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Abstract: One important type of testing Web services compositions is load testing, as such applications solicit concurrent
access by multiple users simultaneously. In this context, load testing of these applications seems an important
task in order to detect problems under elevated loads. For this purpose, we propose a distributed and resource
aware test architecture aiming to study the behavior of WS-BPEL compositions considering load conditions.
The major contribution of this paper consists of (i) looking for the best node hosting the execution of each tester
instance, then (ii) running a load test during which the composition under test is monitored and performance
data are recorded and finally (iii) analyzing in a distributed manner the resulting test logs in order to identify
problems under load. We also illustrate our approach by means of a case study in the healthcare domain
considering the context of resource aware load testing.

1 INTRODUCTION

Nowadays, Web services compositions (particularly
WS-BPEL1 (Barreto et al., 2007) (or BPEL) com-
positions) offer different utilities to hundreds even
thousands of users at the same time. An important
challenge of testing these applications is load test-
ing (Beizer, 1990), which is frequently performed in
order to ensure that a system satisfies a particular per-
formance requirement under a heavy load. In our con-
text, load refers to the rate of incoming requests to a
given system during a period of time.

In addition to conventional functional testing pro-
cedures, such as unit and integration testing, load test-
ing is a required activity that reveals programming er-
rors, which would not appear if the composition is ex-
ecuted with a small workload or for a short time. They
emerge when the system is executed under a heavy
load or over a long period of time. On the other hand,
a given process may be correctly implemented but
fails under some particular load conditions because of
external causes (e.g., misconfiguration, hardware fail-
ures, buggy load generator, etc.) (Jiang et al., 2008).
Hence, it is important to identify and remedy these

1Web Services-Business Process Execution Language

different problems.
To handle challenges of load testing, we have pro-

posed in a previous work (Maâlej and Krichen, 2015)
an approach that combines functional and load testing
of BPEL compositions. Indeed, our study is based
on conformance testing concept which verifies that
a system implementation performs according to its
specified requirements. For more details, monitoring
BPEL compositions behaviors during load testing was
proposed in order to perform later an advanced anal-
ysis of test results. This step aims to identify both
causes and natures of detected problems. For that,
the execution context of the application under test is
considered while periodically capturing, under load,
some performance metrics of the system such as CPU
usage, memory usage, etc.

However, recognizing problems under load is a
challenging and time-consuming activity due to the
large amount of generated data and the long running
time of load tests. During this process, several risks
may happen and undermine SUT2 quality and may
even cause software and hardware failures such as
SUT delays, memory, CPU overload, node crash, etc.
Such risks may also impact the tester itself, which can

2System Under Test
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produce faulty test results.
To overcome such problems, we extend our previ-

ous approach dealing with functional and load testing
of BPEL compositions by distribution and resource
awareness capabilities. Indeed, supporting test dis-
tribution over the network may alleviate considerably
the test workload at runtime, especially when the SUT
is running on a cluster of BPEL servers. Moreover,
it is highly demanded to provide a resource-aware
test system, that meets resource availability and fits
connectivity constraints in order to have a high con-
fidence in the validity of test results, as well as to
reduce their associated burden and cost on the SUT.
To show the feasibility of the proposed approach, a
case study in the health care domain is introduced, its
BPEL process is outlined and it is applied to the con-
text of distributed and resource aware load testing.

The remainder of this paper is organized as fol-
lows. Section 2 is dedicated to describe our proposed
testing approach for the study of BPEL compositions
under load conditions. Then, we describe in Section 3
our resource-aware tester deployment solution. In
Section 4, we illustrate our test solution by means of
a case study in the healthcare domain. Section 5 con-
tains discussions about some works addressing load
testing issue, test distribution and test resource aware-
ness. Finally, Section 6 provides a conclusion that
summarizes the paper and discusses items for future
work.

