
Using Tag based Semantic Annotation to Empower Client and REST
Service Interaction

Cong Peng and Guohua Bai
Department of Creative Technologies, Blekinge Institute of Technology, Karlskrona, Sweden

Keywords: Web Service Description, Semantic Annotation, REST, OpenAPI, Service Discovery, Semantic Web Services.

Abstract: The utilization of Web services is becoming a human labor consuming work as the rapid growth of Web. The
semantic annotated service description can support more automatic ways on tasks such as service discovery,
invocation and composition. But the adoption of existed Semantic Web Services solutions is hindering by their
overly complexity and high expertise demand. In this paper we propose a highly lightweight and non-intrusive
method to enrich the REST Web service resources with semantic annotations to support a more autonomous
Web service utilization and generic client service interaction. It is achieved by turning the service description
into a semantic resource graph represented in RDF, with the added tag based semantic annotation and a small
vocabulary. The method is implemented with the popular OpenAPI service description format, and illustrated
by a simple use case example.

1 INTRODUCTION

The Web is growing exceedingly, either for human or
for machines (Web APIs). It is, on the one hand, brin-
ging an imaginative utilization of the services on the
Web. On the other hand, it also brings about a pro-
blem that the utilization of Web services is becoming
a tediously repetitive work, such as search for servi-
ces required, read documents to know how to invoke,
and program similar clients to utilize services. Those
works currently are more of human labor-centered
works other than intelligence-centered works, which
they are supposed to be.

For enabling a more autonomous usage of Web
services, it requires the client to have a certain level
of capabilities for interpreting the resources, such as
the understanding of what the resources are and the
possible actions to the resources. And it should also
reduce coupling between client and service. There-
fore, a machine understandable service description is
important to facilitate a more autonomous Web ser-
vice utilization from discovery, invocation to compo-
sition.

However, there are very few semantic service des-
criptions available for the current Web services. The
reasons are multi-fold. The existed semantic service
description standards are lacking links to the actual
Web service development technology stack. It requi-
res extensive manual work to annotate or even recre-

ate the descriptions of existed Web services. Besides,
the attempt to achieve fully semantic understandable
at once made those solutions (Kopecký et al., 2007;
Vitvar et al., 2008) complicated and highly expertise
requisite, which caused the reluctant of application.

In this paper, we propose a method called Sem-
REST (Semantic RESource Tagging) to add semantic
annotations to REST service description in a simple
manner to make the client service interaction more
generic and autonomous. To mitigate the semapho-
bia (Lanthaler and Gütl, 2011), our approach aims to
avoid much knowledge requirement on Semantic Web
by adding tag based semantic annotations to the ser-
vice description, which will be presented with the wi-
dely used OpenAPI specification1 in a non-intrusive
way. An example case is presented to demonstrate
how this approach could work.

2 RELATED WORK AND
PROBLEM ANALYSIS

There have been extensive works done on both syn-
tactic description and semantic description to Web
services. Here we only discuss those works that have
strong influence and are considered most relevant to
the work in this paper.

1https://swagger.io/specification/

64
Peng, C. and Bai, G.
Using Tag based Semantic Annotation to Empower Client and REST Service Interaction.
DOI: 10.5220/0006682500640071
In Proceedings of the 3rd International Conference on Complexity, Future Information Systems and Risk (COMPLEXIS 2018), pages 64-71
ISBN: 978-989-758-297-4
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

The Semantic Annotations for WSDL and XML
Schema (SAWSDL) aims to add semantic annotati-
ons to a WSDL (Web Services Description Language)
document’s input/output message, interfaces and ope-
rations (Kopecký et al., 2007). An annotation me-
chanism is also defined in SAWSDL to specify the
data mappting between XML Schema types and an
ontology. SAWSDL is regarded as a lightweight ap-
proach to annotate Web services described in WSDL,
and recommended by the World Wide Web Consor-
tium (W3C) in 2007.

