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Abstract: The Internet of Things (IoT) is based on ubiquitous smart devices equipped with sensors, actuators and tags 
which are connected to the Internet. Combining their sensing and actuation capabilities yields large 
possibilities for businesses to provide customers with value-added services in terms of energy management, 
entertainment, security and convenience. Businesses may use IoT data to develop innovative business models 
thus further increasing the value and usefulness of smart devices. Despite these potentials, providers of IoT 
platforms struggle to tackle some challenges which come with the design and operation of the platforms. In 
this paper, we propose an architectural concept which aims to bridge this gap and provides an integrated 
environment for smart device integration, data and analytics as well as IoT-aware processes. We also present 
the Smart Energy Platform (SEPL) as an instantiation of the proposed concept to evaluate it in terms of its 
functional feasibility and show that it addresses the issues current IoT platforms face.

1 INTRODUCTION 

The Internet of Things (IoT) comprises smart devices 
equipped with sensors, actuators, and tags which are 
or attached to real-world objects and connected to the 
Internet (Han et al., 2016). The number of smart 
devices is estimated to reach 24 billion by the year 
2020 (Greenough, 2016). This increase is 
accompanied by huge amounts of data which offer 
new possibilities for businesses to provide 
value-added services for their customers.  

In the energy domain, current and future trends, 
such as smart metering, smart home, e-mobility and 
smart grid are summarized under the umbrella term 
smart energy (Aichele et al., 2013). In this context, 
smart devices, which provide sensing and actuation 
capabilities, are already used to gather energy data 
and respond to changing circumstances, e.g. in the 
case of demand-side management of energy 
consumption. IoT platforms are a means to 
interconnect distributed smart devices, use their 
exposed services to create more sophisticated 
services with added value and to build applications 
upon them. Against this background, previous 

research has found that current IoT platforms are 
lacking important features for device integration, data 
and analytics, as well as IoT-aware processes 
(Wehlitz et al., 2017).  

In this light, the main contribution of this paper is 
an architectural concept for an IoT platform, which 
bridges this gap. We furthermore present a software 
prototype of a Smart Energy Platform (SEPL) as an 
instantiation of the proposed concept in order to 
evaluate its functional feasibility. 

In this paper, we describe the motivation for 
conducting this research (Sect. 2). Following, we 
highlight the major challenges and state of the art for 
designing and operating IoT platforms (Sect. 3).  In 
Sect. 4, we introduce our architectural concept, which 
is divided into the three technical layers: Integration, 
data and analytics, and IoT-aware processes. 
Afterwards, we present the SEPL software prototype 
to show in which way the components of each layer 
are implemented and how they address the identified 
challenges (Sect. 5). Finally, the paper concludes with 
a short summary and outlook (Sect. 6). 
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2 MOTIVATION 

The growing number of smart devices offers many 
benefits for people in different areas of their everyday 
life, such as energy management, entertainment, 
security, and convenience (Zion Market Research, 
2017). However, smart devices, in comparison to 
regular devices, do not offer a notable advantage in 
possibilities if the provided data and actuation 
capabilities are not utilized. Therefore, services 
which use the aforementioned capabilities are 
required in order to create customer value around 
products like smart meters, smart thermostats, smart 
lights, etc. 

Especially in the energy domain, utilities have to 
develop new service offers and business models due 
to low energy prices and high dues. In this context, 
expert interviews revealed that utilities’ margin for 
electricity supply in Germany is between 10 and 20 
euros per household per year. Hence, with the 
comprehensive rollout of smart meters and the 
increasing adoption of smart devices, such businesses 
have the chance to provide services which, in addition 
to the pure energy supply, add value to their 
customers and enable new sources of income. 
Possible fields of application could be, but should not 
be limited to, the increase of energy consumption 
transparency, energy savings, and energy efficiency 
in households. 

Against this background, we found that IoT 
platforms are an important building block to provide 
the infrastructure and software tools necessary to 
develop and run value-added services in the energy 
domain. They can be used to integrate smart devices 
of customers, e.g. smart meters, process and analyse 
sensing data, e.g. energy consumption values, and 
create more sophisticated services by service 
composition and individualisation, for instance, to 
control household appliances in an energy efficient 
manner. 