2 OUR APPROACH FOR THE
STUDY OF WS-BPEL
COMPOSITIONS UNDER LOAD

Our proposed approach is based on gray box testing,
which is a strategy for software debugging where the
tester has limited knowledge of the internal details of
the program. Indeed, we simulate in our case the dif-
ferent partner services of the composition under test
as we suppose that only the interactions between this
latter and its partners are known. Furthermore, we
rely on the online testing mode considering the fact
that test cases are generated and executed simultane-
ously (Mikucionis et al., 2004). Moreover, we choose
to distribute the testing architecture components on
different nodes in order to realistically run an impor-
tant number of multiple virtual clients.

2.1 Principle of Load Distribution

When testing the performance of an application, it can
be beneficial to perform the tests under a typical load.

This can be difficult if we are running our application
in a development environment. One way to emulate
an application running under load is through the use
of load generator scripts. For more details, distributed
testing is to be used when we reach the limits of a ma-
chine in terms of CPU3, memory or network. In fact,
it can be used within one machine (many VMs4 on
one machine). If we reach the limits of one reasonable
VM in terms of CPU and memory, load distribution
can be used across many machines (1 or many VMs
on 1 or many machines). In order to realize remote
load test distribution, a test manager is responsible to
monitor the test execution and distribute the required
load between the different load generators. These lat-
ters invoke concurrently the system under test as im-
posed by the test manager.

2.2 Load Testing Architecture

In this section, we describe a proposed distributed
framework for behavior study of BPEL compositions
under load conditions (Maâlej and Krichen, 2015).
For simplicity reasons, we consider that our load test-
ing architecture is composed, besides the SUT and
the tester, of two load generators5, as depicted in Fig-
ure 1.

Figure 1: Load Testing Architecture.

As shown in Figure 1, the main components of our
proposed architecture are:

• The System under test (SUT): a new BPEL in-
stance is created for each call of the composi-
tion under test. A BPEL instance is defined by
a unique identifier. Each created instance invokes

3Central Processing Unit
4Virtual Machines
5More machines may be considered as load generators

in order to distribute the load more efficiently.
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its own partner services instances by communicat-
ing while exchanging messages.

• The tester (Tester): it represents the system under
test environment and consists of:

– The Web services (WS1, ..., WSm): these ser-
vices correspond to simulated partners of the
composition under test. For each call of the
composition during load testing, new instances
of partner services are created.

– The Queues (Queue WS1, ..., Queue WSm):
these entities are simple text files through
which partner services and the Tester Core ex-
change messages.

– The Loader: it loads the SUT specification de-
scribed in Timed Automata, besides the WSDL
files of the composition under test and the
WSDL files of each partner service. Moreover,
it defines the types of input/output variables of
the considered composition as well as of its
partner services.

– The Tester Core: it generates random input
messages of the BPEL process under test. It
communicates with the different partner ser-
vices of the composition by sending them
the types of input and output messages. In
case of partner services which are involved in
synchronous communications, the Tester Core
sends information about their response times to
the composed service. Finally, it distributes the
load between the two generators. It orders each
one to perform (more or less) half of concurrent
calls to the composition under test, and passes
in parameters the time between each two suc-
cessive invocations besides the input variable(s)
of the system.

– The test log (QueueTester): it stores the gen-
eral information of the test (number of calls of
the composition under test, the delay between
the invocation of BPEL instances, etc.). Also
it saves the identifiers of created instances, the
invoked services, the received messages from
the SUT, the time of their invocations and the
verdict corresponding to checking of partner in-
put messages types. This log will be consulted
by the Analyzer to verify the functioning of the
different BPEL instances and to diagnose the
nature and cause of the detected problems.

– The test analyzer (Analyzer): this component is
responsible for offline analysis of the test log
QueueTester. It generates a final test report and
identifies, as far as possible, the limitations of
the tested composition under load conditions.

• The load generators (BPEL Client): these enti-
ties meet the order of the Tester Core by perform-
ing concurrent invocations of the composed ser-
vice. For that, they receive from the tester as test
parameters the input(s) of the composition under
test, the number of required process calls and the
delay between each two successive invocations.