As SAWSDL only provides a way to attach se-
mantic annotation in WSDL documents but without
the specification and standardization of the concrete
service semantics, WSMO-Lite was then proposed to
model service semantics within the SAWSDL frame-
work (Roman et al., 2015). WSMO-Lite is a service
ontology inspired by the WSMO (Web Service Mo-
deling Ontology) ontology that uses SAWSDL as an-
notation mechanism. It defines a a lightweight set
of semantic service descriptions in RDFS (Resource
Description Framework Schema) to annotate WSDL
elements (Vitvar et al., 2008). WSMO is a top-down
conceptual model for semantic Web services, whereas
the WSMO-Lite is a bottom-up model to provide a
lightweight ontology (Dieter Fensel et al., 2010).

In addition, in order to combine the common RE-
STful Web services and WSDL-based services into
one semantic Web service framework, Roman et al.
added hRESTS (HTML format for describing REST-
ful Services) and MicroWSMO, the two HTML mi-
croformats mirror WSDL and SAWSDL, to work to-
gether with WSMO-Lite (Roman et al., 2015). In
which the WSDL and hRESTS work as the service
description layer, SAWSDL and MicroWSMO work
as the semantic annotation layer points to concepts
defined in WSMO-Lite.

RESTdesc is RESTful Web services semantic des-
cription method with an emphasis on hypermedia
APIs. It describes service’s request preconditions,
postconditions and quantifiers in RDF/Notation3 to
enable a more automatic service composition (Ver-
borgh et al., 2011).

The Hydra framework is a set of technologies tries
to make semantic enriched Hypermedia API for Web
services to enable generic clients to consume services
2. It is based on the Hydra Core Vocabulary, which is
a lightweight vocabulary that defines some fundamen-
tal concepts commonly used by Web APIs (Lanthaler
and Guetl, 2013).

These solutions enabled the semantic annotations
to service descriptions, but they suffer a problem that
denoted by Lanthaler et al. as Semaphobia (Lanthaler

2http://www.hydra-cg.com

and Gütl, 2011). It requires too much knowledge on
Semantic Web to annotate with these solutions, which
causes the reluctant of application.

Another problem with these solutions is user un-
friendly. Though the semantic service description is
meant to be understood by machines, it requires hu-
man to create, with handy support tools and human
readable formats. This is why the description stan-
dards like OpenAPI Specification, API Blueprint and
RESTful API Modeling Language (RAML) are be-
coming popular these years. OpenAPI Specification
(widely known as Swagger) is a definition standard
proposed by Open API Initiative to describe RESTful
Web APIs 3. OpenAPI is the mostly used syntactic
description format currently, thanks to its easy to use
editor and multiple languages supported code genera-
tion tools.

However, due to lack of machine understandable
semantics, these syntactic API descriptions are still
inefficient for service consumers to discover the spe-
cific resources within the service in a more autono-
mous manner with a generic client. The work done
by Lucky et al. presented an approach to add seman-
tic annotation to the response data schema in an Ope-
nAPI description (Lucky et al., 2016). However, it
did not mention how can the service client be impro-
ved by the semantic annotation to a more automatic
way. And it is more an approach to empower static
service composition.

In this paper we try to use a tag based approach
to add semantic annotation to the popular and easy to
use OpenAPI Specification, to achieve a more generic
and autonomous client service interaction in a extre-
mely simple manner, at the same time take advantage
of human readable description format and supporting
tools, and keep its simple to start, well-integrated to
the existing web service work/development flow, ea-
sily achievable with minimal intrusion, to overcome
the Semaphobia.

3 SEMANTIC RESOURCE
TAGGING WITH OpenAPI

3.1 Semantic Tag Annotated OpenAPI

As the mostly used API description standard with a
tooling ecosystem for both API developing and con-
suming, we firstly implement the SemREST with the
OpenAPI Specification. Here in Listing 1 is an ex-
ample OpenAPI description fraction of the activities
resource in YAML format (which is a path object in

3https://swagger.io

Using Tag based Semantic Annotation to Empower Client and REST Service Interaction

65

paths:

Resource1-2

/1/user/-/activities/calories/date/{base-date}/ c
{end-date}.json:↪→

get:

summary: Get Activity Time Series

description: Returns time series data for activities

calories resource.↪→
parameters:

- name: base-date

in: path

description: The range start date.