3 STATE OF THE ART 

Recent studies analyzing IoT platforms have 
identified multiple challenges for their design and 
operation. These are usually separated into a 
functional and non-functional dimension (Wehlitz et 
al., 2017).  

On the side of the functional challenges, data 
management, service abstraction, marketplace 
functionality, and device and service discovery are 
most significant.  

The area of non-functional challenges for IoT 
platforms contains interoperability, privacy and 
security, scalability, quality of service and context 
awareness.  

With regard to these challenges, there are many 
existing approaches from businesses, the open source 
community as well as researchers which have 
different degrees of coverage (Wehlitz et al., 2017). 
Concerning the functional challenges, most platforms 
use service abstraction for providing a unified access 
to smart devices. Data management and device and 
service discovery are implemented only partly by 
some platforms. More importantly, a marketplace is 
missing in almost all of them. 

On the side of the non-functional challenges, 
context awareness is implemented by almost all 
platforms. Yet, the integration of smart devices of 
different vendors with distinct service interfaces, i.e. 
interoperability, is supported only in part. Also, the 
bulk of the regarded platforms do not fully support 
scalability which seems to be a major issue with rising 
smart device numbers. Quality of service and privacy 
and security are also challenges which are only partly 
solved (Wehlitz et al., 2017). 

It is noteworthy, that two platforms we have 
studied, FIWARE and ThingWorx, address most of 
the found challenges. However, both are extensive 
systems, exhibiting high complexity, a steep learning 
curve or they are proprietary. Hence, it seems 
plausible that they are not suitable to be used directly 
by customers. 

4 PLATFORM ARCHITECTURE 

Looking at the challenges and the state of the art as 
described in Sect. 3, we found the basic design of an 
IoT platform should comprise three layers:  

• An integration layer providing bidirectional 
platform-to-device communication as well as 
tools to unify device and service access. 

• A data and analytics layer providing smart 
device data management, but also means to 
analyze and filter data. 

• An IoT-aware process layer to enable the 
composition and orchestration of IoT and 
analytics services into more useful services and 
applications. 

Additionally, a marketplace should be offered to 
platform users allowing them to share created content 
in order to bring the platform to life. Another 
important design goal for us is to make the entire 
platform loosely coupled and easily extensible. This 
requires a unified, resilient way of communication 

ICEIS 2018 - 20th International Conference on Enterprise Information Systems

594



 
Figure 1: Components of the integration layer and their interactions. 

between the different system components. The 
proposed concept employs a streaming platform to 
achieve this. 

4.1 Integration Layer 

The integration layer is the foundation of the 
proposed platform concept. It acts as the main point 
of integration for different kinds of smart devices. 
Therefore, the layer must provide interfaces for them 
to send and receive data. 

In the context of smart home and smart building 
environments, smart devices are often connected to a 
local gateway (Risteska Stojkoska and Trivodaliev, 
2017). In this regard, the platform operator needs to 
provide either best practices for end users on how to 
configure their gateway device or, more commonly, 
find ways to enable inbound network traffic 
automatically. In this regard, they have to provide 
software for different gateway types in order to 
register locally connected smart devices on IoT 
platforms. 

As shown in Figure 1, we use platform connectors 
in conjunction with client connectors to achieve this. 
Client connectors are deployed either on gateways (1) 
or on stand-alone smart devices (2). Supporting 
various message protocols (e.g. HTTP, WebSocket, 
CoAP), they send data to their counterparts, i.e. 
platform connectors. These receive the data and push 
it to the central streaming platform (3) for further 
processing by other IoT platform services. 
Publish-subscribe communication (e.g. based on 
MQTT) (4) via an intermediary broker (5) is also 
possible. Besides the actual communication with 
smart devices, platform connectors gather historical 
data about connection states of client connectors, e.g. 
time of disconnect. They also handle the outgoing 

data, meaning service requests, to the client 
connectors. These requests are pushed to the 
streaming platform by IoT platform services and 
applications. The platform connectors interface the 
streaming platform, fetch new service requests (6), 
and proceed in sending the data to the destined client 
connector. In addition, platform connectors register, 
unregister and update device and service instance data 
in the device and service repository (7). It contains 
device and service type descriptions as well as device 
instances with their service instantiations. 