Besides, we highlight that load testing of BPEL
compositions in our approach is accompanied by a
module for the monitoring of the execution environ-
ment performances, aiming to supervise the whole
system infrastructure during the test. Particularly, this
module permits the selection, before starting test, of
the interesting metrics to monitor, and then to display
their evolution in real-time. In addition, the moni-
toring feature helps in establishing the correlation be-
tween performance problems and the detected errors
by our solution.

2.3 Automated Advanced Load Test
Analysis Approach

Current industrial practices for checking the results
of a load test mainly persist ad-hoc, including high-
level checks. In addition, looking for functional prob-
lems in a load testing is a time-consuming and diffi-
cult task, due to the challenges such as no documented
system behavior, monitoring overhead, time pressure
and large volume of data. In particular, the ad-hoc
logging mechanism is the most commonly used, as
developers insert output statements (e.g. printf or
System.out) into the source code for debugging rea-
sons (James et al., 2010). Then most practitioners
look for the functional problems under load using
manual searches for specific keywords like failure, or
error (Jiang, 2010). After that, load testing practi-
tioners analyze the context of the matched log lines to
determine whether they indicate functional problems
or not. Depending on the length of a load test and the
volume of generated data, it takes load testing practi-
tioners several hours to perform these checks.

However, few research efforts are dedicated to
the automated analysis of load testing results, usually
due to the limited access to large scale systems for
use as case studies. Automated and systematic load
testing analysis becomes much needed, as many ser-
vices have been offered online to an increasing num-
ber of users. Motivated by the importance and chal-
lenges of the load testing analysis, an automated ap-
proach was proposed in (Maâlej and Krichen, 2015)
to detect functional and performance problems in a
load test by analyzing the recorded execution logs
and performance metrics. In fact, performed opera-
tions during load testing of BPEL compositions are
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stored in QueueTester. In order to recognize each
BPEL instance which is responsible for a given ac-
tion, each one starts with the identifier of its corre-
sponding BPEL instance (BPEL-ID). At the end of
test running, the Analyzer consults QueueTester.

Hence, our automated log analysis technique takes
as input the stored log file (QueueTester) during load
testing, and goes through three steps as shown in Fig-
ure 2:

Figure 2: Automated Log Analysis Technique.

• Decomposition of QueueTester: based on BPEL-
ID, the Analyzer decomposes information into
atomic test reports. Each report is named BPEL-
ID and contains information about the instance
which identifier is BPEL-ID.

• Analysis of atomic logs: the Analyzer consults
the generated atomic test reports of the different
BPEL instances. It verifies the observed executed
actions of each instance by referring to the speci-
fied requirements in the model (Timed Automata).
Finally, the Analyzer assigns corresponding ver-
dicts to each instance and identifies detected prob-
lems.

• Generation of final test report: this step consists
in producing a final test report recapitulating test
results relatively to all instances and also describ-
ing both nature and cause of each observed FAIL
verdict.
It is true that our load test analysis is automated.

Yet, the analysis of the atomic logs is performed se-
quentially for each BPEL instance, which may be
costly especially in term of time execution. Another
limitation consists in using only one instance of tester
and thus one analyzer for each test case. To solve this
issue, we propose to use more than one instance of
the tester which are deployed in distributed nodes and
connected to the BPEL process under test. Each tester
instance studies the behavior of the composition con-
sidering different load conditions (SUT inputs, num-
ber of required process calls, delay between each two
successive invocations, etc.).

3 CONSTRAINED TESTER
DEPLOYMENT

In this section, we deal with the assignment of tester
instances to test nodes while fitting some resource and

connectivity constraints. The main goal of this step
is to distribute efficiently the load across virtual ma-
chines, computers, or even the cloud. This is crucial
for the test system performance and for gaining con-
fidence in test results.

Load Generator

BPEL 

instance 1

BPEL 

instance i

Tester 1

VM VM

VM VM

Tester i

Load Generator
SUT

BPEL 

instance n

instance i VM VM

Tester j Tester k

Cloud

Figure 3: Distributed Load Testing Architecture.