- name: end-date

in: path

description: The end date of the range.

responses:

200:

description: A successful request.

schema:

$ref: '#/definitions/CaloriesTS'

Listing 1: Service Description Fraction of a Fitbit Resource.

the OpenAPI description) from Fitbit service API
when the time this paper is writing, we modified a
little for brevity. Fitbit is a health and fitness service
that offers wearable devices to track activity data and
hosts Web service to provide access to data4. And this
Fitbit service description will be used as an example
through out this paper.

As analyzed in the previous section, the current
OpenAPI service description lacks machine under-
standable semantics that can provide the meaning of
what the resource represents. So we propose to add
tag based annotation to the resource. For the sake of
not violating the standard OpenAPI specification, the
semantic tag annotation will be added through speci-
fication’s built-in optional field, tags. A list of tags to
each operation object in OpenAPI is one kind of ad-
ditional metadata, it is for the similar purpose as our
semantic tag.

A semantic tag comprises 2 parts, which are a pre-
fix and a suffix joint by a colon. The prefix is an
abbreviation of the used open vocabulary’s Interna-
tionalized Resource Identifier (IRI) (M. Duerst and
M. Suignard. IETF, 2005), the suffix is the term in
the used vocabulary to indicate the semantic meaning,
which is case sensitive aligned to those vocabularies.
The two parts as a whole is equivalent to the IRI of
the term. This way of expressing semantic tag follows
the abbreviation mechanism of OWL (Web Ontology
Language) (W3C, 2012).

The Listing 2 shows the semantic tag annotated
version of the resource shown in Listing 1. The only
difference, which is highlighted, is the additional tags

4https://www.fitbit.com

paths:

Resource1-2

/1/user/-/activities/calories/date/{base-date}/ c
{end-date}.json:↪→

get:

summary: Get Activity Time Series

description: Returns time series data in the

specified range for a given resource.↪→
tags:

- schema:calories

- schema:activities

- schema:ConsumeAction

parameters:

...

responses:

...

Listing 2: Annotated Service Description Fraction of a Fit-
bit Resource.

tags:

- name: schema

description: the schema.org vocab

externalDocs:

url: http://schema.org

description: uri of the schema.org vocab

Listing 3: Used Vocabulary Stated as OpenAPI Tags Object.

list for a resource’s description. As in the OpenAPI
specification, all the used tags could be declared in
a tags object under the OpenAPI root object, so as
these semantic tags. The second additional informa-
tion will be added to the plain OpenAPI description is
the IRI of each tag. The IRIs will be indicated by the
url field of each tag object’s externalDocs object
under the root tags object. But for the simplicity, we
can just state the vocabularies used in the root tags
object (as shown in Listing 3), which is compatible.

For serving the annotated service description to
the client, an OPTIONS method under the service’s
root path / will be added to each service to respond
the service description (as shown in Listing 4). As
a method for describing the communication options
for a target resource in HTTP/1.1 specification (R.
Fielding, J. Gettys, J. Mogul et al., 1999), it makes
OPTIONS method a good way for discovering related
resources for the target resource (Steiner and Alger-
missen, 2011). Since a service description contains
all the resources, which can be regarded as all the re-
lated resources to the root resource, it is natural to use
the OPTIONS method to retrieve the service descrip-
tion, as the same in (Lucky et al., 2016).

When the annotations are added, now we can ge-
nerate the semantic description of the resources to
RDF based on it and together with the OpenAPI

COMPLEXIS 2018 - 3rd International Conference on Complexity, Future Information Systems and Risk

66

paths:

Resource1-1

/:

options:

summary: Returns service description

produces:

- application/json

- application/ld+json

responses:

...

Listing 4: OPTIONS Method of Root Resource for Serving
Annotated Service Description.

model and a small SemREST mapping vocabulary,
which simply contains some mapping entities to be
expressed in RDF. Table 1 only lists the entities those
are necessary to generate the resource graph, a more
complete vocabulary can refer to the work done by
Musyaffa et al. (Musyaffa et al., 2016).

The generated RDF depicts the resource in the ser-
vice is presented Figure 1 as a graph. To be noted
that in Figure 1, the resource IRI is manually repla-
ced by a human readable name for readability. The
resource IRI in actual fact is identified by calculating
MD5 hash of the resource’s OpenAPI description path
string. With the semantic tags indicating what the re-
source represents, now we can use the semantic tags
to enable service client for the discovery of required
resources in the service by semantic inference. For
example in the case of different vocabularies are used
among different services and client but indicating the
same or similar entity, the client can infer all the re-
sources annotated in different different vocabularies
with the help of a simple ontology.

