running across
dynamic provisioned compute instances. In the ex-
periments, we uses three compute instances. One of
them runs the Tensorflow parameter server for syn-
chronization, and the other two runs the Tensorflow
worker for training computations. The model param-
eters are distributed and replicated on GPU devices,
and their values are updated after the parameter server
collects the gradients from all workers. Each compute
instance still has two GPU devices, so the computing
workload is parallel distributed across both machine
and device levels. This job execution scenario is of-
ten used to achieve shorter execution time or handle
larger training model. However, due to the frequent
message communications between workers and pa-
rameter servers from model training, significant net-
work traffic could be incurred.

c) Shared resource scenario: To improve resource
utilization and increase deployment density, it is com-
mon for cloud providers to consolidate multiple com-
pute instances on the same physical machine. With
the emergence of powerful GPU servers that can sup-
port up to 16 GPU cards, a single job does not of-
ten need all the resources. Therefore, our last sce-
nario is to evaluate the impact of performance inter-
ference when multiple compute instances are created
on the same physical machine for resource sharing.
Our approach is to firstly run a job on a single com-
pute instance to obtain its original performance mea-
surements. Then we create two compute instances on
the same physical machine, and run two jobs simul-
taneously on the instances (one job per compute in-
stance) to observe the performance degradation and
impact. Since each physical machine has only two
GPU devices, each compute instance only uses one
GPU device in this set of experiments. Noted for the
case of bare-metal experiments, we simply run two
jobs in the same OS environment.

4 EXPERIMENTAL RESULTS

This section summarizes the performance results
of the three evaluation scenarios described in Sec-
tion 3.3. The results in the following plots are normal-

ized to bare-metal setting, and the actual performance
measurement values are indicated above the bars.

4.1 Single Instance

This set of experiments evaluates the performance of
running our benchmark on a single compute instance.
First, we discuss the results from using synthetic data
input. The results of training throughput, and the to-
tal job elapse time are shown in Figure 2, and Fig-
ure 3, respectively. As shown from the plots, bare-
metal has the best performance, and container on vir-
tual machine has the worst performance. The impact
of virtual machine is larger than container as larger
performance degradation is shown when virtual ma-
chine is used. The performance impact on through-
put has the same trend as elapse time. But we found
that the degradation is more apparent for elapse time.
This is because elapse time includes the model copy
time between CPU host and GPU device before and
after training, and virtualization causes more stress
on memory access than pure GPU or CPU compu-
tations. We also found that the impact on AlexNet
is more than the other two models. It is likely be-
cause AlexNet has a larger training batch size which
makes the memory copy performance matters more.
But overall, the performance degradation in this set of
experiments is limited within 15%, because both net-
work and disk I/O operations were not involved when
synthetic data input is used on a single compute in-
stance.

The results of real data input are shown in Figure 4
and Figure 5. Comparing to the synthetic data input,
real data input requires additional disk operations to
load the training data from disk. Hence, the impact
on disk I/O performance from virtualization is also
included in this study. We found that container can
still perform almost the same as bare-metal with real
data input. However, the performance of virtual ma-
chine degrades much more significantly. For instance,
the elapse time of container on VM becomes almost
30% longer than the bare-metal. In comparison, it is
less than 20% for the synthetic data input. Overall,
container performs similar to bare-metal in the single
instance scenario with or without data input. But vir-
tual machine may suffer more performance degrada-
tion when larger training datasets needed to be loaded
from disks.

4.2 Distributed Multi-instance

This set of experiments evaluates the performance
of running our benchmark across multiple compute
instances which introduces additional network over-

Comparison Between Bare-metal, Container and VM using Tensorflow Image Classification Benchmarks for Deep Learning Cloud Platform

379

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

InceptionV3 ResNet-50 AlexNet

im
g

s/
se

c

(n
o

rm
a

li
ze

d
 t

o
 B

M
)

BM Container on BM VM Container on VM

Figure 2: Images/sec throughput comparison using syn-
thetic data on single instance. Lower values means higher
performance degradation.