Figure 3 illustrates the distributed load testing ar-
chitecture in which several tester instances are created
and connected to the BPEL process under test. These
instances run in parallel in order to perform efficiently
load testing.

Recall that each tester instance includes an an-
alyzer component that takes as input the generated
atomic test reports of the different BPEL instances,
and generates as output a Local Verdict (LV). As out-
lined in Figure 4, we propose a new component called
Test System Coordinator which is mainly charged
with collecting the local verdicts generated from the
analyzer instances and producing the Global Verdict
(GV). As depicted in Algorithm 1, if all local verdicts
are PASS, the global verdict will be PASS. If at least
one local verdict is FAIL (respectively INCONCLU-
SIVE), the global verdict will be FAIL (respectively
INCONCLUSIVE).

Once the distributed load testing architecture is
elaborated, we have to assign efficiently its compo-
nents (i.e.,its tester instances) to the execution nodes.
To do so, we have defined two kinds of constraints
that have to be respected in this stage: resources and
connectivity constraints. They are detailed in the fol-
lowing subsections.

3.1 Formalizing Resource Constraints

In general, load testing is seen as a resource con-
suming activity. Consequently, the consideration of
resource allocation during test distribution should be
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Figure 4: Distributed Load Test Analysis Architecture.

Algorithm 1: Generation of the Global Verdict.
Input: The array LocalVerdicts.
Output: The global verdict.

1: BEGIN
2: for i = 0 to LocalVerdicts.size−1 do
3: if (LocalVerdicts[i]==FAIL) then
4: return FAIL
5: end if
6: if (LocalVerdicts[i]==INCONCLUSIVE)

then
7: return INCONCLUSIVE
8: end if
9: end for

10: return PASS
11: END

applied with the aim of decreasing test overhead and
increase confidence in test results.

For each node in the test environment, three re-
sources are monitored: the available memory, the cur-
rent CPU load and the energy level (i.e., battery).
The value of each resource can be directly captured
on each node through the use of internal monitors.
Formally, they are represented through three vectors:
C that contains the provided CPU, R that provides
the available RAM6 and E that introduces the energy
level.

For each tester instance, we introduce the memory
size (i.e., the memory occupation needed by a tester
during its execution), the CPU load and the energy
consumption properties. We suppose that these val-
ues are provided by the test manager or computed af-
ter a preliminary test run. Similarly, they are formal-
ized over three vectors: Dc that contains the required
CPU, Dr that introduces the required RAM and De
that contains the required energy by each tester.

As the proposed approach is resource aware,

6Random Access Memory

checking resource availability during test distribution
is usually performed before starting the load test-
ing process. Thus, the overall required resources by
n tester instances must not exceed the available re-
sources in m nodes. This rule is formalized through
three constraints to fit as outlined by (1) where the
two dimensional variable xi j can be equal to 1 if the
tester instance i is assigned to the node j, 0 otherwise.

n
∑

i=1
xi jdci ≤ c j ∀ j ∈ {1, · · · ,m}

n
∑

i=1
xi jdri ≤ r j ∀ j ∈ {1, · · · ,m}

n
∑

i=1
xi jdei ≤ e j ∀ j ∈ {1, · · · ,m}

(1)

3.2 Formalizing Connectivity
Constraints

Dynamic environments are characterized by frequent
and unpredictable changes in connectivity caused by
firewalls, non-routing networks, node mobility, etc.
For this reason, we have to pay attention when as-
signing a tester instance to a host computer by finding
at least one path in the network to communicate with
the component under test.

xi j = 0 ∀ j ∈ f orbiddenNode(i) (2)
where the f orbiddenNode(i) function returns a

set of forbidden nodes for a test component i.
Finding a satisfying test placement solution is

merely achieved by fitting the former constraints (1)
and (2).