Figure 1: Resource Graph of a Fitbit Resource.

3.2 SemREST Framework

Since the server cannot predict what the client will
require for the next step, so many computations of
resource discovery will be done on the client side (re-
source URL query and inferring). Although it can be

processed also on the service or third party service re-
gistry for different purposes, we only demonstrate the
client side resource discovery in this paper.

The architecture of framework is shown in Figure
2, include the extended components to the official
OpenAPI framework, the server side of service, and
the client side with a semantic module. As we propose
to add tag based semantic annotations to the OpenAPI
service description, here we explain how the process
is for generating the semantic annotated service des-
cription.

Figure 2: Architecture of SemREST.

When the service developer completed the nor-
mal OpenAPI description, the semantic tag annota-
tions could be added. The annotated OpenAPI ser-
vice description could be registered to third party ser-
vice registries for enhanced semantic service disco-
very. Then the annotated OpenAPI description will
be served at the service’s root path via OPTIONS met-
hod in certain data exchange format, either JSON or
YAML.

The client contains an additional semantic mo-
dule, which is responsible for parsing service des-
cription into resource graph, and inferring for requi-
red resources. Firstly the the client need to register
what services it connects to by setting the service root
URL. The registration of services is a one time job,
and in the work of this stage, we leave aside the secu-
rity and authorization, but it is achievable with certain
OpenAPI objects. The client can retrieve the annota-
ted service description under the services’ root path
via OPTIONS method after registration meanwhile set-

Using Tag based Semantic Annotation to Empower Client and REST Service Interaction

67

Table 1: Named Entities Used in SemREST.

Name/Abbreviation Type Description
semrest:tag Class A semantic tag that annotates a resource
semrest:method Class A HTTP method that a resource supports
semrest:options Class A HTTP OPTIONS method, a subclass of semrest:method
semrest:get Class A HTTP GET method, a subclass of semrest:method
semrest:paths Class The paths of all resources in a OpenAPI description file
semrest:template Class An URL of a path, string value of a path object
semrest:hasResource Property To state a description of service contains which resources
semrest:hasTag Property To state the annotated semantic tags of a resource
semrest:hasMethod Property To state the supported HTTP method of a resource

ting required resources by semantic tags.
For generating a semantic resource graph, the re-

source graph generator component in the semantic
module will parse the annotated description together
with the small SemREST vocabulary into a RDF do-
cument, which could be in any RDF compatible for-
mat such as RDF/XML, JSON-LD or Turtle. The
generated resource graph, it can be used multiple ti-
mes and can be renewed when the service description
changed by retrieving a new version. When the se-
mantic resource graph is generated, the semantic in-
ferrer component can then query in the graph which
resources to request by the set semantic tags. The se-
mantic module of client can suggest which tags to use
under the same vocabulary as the services used, which
can reduce some inference work. When the required
resources are found, the metadata (URLs, parameters,
etc.) will be passed to the request module to send the
requests to the services.

4 FEASIBILITY OF SemREST

4.1 Tooling and Implementation

Our current proof-of-concept prototype is a very sim-
ple implementation supported by openly available
tools. The creation of the normal OpenAPI service
description is completed by the official Swagger on-
line editor5 in YAML format. For the semantic tag
annotation, the vocabularies are searched via the Lin-
ked Open Vocabularies6, and the adding of semantic
tags is completed by Swagger editor as well. As the
process of creation and editing of service description
is only a text editing work, it could be achieved by
any text editor.

We implemented both the imitation services and
the client in Python. The imitation services, which

5https://swagger.io/swagger-editor/
6http://lov.okfn.org/dataset/lov/

implemented with Flask framework7, imitate how the
actual service receive requests and return responses
with fake data, and only include the resources that
appear in the example case in the next section. The
client is comprised by 2 modules, a REST service re-
quester and a semantic module. In our prototype, we
simply integratively use the Python client generated
by the Swagger CodeGen framework to handle the
service requests. The semantic module is built upon
the RDFLib8 for a quicker implementation. Other-
wise, the Apache Jena9 is a more powerful Semantic
Web framework that enables more functionalities like
inference API. Currently, we use the JSON format of
the annotated description file in the prototype, since
it is easier to transfer the description into a JSON-
LD document (Manu Sporny et al., 2014), which is
a concrete RDF syntax, by add the vocabularies as a
context object.