69 47 50
70 48

52

74.3

52

57

75

53

59

0.9

1

1.1

1.2

1.3

1.4

InceptionV3 ResNet-50 AlexNet

el
a

p
se

 t
im

e

(n
o

rm
a

li
ze

d
 t

o
 B

M
)

BM Container on BM VM Container on VM

Figure 3: Job elapse time comparison using synthetic data
on single instance. Higher values means higher perfor-
mance degradation.

head into our performance comparison. Again, we
discuss the results of using synthetic data and real
data, separately. The results of synthetic data are
shown in Figure 6, and Figure 7. Comparing to
the single instance scenario, more significant perfor-
mance degradation is observed for the multi-instance
scenario. As shown by the throughput comparisons
of InceptionV3 and ResNet-50 models in Figure 6,
the degradation of container on bare-metal already
reaches about 20%. The degradation of virtual ma-
chine and container on virtual machines even reaches
25% and 35%, respectively. Therefore, container and
virtual machine both cause significant network over-
head. But interestingly, we found that network over-
head has much less impact on AlexNet than the other
two models. This is because AlexNet is much smaller
model than the others, and thus it suffers less impact
from the network performance degradation.

Figure 8 and Figure 9 are the results of using real
data. Unlike single instance scenario, here we found
similar results between the real data and synthetic
data. This is because network performance domi-
nates the overall performance for distributed Tensor-
flow, so the disk I/O impact was shadowed. Overall,
we found that network performance is critical to dis-
tributed Tensorflow. Although container can deliver
close to bare-metal computing performance, it also

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

InceptionV3 ResNet-50 AlexNet

im
g

s/
se

c

(n
o

rm
a

li
ze

d
 t

o
 B

M
)

BM Container on BM VM Container on VM

Figure 4: Images/sec throughput comparison using real data
on single instance. Lower values means higher performance
degradation.

72 52 157
73 53

160

79 58

184

81
60

200

0.9

1

1.1

1.2

1.3

1.4

InceptionV3 ResNet-50 AlexNet

el
a

p
se

 t
im

e

(n
o

rm
a

li
ze

d
 t

o
 B

M
)

BM Container on BM VM Container on VM

Figure 5: Job elapse time comparison using real data on
single instance. Higher values means higher performance
degradation.

suffers severe network performance degradation like
virtual machine. We believe it is caused by the ad-
ditional network layer, flannel, added by Kubernetes.
Finally, the elapse time can be prolonged by as much
as 1.5 times longer when running on both container
and virtual machine as shown in Figure 9. We ex-
pect the degradation to be even greater if the model is
more complex or the train dataset is larger. Therefore,
cloud providers must pay more attentions to network
virtualization in the future.

4.3 Shared Resource Environment

Lastly, we evaluate the performance in a shared re-
source environment where multiple jobs running on
the same physical machine simultaneously. We evalu-
ate the performance degradation by comparing the job
elapse time before and after the background workload
is introduced. The background workload used in this
set of experiments is a AlexNext training job with a
batch size of 512. The results of using different com-
pute instance settings are show in Figure 10. Noted,
for the setting of bare-metal, we directly run two jobs
in the same OS environment.

As expected, across all the test cases, bare men-
tal has the highest performance impact in shared re-
source environment, while virtual machine has the

CLOSER 2018 - 8th International Conference on Cloud Computing and Services Science

380

57 52 284

47 43

280

44
39

247

38
3�

240

0.5

0.�

0.7

0.8

0.9

1

1.1

1.2

InceptionV3 ResNet-50 AlexNet

im
g
s/

se
c

(n
o
rm

a
li

ze
d

 t
o
 B

M
)

BM Container on BM VM Container on VM

Figure 6: Images/sec throughput comparison of distributed
Tensorflow using synthetic data on multiple instances.
Lower values means higher performance degradation.

261 322 800

320

338
818

343

37� 943

391

389
944

0.9

1

1.1

1.2

1.3

1.4

1.5

1.�

InceptionV3 ResNet-50 AlexNet

el
a

p
se

 t
im

e

(n
o

rm
a

li
ze

d
 t

o
 B

M
)

BM Container on BM VM Container on VM

Figure 7: Job elapse time comparison of distributed Ten-
sorflow using synthetic data on multiple instances. Higher
values means higher performance degradation.