3.3 Optimizing the Tester Instance
Placement Problem

Looking for an optimal test placement solution con-
sists in identifying the best node to host the concerned
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tester in response with two criteria: its distance from
the node under test and its link bandwidth capacity.
To do so, we are asked to attribute a profit value pi j
for assigning the tester i to a node j. For this aim, a
matrix Pn×m is computed as follows:

pi j =

{
∗∗∗∗∗∗∗0 if j ∈ f orbiddenNode(i)
maxP− k× stepp otherwise

(3)
where maxP is constant, stepp = maxP

m , k corre-
sponds to the index of a node j in a Rank Vector that
is computed for each node under test. This vector cor-
responds to a classification of the connected nodes ac-
cording to both criteria: their distance far from the
node under test and their link bandwidth capacities.

As a result, the constrained tester instance ap-
proach generates the best deployment host for each
tester instance involved in the load testing process by
maximizing the total profit value while fitting the for-
mer resource and connectivity constraints. Thus, it
is formalized as a variant of the Knapsack Problem,
called Multiple Multidimensional Knapsack Problem
(MMKP)(Jansen, 2009).

MMKP=



maximize Z =
n
∑

i=1

m
∑
j=1

pi jxi j (4)

sub ject to (1) and (2)
m
∑
j=1

xi j = 1 ∀i ∈ {1, · · · ,n} (5)

xi j ∈ {0,1} ∀i ∈ {1, · · · ,n}
and ∀ j ∈ {1, · · · ,m}

Constraint (4) corresponds to the objective func-
tion that maximizes tester instance profits while sat-
isfying resource (1) and connectivity (2) constraints.
Constraint (5) indicates that each tester instance has
to be assigned to at most one node.

To solve such a problem, a well-known solver
in the constraint programming area, namely
Choco (Jussien et al., 2008), is used to compute
either an optimal or a satisfying solution of the
MMKP problem (Lahami et al., 2012).

3.4 Advantages and Limitations

Related to our previous work (Maâlej and Krichen,
2015) in which the test system is centralized on a sin-
gle node, several problems may occur while dealing
with load testing. In fact, we have noticed that not
only the SUT, which is made up of several BPEL in-
stances, can be affected by this heavy load but also
the relevance of the obtained test results. In order to
increase the performance of such test system and get
confidence in its test results, testers and analyzers are
distributed over several nodes. In this case, load test-
ing process is performed in parallel.

Moreover, our proposal takes into consideration
the connectivity to the SUT and also the availability
of computing resources during load testing. Thus, our
work provides a cost effective distribution strategy of
testers, that improves the quality of testing process
by scaling the performance through load distribution,
and also by moving testers to better nodes offering
sufficient resources required for the test execution.

Recall that the deployment of our distributed and
resource aware test system besides BPEL instances is
done on the cloud platform. It is worthy to note that
public cloud providers like Amazon Web Services7

and Google Cloud Platform8 offer a cloud infrastruc-
ture made up essentially of availability zones and re-
gions. A region is a specific geographical location
in which public cloud service providersdata centers
reside. Each region is further subdivided into avail-
ability zones. Several resources can live in a zone,
such as instances or persistent disks. Therefore, we
have to choose the VM instances in the same region
to host the testers, the analyzers and the SUT. This is
required in order to avoid the significant overhead that
can be introduced when the SUT and the test system
components are deployed in different regions on the
cloud.

4 ILLUSTRATION THROUGH
TRMCS CASE STUDY

This section is mainly dedicated to show the relevance
of our approach through a case study in the healthcare
domain. Subsections below details the adopted sce-
nario, its business process and also its application in
the context of resource aware load testing.

4.1 Case Study Description

Called Teleservices and Remote Medical Care Sys-
tem (TRMCS), this case study consists of providing
monitoring and assistance to patients suffering from
chronic health problems. Due to the new needs of
modern medicine, it can be enhanced with more elab-
orated functionalities like the acquisition, the analysis
and the storage of biomedical data.

The adopted business process is highlighted
through a BPEL process in Figure 5. We assume that
it composes of several Web services namely Storage
Service (SS), Analysis Service (AnS), Alerting Ser-
vice (AlS) and Maintenance Service (MS).