4.2 Example Case

Here we will use an example case to demonstrate how
the proposed SemREST can achieve a more autono-
mous and generic client service interaction in a sim-
ple and non-intrusive way. The example case involves
the forementioned Fitbit service and Human API ser-
vice. Human API is a health data platform that aggre-
gates clinical data from comprehensive sources such
as Electronic Health Record, health devices and wea-
rable devices, and makes data accessible as RESTful
API10.

The scenario is set as, a service consumer Alice
uses Fitbit service to record her activity data include
calories consumption, and uses a blood pressure mo-
nitor that the data of which can be consumed from
Human API. Alice wants her health agent client with
a semantic module can gather her data from the 2 ser-

7http://flask.pocoo.org/
8http://rdflib.readthedocs.io
9https://jena.apache.org/

10https://www.humanapi.co/

COMPLEXIS 2018 - 3rd International Conference on Complexity, Future Information Systems and Risk

68

vices to have a comprehensive view of the health sta-
tus.

Although both Fitbit and Human API provide Web
APIs with documentations, the data are stored and
need to be retrieved separately, Alice still need to read
the two documents and develop two different client
programs in order to gather her data from the two
services. If both Fitbit and Human API can provide
their service description with semantic tag annotati-
ons as the approach proposed in this paper, then it
will reduce much repeated works. We will present
how the process will be for the two service providers
and Alice’s client.

Since it involves the service providers to serve
their services with description, and clients to inte-
ract with the services, so this example case consists
of 2 stage processes that are Semantic Service Des-
cription Generation and Serving, and Client Service
Interaction.

4.2.1 Description Generation and Serving

Firstly we will create the Fitbit SemREST service
description. Besides the activities’ calories consump-
tion resource shown in Section 3.1, the resource of
the foods’ calories intake data is also added to this
example. Since the original OpenAPI service descrip-
tion of Fitbit is already provided for API consumer (as
many other web service providers do), here we can di-
rectly add semantic tag annotations to the resources.

As we described in Section 3.1, the resource1-
2 is annotated from Listing 1 into Listing 2. The
only place we changed is the tags field. We add tag
schema:calories11 to resource1-2. Consider the ca-
lories data for activities can be regarded as consu-
ming, so we can add schema:ConsumeAction12 to
resource 1-2. For the resource of the foods’ calories
intake data, which we call it resource1-3, the annota-
ted service description is shown in Listing 5. We add
tag schema:calories to it as well, and obviously tag
schema:FoodEvent13 can be added to resource 1-3.
Combine these 2 annotated resources with Listing 3,
in which described the used schema vocabulary stated
in tags object, and Listing 4, in which described the
root resource path for serving service description, we
get the annotated SemREST description fraction to be
used in this example case.

Now we will create the Human API SemREST
service description. Since Human API has not provi-
ded API description in OpenAPI specification yet, so
we need to compose its OpenAPI description imita-

11http://schema.org/calories
12http://schema.org/ConsumeAction
13http://schema.org/FoodEvent

paths:

Resource 1-3

/1/user/-/foods/log/caloriesIn/date/{baseDate}/{endDate}:

get:

tags:

- schema:calories

- schema:FoodEvent

responses:

...

Listing 5: Annotated Service Description Fraction of a Fit-
bit Resource.

tags:

- name: m3lite

description: The M3-lite Taxonomy

externalDocs:

url: http://purl.org/iot/vocab/m3-lite#

description: uri of the M3-lite Taxonomy

paths:

Resource2-1

/:

options:

summary: Returns service description

produces:

- application/json

- application/ld+json

responses:

...

Resource 2-2

/v1/human/blood_pressure:

get:

summary: Returns the latest blood pressure reading

description: The latest blood pressure reading

tags:

- m3lite:BloodPressure

...