54 4� 282

45

43

279

39

37

241

3�

35

239

0.5

0.�

0.7

0.8

0.9

1

1.1

1.2

InceptionV3 ResNet-50 AlexNet

im
g
s/

se
c

(n
o
rm

a
li

ze
d

 t
o
 B

M
)

BM Container on BM VM Container on VM

Figure 8: Images/sec throughput comparison of distributed
Tensorflow using real data on multiple instances. Lower
values means higher performance degradation.

least. Bare-metal has the highest performance impact
because it does not limit resource usage between the
processes from different jobs, and processes can be
context switched among CPUs arbitrary. In compar-
ison, containers are bound to user designated CPUs,
and kubernetes also has QoS mechanism to control
the resource usage of a container within a user spec-
ified range. Virtual machine offers the strongest re-
source isolation because jobs are managed by separate
operating systems, and resources are reserved on host
machines in advanced, so performance interference is
minimized.

But interestingly, we observer that the perfor-

278 336 869

354

3�9

895

384

408

984

419

429

1003

0.9

1

1.1

1.2

1.3

1.4

1.5

1.�

InceptionV3 ResNet-50 AlexNet

el
a

p
se

 t
im

e

(n
o

rm
a

li
ze

d
 t

o
 B

M
)

BM Container on BM VM Container on VM

Figure 9: Job elapse time comparison of distributed Tensor-
flow using real data on multiple instances. Higher values
means higher performance degradation.

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

InceptionV3 ResNet-50 AlexNet

(batch size 512)

AlexNet

(batch size 32)

d
eg

ra
d

a
ti

o
n

 o
n

 e
la

p
se

 t
im

e

BM Container on BM VM

Figure 10: Performance degradation of job elapse time in
shared resource environment. The baseline performance is
measured when background workload is not introduced.

mance impact is limited in most cases, except for
AlexNext with 512 batch size. After further looking
into the job profiling log, we found that the execution
time delay was caused by the much longer memory
copy duration between host and devices. We believe
this is because larger batch size means more training
data needs to be transferred to GPU in each training
step. As a result, higher I/O bandwidth between GPU
device and CPU host is required. Since the batch
size of both InceptionV3 and ResNet-50 is only 32,
there were still enough bandwidth to be shared be-
tween foreground and background jobs. But when we
ran two AlexNext jobs with 512 batch size together,
the required bandwidth has over the hardware I/O bus
limit, and thus cause significant performance degra-
dation. To verify our guess, we also evaluated the
case of running AlexNet with 32 batch size setting.
As shown by the rightmost bars in Figure 10, the per-
formance is again under 10% for container and virtual
machine.

To sum up, with smaller batch size, we found that
the performance degradation is within 15%∼20% re-
gardless what type of compute instances is used be-
cause most computation workload is located on GPU
devices not CPU devices. However, when a larger
batch size is used, it can cause resource contention on
the I/O bus between host and devices, and this prob-

Comparison Between Bare-metal, Container and VM using Tensorflow Image Classification Benchmarks for Deep Learning Cloud Platform

381

lem has not been addressed by the existing virtualiza-
tion technologies. Therefore, under resource sharing
environment, we only not need to provision resource
usage on GPU and CPU, but also the I/O bandwidth
between GPU and CPU.

5 RELATED WORKS

Many studies have conducted experiments to com-
pare the three types of virtualized resource instances
(bare-metal, virtual machine and container) in differ-
ent computing environment and using various bench-
marks. We summarize some of them in below.

Firstly, there are plenty performance comparison
studies between container and VM. (Salah et al.,
2017) compares the two from the services and mi-
croservice architecture perspective by evaluating the
service deployment time of using container ser-
vice (ECS) and virtual machine service (EC2) in AWS
cloud platform. Although the ECS containers are ac-
tually running on EC2 virtual machines, its deploy-
ment time still much shorter than EC2 because AWS
can re-use active virtual machine for container de-
ployment. (Li et al., 2017) compares the computing
performance between VM and container by various
different types of applications. Their results show that
although the container-based solution is undoubtedly
lightweight, the VM does not always have worse per-
formance. For instance, they did observe that con-
tainer has slower transaction speed than VM for bytes
level data read/write operations. (Jlassi and Mar-
tineau, 2016) benchmarks Hadoop on Docker con-
tainers, VMware and heterogeneous cluster consist-
ing of both. It shows that container has better per-
formance in most experiments, but the energy con-
sumption could be varied according to the executed
workload.