Since the IoT domain has not yet undergone 
successful standardization efforts (Díaz et al., 2016), 
it is characterized by a large heterogeneity in terms of 
data types, semantics and protocols, which 
complicates access to their services (Perumal et al., 
2015; Díaz et al., 2016). Therefore, it seems 
appropriate to transform different data types and 
structures as well as semantics to a unified basis. In 
our proposed concept, this is done by the platform 
connectors. They map data structures of smart 
devices to a generic data model, thus enabling 
platform wide understandability and reusability 
across different services and applications. 
In this model, a device type is a collection of 
comparable devices (e.g. Temperature Sensor), 
which contains services (e.g. getTemperature). 
Transforming data structures of smart devices into the 
generic data model ensures that all data, which is 
queued in the streaming platform, is already unified. 
This approach also leads to reusability of value types, 
since they are used frequently to create services in the 
platform environment. Also, data structures using this 
data model are independent from specific 
serialization formats. Hence, the layers on top of the 
integration layer are able to create processes and 
applications with high reusability across smart 
devices.  
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Figure 2: Components of the data & analytics layer and their interactions. 

4.2 Data & Analytics Layer 

The data and analytics layer is on top of the 
integration layer and provides sophisticated data 
manipulation, analytics, persistence and event 
processing functionalities. Smart device data usually 
arrives in data streams and is characterized as time 
series data, thus creating the need for real-time 
processing (Pawar and Attar, 2016). While the batch 
processing of historical data combined with the 
application of prediction models on this data is 
already established, real-time processing of smart 
device data enables the detection of causable 
relationships between the devices themselves and 
their environments. This may lead to the autonomous 
adaption to new situations (Stolpe et al., 2016). As a 
result, the analytics layer should be a lightweight 
stream processing system which is able to easily 
access the central streaming platform with the smart 
device data, as shown in Figure 2. Also, it is necessary 
to provide capabilities to design analytics flows for 
large amounts of different analytics problems. 

In order to process data, we utilize analytics 
operators which perform analytics actions on data 
streams (e.g. Temperature Unit Conversion). These 
operators are lightweight and perform a single task. 
They may be composed into complex analytics flows, 
thus providing the needed flexibility in analytics 
design. Analytics operator metadata is stored in the 
analytics operator repository and comprises inputs 
(e.g. Temperature #1: float, Unit: string), outputs (e.g. 
ConvertedTemperature: float), and configuration 
parameters (e.g. ConversionUnit: string).  

A flow designer is used to graphically design and 
orchestrate input streams and analytics operators into 
analytics flows, using operator metadata (1). Finished 
analytics flows (e.g. Temperature Unit Conversion 
and Mean Value) are saved into the flow repository 

(2) and may contain multiple analytics operators and 
data streams as input. A flow exposes inputs (e.g. 
Temperature #1: float, Unit #1: string, Temperature 
#2: float, Unit #2: string), outputs (e.g. 
MeanTemperature: float) and configuration items 
(e.g. ConversionUnit: string) for all analytics 
operators used. Analytics flows are started (3) and 
monitored (4) using a flow executor.  In addition, the 
flows are linked to smart device services data (5) as 
input streams. 