Listing 6: Annotated Service Description of Human API’s
Root and BloodPressure Resource.

ted from their API documentation first. The imita-
ted OpenAPI description is shown in Listing 6, in
which the blood_pressure resource 2-2 is given the
semantic tag m3lite:BloodPressure14 under The
M3-lite Taxonomy (Gyrard et al., 2016). As the same
in Fitbit description, the service description is served
under the path / via OPTIONS method.

4.2.2 Resources Look up and Request

Now we have the two services serving their re-
sources and service descriptions with semantic tag
annotation, Alice’s health agent client can start
to work. Alice will firstly tell her client where
the services are serving by setting the root URLs
of the 2 services, and then set what resour-

14http://purl.org/iot/vocab/m3-lite#BloodPressure

Using Tag based Semantic Annotation to Empower Client and REST Service Interaction

69

Figure 3: Interaction Sequence of the Example Case.

ces she want to retrieve by setting semantic tags
schema:calories and schema:ConsumeAction to
the calories data she wants for her activities, and tag
m3lite:BloodPressure for her blood pressure data
she wants. Then the client starts to interact with the
services. It will firstly send OPTIONS request to the
two services’ root path to get their service descrip-
tions. Figure 3 depicts the client service interaction
process of the example case.

Once the client get the service descriptions, the se-
mantic module parses all the resources into a combi-
ned resource graph in RDF, which is shown in Figure
4 (the graph is simplified for brevity). The semantic
module can then reason about required resources by
the semantic tags set by Alice. So here the resource
templates of resource 1-2 and resource 2-2 are found
by schema:calories + schema:ConsumeAction
and m3lite:BloodPressure, respectively. Each re-
source’s path, parameters and other metadata in its
OpenAPI description will then be determined by re-
source templates and passed to the request module.
For the resource 1-1, the client requires baseDate and
endDate as parameters to retrieve the representation
form Fitbit service. With all the metadata and para-
meters of a service request being available, the ac-
tual HTTP request could be achieved in various ways.
In this example, we use the automatically generated
service client by the Swagger CodeGen framework to
send the requests.

After Alice’s health agent client get the calories
of activities data from Fitbit and blood pressure data
from Human API, it can then utilize them more com-
prehensively, simply like a graph to present the trend
and correlation between calories consumption and
blood pressure.

The interactions of client between Fitbit service

Figure 4: Combined Resource Graph of 2 Services.

and HumanAPI are achieved by the same client that
supported by the tag based semantic annotation in a
very simple way, without breaking the normal web
service interaction process.

5 CONCLUSION

In this paper, we proposed SemREST, an extremely
lightweight and non-intrusive method, to enable se-
mantics to resources of REST Web services. With
this initial work, we identify a simple and fully com-
patible way of adding tag based semantic annotations
to the widely used OpenAPI service description for-
mat. The small SemREST vocabulary we specified

COMPLEXIS 2018 - 3rd International Conference on Complexity, Future Information Systems and Risk

70

together with the tag annotation mechanism provide a
bridge from the syntactic OpenAPI description to the
semantic resource graph, which enables a more ge-
neric and automatic client service interaction that can
reduce many repeated human labor consuming work.
The method we proposed also provide the potential
for service discovery and composition, as the resour-
ces of the annotated services are semantically linked.
The semantic resource graph could be generated and
host on service side or third party service registry for
the clients to query required resources.

However, in this initial work, we only realized the
GET method for resources to make it as a data ag-
gregation agent for different sources. And we only
shown some naive cases to demonstrate this method,
it leaves the authorization and security issues out for
the sake of briefness.

For the future work, we plan to validate this met-
hod with more different services and realize other
HTTP methods like POST and PUT, and evaluate the
usability by performing survey with Web service pro-
viders and consumers. For the invoking and compo-
sition of services, it could be achieved in 2 difference
approaches, one is the code automatic generation like
OpenAPI framework provided, the other is the seman-
tic way like what Hydra (Lanthaler and Guetl, 2013)
is trying to do. We will try to explore how our method
can integrate with approach like Hydra.