Then there are studies considering container as a
deployment service layer on top of resource virtual-
ization layer. Hence, (Ruan et al., 2016) conducted a
series of experiments to measure performance differ-
ences between application containers (e.g., Docker)
and system containers (e.g., LXC), then evaluate the
overhead of extra virtual machine layer, and finally in-
spect the service quality of container service in AWS
and Google Cloud Platform.

Finally, both (Kominos et al., 2017) and (Maza-
heri et al., 2016) directly compare the performance
between bare-metal, virtual machine and container.
Their goal is to quantify the overhead of CPU, net-
working, disk I/O, RAM and boot-up time using
various different high-performance computing bench-
marks, such as HPCC (High Performance Computing

Challenge) and IOR (Interleave Or Random). They
both conclude that Docker container surpasses vir-
tual machine in most benchmarks, and has merely the
same performance of bare-metal.

All aforementioned studies aim to use singe
resource-bound benchmark applications to compare
the performance of using a specific type of resources,
such as I/O, network, CPU. But deep learning is a
rather complex application with mixed types of re-
source usage. Without directly using the real deep
learning application workloads, it is difficult to char-
acterize the performance impact from various training
job settings, such as different batch size and network
models, etc. Besides, in this paper, we compare four
different orchestration options by using the combina-
tion of different virtualization techniques, and focus
on the performance overhead and performance inter-
ference issues in a shared cloud environment.

6 CONCLUSION

Building cost effective and performance efficient
cloud service for deep learning is an urgent matter.
In this work, we aim to discuss the resource orchestra-
tion choices between bare-metal, container and virtual
machine. We use OpenStack to build a cloud platform
to evaluate the performance of these orchestration ap-
proaches by training a set image classification CNN
models. We conclude the key findings from our ex-
perimental study as follows.

(1) On a single compute instance when network
and disk I/O doesn’t involve, virtualization layer has
little impact to performance regardless which tech-
nique is used. Even when both container and virtual
machine are used, the degradation we observed was
less than 10%. Hence, virtualization overhead is not
a critical concern in this use scenario.

(2) Distributed Tensorflow is a network bound
application. Unfortunately, virtualization layer does
cause significant degradation to network perfor-
mance, especially for virtual machine. The network
overhead of container is caused by the additional net-
work overlay, flannel, in kubernetes. Hence, run-
ning container on virtual can exacerbate the perfor-
mance overhead, and reach more than 35% through-
put degradation, and 50% elapse time increment.
Hence, lightweight virtualization technique like con-
tainer or even bare-metal should be considered.

(3) In a shared resource environment, we found
that there is limited resource contention problem on
the host machines because Tensorflow offloads most
of its computation workload to GPUs not CPUs.
However, the resource contention on the I/O band-

CLOSER 2018 - 8th International Conference on Cloud Computing and Services Science

382

width between host and device is a major concern,
especially when larger batch size is used to transfer
more data simultaneously. Our experiments show the
degradation can lead to more than 30% elapse time
increment, and this problem is neither addressed by
container or virtual machine. Hence, cloud manager
must take this resource usage requirements into ac-
count when running multiple jobs on the same ma-
chine.

(4) Finally, the actual severity of performance im-
pact can be varied according to the train model char-
acteristics. If the model is more complex, the net-
work overhead becomes more important. If the train-
ing dataset becomes larger, the I/O or memory access
overhead becomes more critical. But overall, it is bet-
ter to use more lightweight virtualization or resource
orchestration approach, and prevent additional virtu-
alization layers.

Besides offering researchers more understanding
of the resource orchestration impact on deep learn-
ing applications, we identify the following research
challenges that deserved to receive more attentions in
the future: (1) improve network virtualization perfor-
mance and reduce overlay network layers in resource
orchestration; (2) provide resource sharing and con-
trolling mechanism on a single GPU device as well
as the I/O bandwidth resource between devices and
hosts; (3) develop more accurate resource usage es-
timation and performance prediction mechanism for
deep learning job to help cloud providers optimize
their job scheduling and placement decision.