The analytics operators pull the data from the 
streaming platform (input topic #1), process it and 
push it back (output topic #1) (6). Analytics operators 
linked to them in an analytics flow, pull their input 
data from the data pushed back (output topic #1) and 
continue in the same manner as the previous analytics 
operators. In order to achieve data persistence, all 
data streams need to be pulled from the streaming 
platform into a Data Lake (7). Following the Data 
Lake paradigm, they are saved as they are without 
further processing. Once the saved data is needed by 
platform services, it is pushed back into the streaming 
platform. 
Another key aspect of the data and analytics layer is 
event processing. An event processing engine is 
consuming data streams and triggers events if defined 
event rules are met (8). We describe events at type 
(e.g. value > 22) and instance level (e.g. temperature 
value from Temperature Sensor #1 > 22 °C). Events 
are defined using an event rule designer and event 
rules are stored in the event rule repository (9). The 
event processing engine listens for all event rules 
(10). These may be applied to all data streams present 
in the streaming platform (e.g. smart device data, 
analytics data, process data, etc.). In this regard, the 
event rule designer may also access the analytics flow 
repository to expose analytics flows to the user which 
may be used to listen on for event detection (11).  
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Figure 3: Components of the IoT-aware process layer and their interactions. 

4.3 IoT-Aware Process Layer 

The IoT-aware process layer bundles the 
functionalities of the integration as well as the data 
and analytics layer. It serves the orchestration of IoT 
services, analytics and event data along businesses, 
smart devices and customers. The layer is based on a 
centralized orchestration model and allows for the 
modelling, implementation and execution of 
IoT-aware processes.  

As illustrated in Figure 3, processes are designed 
using a process designer, which includes a graphical 
user interface and stores created process models in the 
process repository (1). It has access to device and 
service types from the device and service repository 
(2) together with event rule types from the event rule 
repository (3). Hence, processes are designed using 
abstract device, service and event definitions. This 
allows for processes which are instance-independent 
and therefore easily reusable. In addition, the same 
model can be deployed for different smart devices 
multiple times. Executable process models are 
deployed by the process deployment component. It 
pulls model definitions from the process repository 
(4) and scans it for references to device/service and 
event types. If any are present, it retrieves compatible 
instances from the device and service repository (5). 
User input is required to select which concrete 
devices and services shall be used for a process 
deployment. Event types are handled in the same 
manner. After this, the process model is deployed to 
the process engine, which ensures proper execution 
(6). External task workers execute service tasks. Once 
the process engine encounters a service task (e.g. 
smart device actuation), it creates a new job for the 

external task workers to be pulled and executed. 
When they completed their jobs, they notify the 
process engine which proceeds to the next step (7). In 
case of an actuation service, an external task worker 
fetches the required service description from the 
device and service repository and sends a service 
request to the streaming platform (8), which in turn is 
accessed by platform connectors. A platform 
connector forwards the service request to the client 
connector which executes it or relays it to the actual 
smart device. 

Sensing requests get relayed back from the device 
to the client connector to the platform connector 
which pushes the sensing data to the streaming 
platform. From there, events are, if applicable, 
applied by the event processing engine on the data 
stream. The process engine is able to process fired 
events and act according to the executed process 
model (e.g. to start a new or to affect the control flow 
of a running process instance). The process engine is 
supervised by the process monitoring component, 
which provides insights to historical and operational 
data of process instances (9). Finally, the execution of 
processes may be integrated in external applications 
using a REST API (e.g. a mobile application to trigger 
new process instances) (10). 

4.4 Marketplace 

The marketplace allows customers to share their data, 
modeled IoT-aware processes, analytics flows and 
operators with other platform users (businesses and 
customers). All content created by customers and 
businesses as well as data streams originating from 
smart devices may be accessed as defined in the 
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permission system. This system links user instances 
to processes, flows, operators, and device instances 
from the respective repositories. Customers and 
businesses are able to share their content and device 
data and publish them at the marketplace. The access 
to the shared entities may be limited to individual 
customers or businesses or groups of them. Also, a 
fee for using the entities may be applied. If other 
customers or businesses decide to subscribe to 
content or device instances, the required permissions 
are set in the permission system. 

Granting permission to content allows the 
subscriber to use the flow, operator or process with 
their own smart devices. In case of a shared smart 
device, the subscriber may access emitted data from 
the device as set by the owner. In this context, using 
the actuation capabilities of a shared device is 
generally forbidden because of security concerns. 