7https://aws.amazon.com/fr/
8https://cloud.google.com/
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Figure 5: The TRMCS Process.

For a given patient suffering from chronic high
blood pressure, measures like his arterial blood pres-
sure and his heart-rate beats per minute are collected
periodically (for instance three time per day). For
the two collected measures, a request is sent to the
TRMCS process. First, the Storage Service is invoked
to save periodic reports in the medical database.
Then, the Analyzer Service is charged with analyzing
the monitored data in order to detect whether some
thresholds are exceeded. This analysis is conditioned
by a processing time. Indeed, the process should re-
ceive a response from the AnS before reaching 30
seconds. Otherwise, the process send a connection
problem report to the Maintenance Service. In case
of receiving the analysis response before reaching 30
seconds, two scenarios are studied. If thresholds are
satisfied, a detailed reply is sent to the corresponding
patient. Otherwise, the Alerting Service is invoked in
order to send urgent notification to the medical staff
(such as doctors, nurses, etc.).

Similar to the Analysis Service, the Alerting Ser-
vice is constrained by a waiting time. If medical staff
are notified before reaching 30 seconds, the final re-
ply is sent to the corresponding patient. Otherwise,
the Maintenance Service is invoked.

We suppose that the TRMCS application can be
installed in different cities within a country. Thus,

we should consider that several BPEL servers are re-
quired to handle multiple concurrent patient requests.
From a technical point of view, we adopted Oracle
BPEL Process Manager9 as a solution for designing,
deploying and managing the TRMCS BPEL process.
We also opted for Oracle BPEL server. The major
question to be tackled here is how to apply our pro-
posal of load testing TRMCS BPEL composition in
a cost effective manner and without introducing side
effects?

4.2 Distributed and Resource Aware
Load Testing of TRMCS Process

With the aim of checking the satisfaction of perfor-
mance requirements under a heavy load of patients
requests, we apply our distributed and resource aware
load testing approach. For simplicity reasons, we fo-
cus at this stage on studying the load testing of a sin-
gle BEPL server while the load is handled by several
testers simulating concurrent patient requests. To do
so, we consider a test environment made up of four
nodes: a server node (N1) and three test nodes (N2,N3
and N4). As illustrated in Figure 6, we suppose that
this environment has some connectivity problems. In
fact, the node N4 is forbidden to host tester instances
because no route is available to communicate with the
BPEL instance under test.

To perform distributed load tests efficiently and
without impacting test results, tester instances Ti have
to be deployed in this test environment while fitting
resources and connectivity constraints (e.g., memory
and energy consumption, link bandwidth, etc.).

P11 = maxP

Test Node N4

BPEL Server Node N1

Forbidden 

Node for Ti Ti

Ti Ti

100Mbps 150Mbps

150Mbps

TRMCS BPEL

instance

Test Node N2 Test Node N3

N1 N3 N2

0 1 2

Rank Vector

100 50 75 0

Matrix P

maxP=100

Stepp=25

Profit Calculation

150Mbps

P12 = maxP-1*stepp P13 = maxP-2*stepp

Figure 6: Illustrative Example.

9http://www.oracle.com/technetwork/middleware/bpel/
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Thus, we look for a best placement solution of a
given tester Ti. First of all, the node N4 is discarded
from the tester placement process because the link
with the BPEL server is broken. Consequently, the
variable xi4 is equal to zero. Second, we compute the
Rank Vector for the rest of connected test nodes and
we deduce the profit matrix. We remark here that the
profit pi j is maximal if the tester Ti is assigned to the
server node N1 because assigning a tester to its cor-
responding node under test and performing local tests
reduces the network communication cost. This profit
decreases with respect to the node index in the Rank
Vector. For instance, N3 is considered a better target
for Ti than N2 although they have the same distance
far from the server node because the link bandwidth
between N3 and N1 is greater than the link bandwidth
between N2 and N1.