REFERENCES

Abadi, M., Agarwal, A., and et al. (2015). TensorFlow:
Large-scale machine learning on heterogeneous sys-
tems. Software available from tensorflow.org.

Bernstein, D. (2014). Containers and cloud: From LXC
to docker to kubernetes.IEEE Cloud Computing,
1(3):81–84.

Chen, T., Li, M., and et al. (2015). Mxnet: A flexible and
efficient machine learning library for heterogeneous
distributed systems.CoRR, abs/1512.01274.

Collobert, R., Kavukcuoglu, K., and Farabet, C. (2011).
Torch7: A matlab-like environment for machine learn-
ing. In BigLearn, NIPS Workshop.

Docker (2017). Docker swarm.
https://docs.docker.com/engine/swarm/.

Gartner (2017). Gartner. http://www.gartner.com/.
He, K., Zhang, X., Ren, S., and Sun, J. (2015). Deep

residual learning for image recognition. CoRR,
abs/1512.03385.

Hindman, B., Konwinski, A., and et al. (2011). Mesos: A
platform for fine-grained resource sharing in the data
center. InProceedings of the 8th USENIX Conference

on Networked Systems Design and Implementation,
NSDI’11, pages 295–308.

Jlassi, A. and Martineau, P. (2016). Benchmarking hadoop
performance in the cloud - an in depth study of re-
source management and energy consumption. InIn-
ternational Conference on Cloud Computing and Ser-
vices Science, pages 192–201.

Kominos, C. G., Seyvet, N., and Vandikas, K. (2017). Bare-
metal, virtual machines and containers in openstack.
In 20th ICIN, pages 36–43.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Im-
agenet classification with deep convolutional neural
networks. In25th NIPS, volume 1, pages 1097–1105.

Kubernetes (2017). Kubernetes is an open-source system
for automating deployment, scaling, and management
of containerized applications. https://kubernetes.io/.

Li, Z., Kihl, M., Lu, Q., and Andersson, J. A. (2017).
Performance overhead comparison between hypervi-
sor and container based virtualization. InIEEE AINA,
pages 955–962.

Mazaheri, S., Chen, Y., Hojati, E., and Sill, A. (2016).
Cloud benchmarking in bare-metal, virtualized, and
containerized execution environments. InIEEE CCIS,
pages 371–376.

Noda, K., Yamaguchi, Y., and et al. (2015). Audio-visual
speech recognition using deep learning.Appl. Intell.,
42(4):722–737.

OpenStack (2017). Open source software for creating pri-
vate and public clouds. https://www.openstack.org/.

Ramos, S., Gehrig, S. K., Pinggera, P., Franke, U., and
Rother, C. (2017). Detecting unexpected obstacles for
self-driving cars: Fusing deep learning and geometric
modeling. InIEEE Intelligent Vehicles Symposium,
pages 1025–1032.

Ruan, B., Huang, H., Wu, S., and Jin, H. (2016). A perfor-
mance study of containers in cloud environment. In
Asia-Pacific Services Computing Conference, volume
10065 ofLecture Notes in Computer Science, pages
343–356.

Russakovsky, O., Deng, J., and et al. (2015). ImageNet
Large Scale Visual Recognition Challenge.Interna-
tional Journal of Computer Vision, 115(3):211–252.

Salah, T., Zemerly, M. J., Yeun, C. Y., Al-Qutayri, M., and
Al-Hammadi, Y. (2017). Performance comparison be-
tween container-based and vm-based services. In19th
ICIN, pages 185–190.

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wojna,
Z. (2015). Rethinking the inception architecture for
computer vision.CoRR, abs/1512.00567.

Theano Development Team (2016). Theano: A Python
framework for fast computation of mathematical ex-
pressions.arXiv e-prints, abs/1605.02688.

Comparison Between Bare-metal, Container and VM using Tensorflow Image Classification Benchmarks for Deep Learning Cloud Platform

383