5 PROTOTYPE 

In order to provide a proof of concept of our 
architecture presented in Sect. 4, we implemented all 
system components as an integrated cloud-based 
software prototype, the SEPL. Its purpose is to 
provide platform tools to customers, to integrate their 
smart devices, analyze their data and develop and use 
IoT-aware processes for energy management 
scenarios. Also, customers may share their data with 
businesses, which in turn are provided with tools to 
develop value-added services around this data, 
creating surplus value. 

The platform architecture is based on the concept 
of Microservices, meaning that functionalities are 
encapsulated as single services by software 
containers, in our case using Docker 
(https://www.docker.com/). This provides easy 
scalability of services which undergo heavy usage 
and enables easy change or substitution of services 
with changed requirements. Because of this, we 
employed Apache Kafka as a central streaming 
platform (https://kafka.apache.org/). To ensure 
usability, we also developed a front-end application 
using AngularJS which provides access to important 
platform tools. User authentication and authorization 
is ensured using the API gateway Kong 
(https://getkong.org/) in conjunction with a user 
repository and permission system. In order to further 
strengthen privacy and security we followed the 
“Privacy by Design” and security principles as 
pointed out in scientific literature (Schaar, 2010; 
Dougherty et al., 2009).  

Because of the complex structure and the 
Microservice approach of the platform architecture, it 
is necessary to employ a powerful container 
orchestration and scheduling service. We use Rancher 
(http://rancher.com/) as it is easy to use and offers 
many out-of-the box features for platform operation. 

5.1 Integration Layer 

The main focus when implementing the integration 
layer, was to provide interfaces to enable 
communication between smart devices and the SEPL, 
but also to unify device and service descriptions from 
different vendors. Although the layer components are 
designed to be easily extendable in terms of protocol 
and device integration, a lot of the smart devices we 
use in our laboratory environment for testing our 
approach support the wireless communication 
standards ZigBee and Z-Wave. Both are very 
common and well suited for home energy 
management scenarios (Zhao et al., 2016). 

The client connectors in smart home and smart 
building environments are provided in two ways: As 
plugins for already existing IoT gateways and as 
software libraries to be used for single smart devices 
by more advanced users. When deployed at IoT 
gateways, it is possible to use existing resources of 
them to search for locally connected smart devices 
and send this information to the SEPL, as the 
foundation for their integration. 

The platform connector is scalable in order to 
being able to communicate with huge numbers of 
smart devices. It uses the device and service 
descriptions from the device and service repository to 
transform data from client connectors to the generic 
data model as explained in Section 4.1. 

The device and service repository is based on 
Virtuoso (https://virtuoso.openlinksw.com/) and 
utilizes RDF for schema description. Other services 
can access the data from the device and service 
repository using a REST interface. Since it also stores 
all registered device instances, it enables platform 
services and users to discover smart devices and their 
services. Internally, it queries the RDF database using 
SPARQL, therefore enabling powerful queries. 

5.2 Data & Analytics Layer 

The analytics concept we employ is based on the 
Kappa architecture, meaning all data is handled as a 
stream. Therefore, analytics operators use the Kafka 
Streams (https://kafka.apache.org/) library to 
integrate with the streaming platform and are written 
as individual Microservices, which are encapsulated 
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using Docker. Using JAVA or Python, it is possible 
to create powerful data analytics as well as machine 
learning algorithms for processing. This allows for 
flexible analytics operators which offer the same 
capabilities as stream processing engines like Apache 
Spark Streaming or Apache Storm. In addition, this 
approach helps in reducing the programming 
overhead caused by changing data models and 
analytics requirements, compared to a Lambda 
architecture (Zschörnig et al., 2017).  

New analytics flows are created with the help of 
the analytics designer, which interfaces the analytics 
operator repository. In our prototype, the designer 
utilizes a flow chart visualization to enable users to 
design new analytics flows, which are saved in the 
flow repository. 

The request to start an analytics flow is send to the 
flow executor, which checks it for errors. If the flow 
is valid, it starts the analytics operator Docker 
containers in the required order with the necessary 
input, output and configuration values. The analytics 
operator containers are deployed on the underlying 
orchestration and scheduling environment. Data 
persistence is achieved by pulling all data streams 
from Apache Kafka into the Data Lake which uses a 
HDFS environment. Platform services may request 
data from the Data Lake, which pushes it back into 
Apache Kafka. 