REFERENCES

Dieter Fensel, Florian Fischer, Jacek Kopecký, Reto
Krummenacher, Dave Lambert, and Tomas
Vitvar (2010). WSMO-Lite: Lightweight Se-
mantic Descriptions for Services on the Web.
https://www.w3.org/Submission/WSMO-Lite/.
Accessed: 2017-09-19.

Gyrard, A., Gomez, D., Bajaj, G., Lanza, J., San-
chez, L., Agarwal, R., and Elsaleh, T. (2016).
The M3-lite Taxonomy. http://ontology.fiesta-
iot.eu/ontologyDocs/fiesta-iot/doc. Accessed: 2017-
09-19.

Kopecký, J., Vitvar, T., Bournez, C., and Farrell, J. (2007).
SAWSDL: Semantic Annotations for WSDL and
XML Schema. IEEE Internet Computing, 11(6):60–
67.

Lanthaler, M. and Guetl, C. (2013). Hydra: A Vocabu-
lary for Hypermedia-driven Web APls. In Procee-
dings of the 6th Workshop on Linked Data on the Web
(LDOW2013) at the 22nd International World Wide
Web Conference. CEUR.

Lanthaler, M. and Gütl, C. (2011). A semantic descrip-
tion language for RESTful Data Services to combat
Semaphobia. In 5th IEEE International Conference
on Digital Ecosystems and Technologies (IEEE DEST
2011), pages 47–53.

Lucky, M. N., Cremaschi, M., Lodigiani, B., Menolas-
cina, A., and De Paoli, F. (2016). Enriching API
Descriptions by Adding API Profiles Through Se-
mantic Annotation. In International Conference on
Service-Oriented Computing, pages 780–794. Sprin-
ger, Cham.

M. Duerst and M. Suignard. IETF (2005). RFC
3987: Internationalized Resource Identifiers (IRIs).
http://www.ietf.org/rfc/rfc3987.txt. Accessed: 2017-
08-15.

Manu Sporny, Dave Longley, Gregg Kellogg, Markus Lant-
haler, and Niklas Lindström (2014). JSON-LD 1.0.
https://www.w3.org/TR/json-ld/. Accessed: 2017-08-
08.

Musyaffa, F. A., Halilaj, L., Siebes, R., Orlandi, F., and
Auer, S. (2016). Minimally Invasive Semantification
of Light Weight Service Descriptions. In 2016 IEEE
International Conference on Web Services (ICWS),
pages 672–677. IEEE.

R. Fielding, J. Gettys, J. Mogul, H. F., L. Masinter, P. Leach,
and Berners-Lee, T. (1999). Hypertext Transfer Pro-
tocol – HTTP/1.1. http://tools.ietf.org/html/rfc2616.

Roman, D., Kopecký, J., Vitvar, T., Domingue, J., and
Fensel, D. (2015). WSMO-Lite and hRESTS: Lig-
htweight semantic annotations for Web services and
RESTful APIs. Web Semantics: Science, Services and
Agents on the World Wide Web, 31:39–58.

Steiner, T. and Algermissen, J. (2011). Fulfilling the hy-
permedia constraint via HTTP OPTIONS, the HTTP
vocabulary in RDF, and link headers. In Proceedings
of the Second International Workshop on RESTful De-
sign - WS-REST ’11, page 11, New York, New York,
USA. ACM Press.

Verborgh, R., Steiner, T., Van Deursen, D., De Roo, J.,
de Walle, R., and Gabarró Vallés, J. (2011). Des-
cription and Interaction of RESTful Services for Au-
tomatic Discovery and Execution. Proceedings of the
FTRA 2011 International Workshop on Advanced Fu-
ture Multimedia Services.

Vitvar, T., Kopecký, J., Viskova, J., and Fensel, D. (2008).
WSMO-lite annotations for web services. In ESWC
2008: The Semantic Web: Research and Applications,
pages 674–689, Berlin, Heidelberg. Springer Berlin
Heidelberg.

W3C (2012). OWL 2 Web Ontology Language Struc-
tural Specification and Functional-Style Syntax (Se-
cond Edition). https://www.w3.org/TR/2012/REC-
owl2-syntax-20121211/#IRIs. Accessed: 2017-09-08.

Using Tag based Semantic Annotation to Empower Client and REST Service Interaction

71