For example, in the case of four nodes and a given
tester Ti (see Figure 6), the optimal solution of place-
ment can be the test node N1. Consequently, the gen-
erated variable xi is as follows:

xi =
(

1,0,0,0
)

5 RELATED WORKS

In the following, we discuss some existing works ad-
dressing load testing in general, test distribution and
test resource awareness.

5.1 Existing Works on Load Testing

Load testing and performance monitoring become fa-
cilitated thanks to existing tools. In fact, load testing
tools are used for software performance testing in or-
der to create a workload on the system under test, and
measure response times under this load. These tools
are available from large commercial vendors such as
Borland, HP Software, IBM Rational and Web Per-
formance Suite, as well as Open source projects. Web
sites. Krizanic et al (Krizanic et al., 2010) analyzed
and compared several existing tools which facilitate
load testing and performance monitoring, in order to
find the most appropriate tools by criteria such as ease
of use, supported features, and license. Selected tools
were put in action in real environments, through sev-
eral Web applications.

Despite the fact that commercial tools offer richer
set of features and are in general easier to use, avail-
able open source tools proved to be quite sufficient
to successfully perform given tasks. Their usage re-
quires higher level of technical expertise but they are
a lot more flexible and extendable.

There are also different research works deal-
ing with load and stress testing in various contexts.
Firstly, Yang and Pollock (Yang and Pollock, 1996)
proposed a technique to identify the load sensitive
parts in sequential programs based on a static analy-
sis of the code. They also illustrated some load sensi-
tive programming errors, which may have no damag-
ing effect under small loads or short executions, but
cause a program to fail when it is executed under a
heavy load or over a long period of time. In addi-
tion, Zhang and Cheung (Zhang and Cheung, 2002)
described a procedure for automating stress test case
generation in multimedia systems. For that, they iden-
tify test cases that can lead to the saturation of one
kind of resource, namely CPU usage of a node in the
distributed multimedia system. Furthermore, Grosso
et al. (Grosso et al., 2005) proposed to combine static
analysis and program slicing with evolutionary test-
ing, in order to detect buffer overflow threats. For that
purpose, the authors used of Genetic Algorithms in
order to generate test cases. Garousi et al. (Garousi
et al., 2006) presented a stress test methodology that
aims at increasing chances of discovering faults re-
lated to distributed traffic in distributed systems. The
technique uses as input a specified UML 2.0 model of
a system, extended with timing information. More-
over, Jiang et al. (Jiang et al., 2008) and Jiang (Jiang,
2010) presented an approach that accesses the exe-
cution logs of an application to uncover its dominant
behavior and signals deviations from the application
basic behavior.

Comparing the previous works, we notice that
load testing concerns various fields such as multime-
dia systems (Zhang and Cheung, 2002), network ap-
plications (Grosso et al., 2005), etc. Furthermore, all
these solutions focus on the automatic generation of
load test suites. Besides, most of the existing works
aim to detect anomalies which are related to resource
saturation or to performance issues as throughput, re-
sponse time, etc. Besides, few research efforts, such
as Jiang et al. (Jiang et al., 2008) and Jiang (Jiang,
2010), are devoted to the automated analysis of load
testing results in order to uncover potential problems.
Indeed, it is hard to detect problems in a load test
due to the large amount of data which must be ana-
lyzed. We also notice that the identification of prob-
lem cause(s) (application, network or other) is not the
main goal behind load testing, rather than studying
performance of the application under test, this fact
explains why few works address this issue. How-
ever, in our work, we are able to recognize if the
detected problem under load is caused by implemen-
tation anomalies, network or other causes. Indeed,
we defined and validated our approach based on in-
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terception of exchanged messages between the com-
position under test and its partner services. Thus it
would be possible to monitor exchanged messages in-
stantaneously, and to recognize what is the cause be-
hind their loss or probably their reception delay, etc.
Studying the existing works on load testing, we re-
mark that the authors make use of one instance tester
for both the generation and execution of load test
cases. To the best of our knowledge, there is no re-
lated work that proposes to use multiple testers at the
same time on the same SUT. Thus we do not evoke
neither testers placement in different nodes nor their
management.