Event rules are stored in the event rule repository 
and are created using a JSON document which 
contains information on the data stream to be 
monitored and the actual rule. A rule is written by 
combining service fields from the device and service 
repository and logical expressions using the event 
rule designer. 

5.3 IoT-Aware Process Layer 

The process designer component of our software 
prototype is based on bpmn.io, a BPMN 2.0 rendering 
toolkit and web modeler (https://bpmn.io), which was 
extended to integrate with the device and service 
repository. We selected BPMN 2.0 because it seems 
to be the best suited modeling language for mapping 
IoT concepts in processes (Meyer et al., 2011). 
Following Meyer et al., 2013, our solution intends 
that IoT-aware processes are modeled within BPMN 
pools. The lanes of a pool represent device types. 
Each service task that is placed on a lane is assigned 
to and handled by the respective device type.  

In case of a new deployment, the process 
deployment component analyses the process 
definition and prompts the user to select concrete 
instances for every found event and/or device type. It 

then deploys the process model to the process engine, 
which is based on the open-source platform Camunda 
(https://camunda.org). This supports the external task 
pattern and, hence, provides more flexibility and 
scalability for executing service tasks. The 
implementation of external task workers is 
independent from a specific programing language and 
additional source code for service task execution has 
not to be deployed to and executed by the process 
engine. Additionally, in conjunction with the event 
processing engine and the stream processing system, 
the process engine enables context awareness. In this 
regard, the stream processing system provides new 
insights into smart device data and the event 
processing engine is able to define actions based on 
changing parameters. IoT-aware processes may 
include this information, thus allowing smart devices 
to be “aware” of their surroundings and adapt to 
changing environments. 

5.4 Marketplace 

The main objective of the marketplace is to allow 
users (customers and businesses) of the SEPL to 
easily share and subscribe to processes, analytics 
operators and flows. In this regard, users of the SEPL 
may define if a process, analytics flow or operator 
may be published at the marketplace or only be shared 
with a single user or a group of users. If it is published 
at the marketplace, a request is sent to its repository, 
which then lists it in the appropriate category. This 
categorization is based on the type of the shared entity 
(e.g. process vs. operator) and its characteristics (e.g. 
inputs, outputs, purpose, etc.). 

In conclusion, the marketplace offers various 
capabilities to share key entities of the SEPL, thus 
enabling device integration through sharing, but most 
important it is the key component to enable 
businesses to apply new business models around 
smart devices in the energy domain. 

6 CONCLUSION & OUTLOOK 

In this paper, we presented an architectural concept 
for the design and operation of IoT platforms. 
Customers may use its tools to integrate and 
orchestrate their smart devices and gain insights into 
their data, whereas businesses use them to create new 
applications and value-added services on top of the 
customer-specific data.  

The proposed concept takes into account 
functional and non-functional challenges which were 
identified by current research and are not met entirely 
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by existing solutions. Looking at these challenges, we 
found that an IoT platform should comprise technical 
layers for device and service integration and 
abstraction as well as their discovery, but also 
capabilities for data management and analytics and 
IoT-aware process modeling, implementation and 
execution. Furthermore, customers and businesses 
need to be able to share device data access and 
processes with other users of the platform through a 
marketplace. The composition of all these platform 
components leads to quality of service regarding the 
communication with smart devices and context 
awareness in terms of their environment. 

Future research in this field needs to focus on the 
advanced use of semantic technologies for device 
integration as well as device and service discovery.  
Analytics architectures have to be developed to cater 
to a non-technical audience, allowing self-service 
analytics. In terms of IoT-aware processes, tools for 
adaptive case management should be investigated to 
improve context awareness and flexibility. Also, 
business models on how to operate this kind of 
platform need to be created and evaluated.  Finally, 
the research concerning hybrid approaches on IoT 
platforms, e.g. in conjunction with Fog Computing, 
needs to be deepened.  
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