5.2 Existing Works on Test Distribution

The test distribution over the network has been rarely
addressed by load testing approaches. We have identi-
fied only two approaches that shed light on this issue.

In the first study (Bai et al., 2006), the au-
thors introduce a light-weight framework for adap-
tive testing called Multi Agent-based Service Testing
in which runtime tests are executed in a coordinated
and distributed environment. This framework encom-
passes the main test activities including test genera-
tion, test planning and test execution. Notably, the
last step defines a coordination architecture that facil-
itates mainly test agent deployment and distribution
over the execution nodes and test case assignment to
the adequate agents.

In the second study (Murphy et al., 2009), a
distributed in vivo testing approach is introduced.
This proposal defines the notion of Perpetual Testing
which suggests the proceeding of software analysis
and testing throughout the entire lifetime of an ap-
plication: from the design phase until the in-service
phase. The main contribution of this work consists
in distributing the test load in order to attenuate the
workload and improve the SUT performance by de-
creasing the number of tests to run.

Unlike these approaches, our work aims at defin-
ing a distributed test architecture that optimizes the
current resources by instantiating testers in execution
nodes while meeting resource availability and fitting
connectivity constraints. This has an important im-
pact on reducing load testing costs and avoiding over-
heads and burdens.

5.3 Existing Works on Test Resource
Awareness

As discussed before, load testing is a resource-
consuming activity. In fact, computational resources
are used for generating tests if needed, instantiating

tester instances charged with test execution and finally
starting them and analyzing the obtained results. No-
tably, the bigger the number of test cases is, the more
resources such as CPU load, memory consumption
are used. Hence, we note that the intensive use of
these computational resources during the test execu-
tion has an impact not only on the SUT but also on
the test system itself. When such a situation is en-
countered, the test results can be wrong and can lead
to an erroneous evaluation of the SUT responses.

To the best of our knowledge, this problem has
been studied only by Merdes work (Merdes et al.,
2006). Aiming at adapting the testing behavior to the
given resource situation, it provides a resource-aware
infrastructure that keeps track of the current resource
states. To do this, a set of resource monitors are im-
plemented to observe the respective values for pro-
cessor load, main memory, battery charge, network
bandwidth, etc. According to resource availability,
the proposed framework is able to balance in an intel-
ligent manner between testing and the core function-
alities of the components. It provides in a novel way a
number of test strategies for resource aware test man-
agement. Among these strategies, we can mention,
for example, Threshold Strategy under which tests are
performed only if the amount of used resources does
not exceed thresholds.

Contrary to our distributed load testing architec-
ture, this work supports a centralized test architecture.

6 CONCLUSION & FUTURE
WORK

In this paper, we firstly described our contribution for
the study of BPEL compositions behaviors under var-
ious load conditions. Then, we explained the princi-
ple of test logs analysis phase. Indeed, test results are
exhaustively analyzed and advanced information are
provided by our tester.

In order to better the system performance and re-
sponsiveness, we also proposed in this work a tester
deployment solution that considers many distributed
tester instances. Thus, we extended a previous tool
with test distribution and resource awareness capabil-
ities. To do so, we adopted a distributed test archi-
tecture in which several BPEL instances are running
in a given execution node and several tester instances
as well as load generators are running in several test
nodes. With the aim of avoiding the network burden,
the placement of tester instances was performed with
respect to resource availability and network connec-
tivity. As illustrative example, a case study in the
healthcare domain is introduced and applied in the

Distributed and Resource-Aware Load Testing of WS-BPEL Compositions

37



context of resource aware load testing.
A promising future work would be to support the

scalability issue by opting, as an example, for the load
balancing concept. In fact, implementing clustering
mechanisms presents an interesting technique to im-
prove the performance of distributed BPEL servers
deploying the same SUT. Thus, incoming BPEL
client requests should be equally distributed among
the servers to achieve quick response. Indeed, the
principle of load balancing is to realize a distribution
of tasks to some machines in an intelligent way.
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